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Abstract. Coherent states of an electron embedded in a constant homogeneous magnetic 
field are constructed. The centres of the probability distributions belonging to these states 
gyrate along possible classical trajectories. Suitable packets of such coherent states are 
defined which reduce to properly normalised free electronic states in the zero magnetic 
field limit. A simple example is given to illustrate the dynamics of free electron localisation 
due to the presence of a magnetic field. 

1. Introduction 

The stationary solutions to the Schrodinger equation of an electron in a constant 
homogeneous magnetic field, the Landau states, have long been known and can be 
found in every textbook on quantum mechanics (Landau and Lifshitz 1975). Though 
the Landau states are very powerful and a commonly used mathematical tool for 
describing various physical processes which take place in uniform magnetic fields, they 
have a serious insufficiency. Namely, they do not reproduce any kind of free electronic 
states in the zero magnetic field limit. 

Recently many physicists have for example worked on the theory of potential 
scattering in the presence of external electromagnetic fields. In particular, induced 
and inverse bremsstrahlung processes in the presence of a uniform magnetic field are 
being very extensively studied due to their importance in fusion research (Seely 1974, 
Ferrante er a1 1979, Bergou et a1 1982). The difficulty with these calculations is that 
the scattering cross sections do not take the field-free form if Landau states are used 
as initial and final states (see also Ventura 1973). The source of these inconsistencies 
is clearly the application of Landau states, so it is important to find suitable superposi- 
tions of the Landau states which behave properly in the zero magnetic field limit (see 
also Faisal 1982). 

The aim of this paper is to present a possible solution to the problem of the zero 
magnetic field limit. In § 2 we give an elementary method to construct coherent states 
of a Schrodinger electron embedded in a constant homogeneous magnetic field. Our 
result coincides with that obtained by Malkin and Man’ko (1969) who used a different 
approach to the problem. In § 3 it is proved that a special class of coherent states is 
able to reproduce free electron states in the field-free limit. In § 4 a short summary 
completes our analysis. 
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2. Coherent states of an electron in a homogeneous constant magnetic field 

Coherent states of a charged particle in a magnetic field were first published by Malkin 
and Man’ko (1969) who have developed a general formal theory of such states based 
on suitably defined creation and annihilation operators of the quantum excitation of 
the system under discussion. The more general problem of coherent states of charged 
particles in a uniform electric field and a magnetic field has been thoroughly discussed 
by Johnson et a l  (1983). In the present paper we concentrate on the problem of the 
zero magnetic field limit and we do  not need the complete theory developed by Malkin 
and Man’ko. The explicit form of the mentioned coherent states in coordinate rep- 
resentation will be used in § 3.  

Due to this, we think that it is not completely useless to construct them by using 
an alternative and simpler (though less general) method which is based simply on the 
well known one-dimensional harmonic oscillator wavefunctions. 

The coherent states to be presented here correspond to gaussian probability distribu- 
tions of the electron’s position on the x-y  plane gyrating along circles with the usual 
cyclotron frequency w c =  ( l e / B / M c )  (e  and M are the electron’s charge and mass, 
respectively, c is the velocity of light in vacuum and B is the magnetic field strength). 
So the centres of these distributions move along possible classical trajectories. Their 
widths are the same, namely the usual magnetic length y-1/2= ( 2 h ~ / l e l B ) ” ~  ( h  is the 
Planck constant divided by 2 ~ ) .  The mentioned coherent states are parametrised by 
two complex numbers representing the velocity, the initial phase and the position 
vector of the guiding centre of the gyration. 

The Schrodinger equation for an electron in a uniform constant magnetic field 
directed along the z axis reads 

1 2 M  [ ( p x  -e .) + ( p y  +E .) ’1 4 

where w = (/elB/ZMc) = ( 4 2 )  is the Larmor frequency, L,  = xpy - yp ,  is the z com- 
ponent of the angular momentum operator, and p x  = -ih(a/ax), p y  = -ih(d/dy) are 
the canonical momentum operators. In (2.1) and henceforth we adopt a symmetric 
gauge vector potential (B/2)(-y, x, 0) and leave out of account the irrelevant z-  
dependence of the electronic motion. By introducing the polar coordinates p and cp 
with the definitions x = p cos cp, y = p sin cp, equation (2.1) can be brought to the form 

The stationary solutions to (2.2) are the well known Landau states (Landau and Lifshitz 
1975) 
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where 

(2.3a)  

m = 0 , * 1 , + 2  , . . .  , l = O , l , 2  , ' . . )  E, ,=hw, [ l+ t (m+/ml+ l ) ]  (2.3b) 

and L\" denote associated Laguerre polynomials (Gradshteyn and Ryzhik 1980). 
These states form an orthonormalised set 

( 2 . 3 ~ )  

From (2.3) it is clear that the stationary states &,, reduce to physically meaningless 
results in the zero magnetic field limit ( y  + 0). 

Instead of using the states given by (2.3) for constructing coherent states we first 
turn back to the original equation (2.1) and look for another class of solutions to  it. 

The Hamiltonian in (2.1) represents two coupled linear oscillators with the energy- 
conserving coupling term wL,. This term can be easily eliminated by introducing the 
ansatz 

(2.4) 

with $ satisfying the Schrodinger equation of two independent oscillators of the same 
frequency w. The stationary solutions to this reduced equation are simply products 
of the corresponding linear oscillator wavefunctions (Landau and Lifshitz 1975) 

4 = exp[-(i/h)wl,t]$ = exp(-ut a/acp)$, 

> n, k = O , l , 2 , . .  . ,  (2.5) - i w ( n + k + l ) t  $nk(x, Y; t )  = + n ( X ) + k ( Y )  e 

where 

H, , (x )  is a Hermite polynomial (Gradshteyn and Ryzhik 1980). To obtain 4 k ( y )  we 
should replace in ( 2 . 5 ~ )  n and x by k and y, respectively. 

Remembering the expansion of coherent states of a one-dimensional harmonic 
oscillator in terms of stationary number states (see e.g. Schiff 1955 or Glauber 1963) 
and taking into account the ansatz (2.4), we define the following coherent states 
parametrised by two complex numbers 1y and p :  

Introducing polar coordinates p and cp into (2.6) and using the generating formula for 
Hermite polynomials (Gradshteyn and Ryzhik 1980) 
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after applying the rotation operator exp(-wt a/dcp) we get the following explicit form 
for & @ :  

4,@(p,  cp; t )  = ( M ~ , / 2 ? r h ) l ’ ~  exp(-$iw,t) exp(-(Mwc/4h) 

~ [ p ~ + I a _ l ~ + I a + 1 ~ + 2 a - a +  exp(-iw,t) 

- 2a-p elv exp(-iw,t) -2a+p e-”]), (2 .7)  

where 

a ,  = ;(a kip) .  ( 2 . 7 ~ )  

Of course, the coherent state given by (2.7) satisfies the Schrodinger equation 
(2.2) by construction, but this can also be proved by direct substitution. 

Apart from notational differences (2.7) coincides with the coherent state given by 
Malkin and Man’ko (see equation (39)  in their paper). 

To see the physical meaning of the coherent state daB first let us cite the classical 
description of cyclotronic motion. The Newtonian equation of an electron in the 
uniform magnetic field under discussion reads U = -wc( U X n), where n is a unit vector 
along the z axis and U is the velocity of the electron. The solution to this classical 
equation is as follows: 

x,( t )  = (v/w,)[cos(w,t+x - ~ / 2 )    COS(^ - ~ / 2 ) ] +  ~ ( o ) ,  
(2.8) 

where ( x ( O ) ,  y(0)) is the initial position vector and  COS x, sin x) = (v,(O), v,(O)) is 
the initial velocity on the x-y plane at t = 0. 

given by (2.7) we can easily 
realise that if we identify a- and a+ with the following combination of classical 
quantities, 

y,(t) = (v/o,)[sin( w,t +x - ~ / 2 )  - sin(x - ~ / 2 ) ]  + y(O), 

Now, if we calculate the modulus squared of 

= ( v / w , )  e-l(x-n/*) a+ = u ( 0 ) -  a*,  u ( 0 )  = x ( 0 )  +iy(O), (2.9) 

the result for / & p / 2  can be brought to the form 

x - ~ ~ ( t ) ) ~ + ( y - y ~ ( t ) ) ~ ]  ] . (2:lO) 

Equation (2.10) tells us that Id,p12 is a gaussian probability distribution of width 
(2h/ Mu,)”* = Y - ’ ’ ~  whose centre follows the classical trajectory (2.8) without changing 
shape, so is really a coherent state in the usual sense. By taking the classical limit 
h-* 0 we get from (2.10) a two-dimensional Dirac delta distribution describing the 
classical motion of a point-like electron. 

The connection between the coherent states C#J,~ and the usual Landau states given 
by (2.7) and (2.3), respectively, can be established by expanding the exponential 

into power series and rearranging the triple sum we get after that expansion. The 
result is 

(2.11) 
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where we have introduced the notations 

U = (Mwc/2h)"2a-, b=(Mw,/2h)1'2a+, (2.11a) 

The probability distribution of Landau states 41m is a two-dimensional Poisson distribu- 
tion. It can be proved that 

f f ICfm12=( m=-m 2 l:/ml,(21abl)) exp(-Iu12-lb12)=1. ( 2 . 1 1 ~ )  
m=-m f = O  

In (2.11 c )  we have used the power series representation of the modified Bessel function 
I m  

and the relation 

(Gradshteyn and Ryzhik 1980). Of course, it is not very surprising that the distribution 
ICfmI2 is properly normalised as stated by ( 2 . 1 1 ~ )  since the coherent state 4oLp is 
normalised to unity and the states 41m form an orthonormalised set (see ( 2 . 3 ~ ) ) .  

3. The zero magnetic field limit 

In the present section we shall consider only a special class of coherent states given 
by (2.7). We set u ( 0 )  = 0 in (2.9), so a+ = -a! in this case. The special coherent state 
4oLp corresponding to these particular values of a- and a+ can now be characterised 
by a two-component real vector K = [ M u ( O ) / A ]  = K(cos x, sin x ) ,  where o(0) is the 
initial velocity of the classical motion. The centre of the circle along which the electron 
gyrates is given by the vector (1/2y)f i  E (1/2y)K(-sin x, cos x )  which is perpendicular 
to the vector K as is shown in figure 1. 

If the magnetic field goes to zero ( y + 0) the radius of the trajectory goes to infinity 
and the circle is degenerated to a straight line representing a uniform motion of a free 
electron with the constant velocity o(0) = ( h K / M ) .  Since the centre of the probability 
distribution 14mp(2 follows the classical trajectory and the width of the distribution is 
proportional to B-1'2, one may expect that in the zero magnetic field limit the coherent 
state q5ap will be reduced to a free electronic plane wave with wavevector K. To show 
this, first we write down the explicit form of such a coherent state: 

exp( -iw,t) - 1 
4Y -iw,t 
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Figure 1. The classical trajectory of an electron passing through the origin of the x - y  
plane with initial velocity o(0) = ( h K / M ) .  The centre of the cyclotronic motion of the 
electron is represented by the vector ( 8 / 2 y ) ,  where k is perpendicular to K and has the 
same length as K, and y = (MuC/2h) = (/elB/2hc). 

One can see that the exponential in (3.1) becomes a free electronic plane wave 
exp[-i(hK2/2M)t+iKx] in the zero field limit y + 0. Since + m p  contains the normalisa- 
tion factor ( y /  T )  ”’ the amplitude of the plane wave is zero. In order to get around 
this difficulty we introduce the wavefunction 

4 K ( X ;  ? I  Y )  = (4TY)-1’24mp(P> cp; t ) ,  (3.2) 

where dUp is given by (3.1). We note that the scalar product of functions 4K reads 

d’X+&(X; t l ~ ) 4 K , ( ~ ;  t I y ) = S Y ’ ( K - K ’ ) ,  (3.2a) 

where 

(3.26) 

The function S y ’ ( K - K ’ )  introduced in (3.26) has a remarkable property that in the 
y + 0 limit it becomes a two-dimensional Dirac delta function S(’)(K - K ’ ) :  

lim s \ ~ ’ ( K - K ’ )  = ~ ( ” ( K - K ’ ) .  ( 3 . 2 ~ )  

Taking into account the arguments mentioned before we can easily prove the relation 

Y - 0  

lim d K ( x ;  tl y) 
Y - t O  

(3.3) 

We must mention that the coherent states whose guiding centres are fixed during the 
limiting procedure (see Varr6 etal1984a) are not able to reproduce free electron states. 

The result expressed by (3.3) is still not satisfactory because 4 K ( ~ ;  ti y )  has a finite 
norm (47ry)-”’, but after the limiting procedure it becomes a non-normalisable plane 
wave. In order to get rid of this difficulty we construct a superposition of functions 
+K with the definition 

d,(Xl f I Y )  = Nil(Y) d 2 K d K ) 4 K k  ? I  71, (3.4) I 
where the weight factor g ( K )  is assumed to be normalised to unity but is otherwise 
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an arbitrary function of K,  

5 d2K Ig(K)(’= 1. ( 3 . 5 ~ )  

In ( 3 . 4 )  we have introduced the real normalisation factor N,(y)  with the definition 
N i ( y )  = //{d2Kg(K)4K112. Taking into account ( 3 . 2 ~ )  we get 

N i ( y ) =  d2K d2K’ g*(K)g(K’)c?y’(K-K’). 5 5  ( 3 . 5 b )  

We note that due to (3 .5b ) ,  ( 3 . 2 ~ )  and ( 3 . 5 u ) ,  N g ( y )  tends to unity if y tends to zero. 
Now if we take the limit y goes to zero from ( 3 . 4 )  we have 

d2Kg(K)-exp(-i- 1 hK2 
27T 2 M  

Equation ( 3 . 6 )  represents the main result of the present paper. 4g(x; t I y )  is a solution 
to the Schrodinger equation of the electron in the presence of a constant homogeneous 
magnetic field and $g(x; t )  is a free electron wavepacket. Both of them are normalised 
to unity and &(x;  tI y )  reduces to $g(x; t )  in the zero magnetic field limit. We note 
that though coherent states form a complete set, they are not orthogonal to each other. 
Thus, one may expect that the applicability of such states in scattering theory as initial 
and final states is questionable. This problem is the subject of our forthcoming paper 
(Varr6 et a1 1984b). 

Before concluding this paper we give a simple example for the packet solutions of 
the type given in ( 3 . 4 ) .  Let us take the weight factor g (K)  in the form of a gaussian 
distribution of parameter r 

The probability distribution l~$,&x; t I y)12 can be easily calculated, yielding 

where we have introduced the time-dependent width cry( t )  by the definition 

( 3 . 7 )  

In ( 3 . 8 ) ,  ( x c ( t ) ,  yc(t))  represents a classical trajectory of the type given in ( 2 . 8 )  with 
x(0) = y(0)  = O  and initial velocity ~ ~ ( 0 )  = ( h K o / M ) .  From (3.8) and ( 3 . 8 ~ )  one can 
see that the centre of the packet solution 4, follows the classical trajectory as the 
simple coherent states C#J~@ do (see also (2.10)), but the distribution has a time- 
dependent width a,(?) which oscillates with the Larmor frequency ( 4 2 ) .  That means 
that the maximum value of 14,,12 and the width of it vary periodically in an opposite 
manner. We can interpret this oscillation as a result of the competition between the 
natural spreading-out tendency of a free wavepacket and the contraction effect due 
to the presence of the magnetic field which results in the localisation of the electron. 
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4. Summary 

The aim of the present paper was to show certain superpositions of Landau states 
which reduce to free electron plane waves or normalisable free electron wavepackets 
in the zero magnetic field limit. 

The limiting procedure can be easily carried out for a classical electron if we solve 
the initial value problem of the Newtonian equation of motion. The classical trajectory 
of the well known cyclotronic motion is a circle whose radius is equal to the ratio of 
the modulus of the initial velocity and the cyclotron frequency. In the zero magnetic 
field limit the circle becomes a straight line describing a uniform motion of the electron 
with the same initial velocity and position as we had for the gyration along the circle 
when the magnetic field was on. 

We have first constructed coherent states of the electron embedded in the magnetic 
field in the hope that they behave as properly as their classical counterparts in the 
zero magnetic field limit. It has been shown in the second part of our paper (see (3.3) 
and (3.6)) that this expectation was correct, so the states & introduced in (3.2) reduce 
to free electronic plane waves of wavevector K as the magnetic field goes to zero. We 
have also proved that suitable normalised superpositions of c $ ~  reproduce normalised 
free electron wavepackets with the same norm in the zero field limit, thus, for coherent 
states the limiting procedure does not affect the normalisation. 

Finally, we gave an example for gaussian packets of coherent states. The centres 
of the probability distributions belonging to these states again follow the classical 
trajectories, but the width of these distributions oscillates with the Larmor frequency. 
The latter result can be considered as a possible description of the dynamics of electron 
localisation due to the presence of the magnetic field. 
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