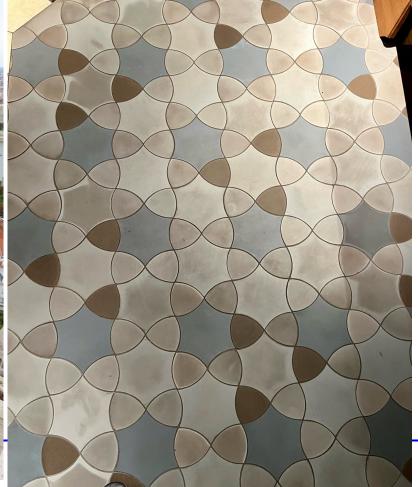
spin liquids and supersolids in anisotropic triangular-lattice model

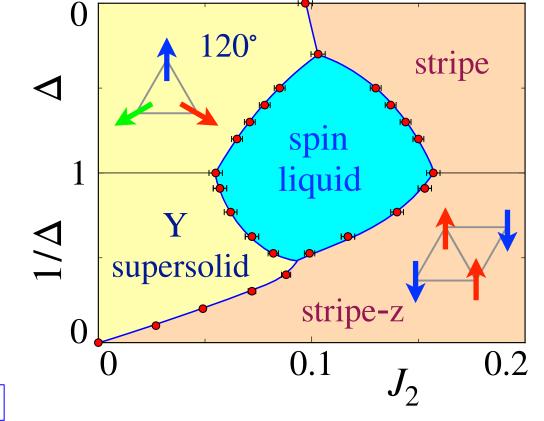


spin liquids and supersolids in anisotropic triangular-lattice model

Cesar Gallegos

Shengtao Jiang

UCIrvine
University of California, Irvine

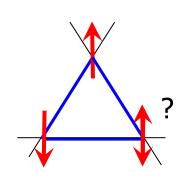


C. A. Gallegos, S. Jiang, S. R. White, and **SC**, PRL **134**, 196702 (2025).

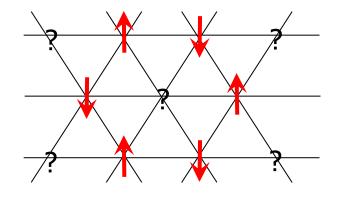
the Creed: triangular foundation

Google Scholar: 1897 cites

Google Scholar: 3714 cites

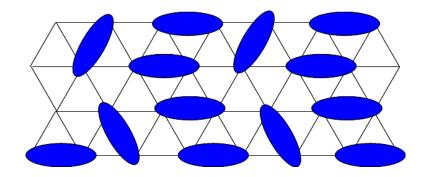


Ising



frustration yields degeneracy!

Heisenberg



no unique ground state exists

G. H. Wannier, *Phys. Rev.* **79**, 357 (1950).

exotic states are possible

exotic state **may** exist

P. W. Anderson, *Mat. Res. Bul.* **8**, 153 (1973).

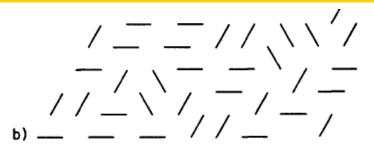
a Hungarian connection...

P. W. Anderson, Mat. Res. Bul. 8, 153 (1973).

RESONATING VALENCE BONDS: A NEW KIND OF INSULATOR ?*

**This paper was originally intended for the Pauling Festschrift, Volume 7,

Rumer (7) and Pauling (8) have given rules for determining which and how many of these configurations are independent: as we see from eqn. (9), in



APRIL, 1933

JOURNAL OF CHEMICAL PHYSICS

The Calculation of Matrix Elements for Lewis Electronic Structures of Molecules

LINUS PAULING, California Institute of Technology (Received February 14, 1933)

Valence Bond basis

Starting from the discovery by Rumer that the eigenfunctions corresponding to different distributions of valence bonds in a molecule can be represented by plane diagrams which provide information regarding their mutual linear

independence, a very simple graphical method is developed for calculating the coefficients of the integrals occurring in the matrix elements involved in Slater's treatment of the electronic structure of molecules.

7. G. Rumer, Nachr. d. Ges. d. Wiss. zu Gottingen, M. P. Klasse, 337 (1932).

who is Mr. Rumer??

8. L. Pauling, J. Chem. Phys. 1, 280 (1933).

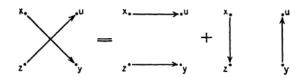
valence bonds

Zur Theorie der Spinvalenz.

Von

Georg Rumer in Moskau.

Vorgelegt von H. WEYL in der Sitzung am 22. Juli 1932.

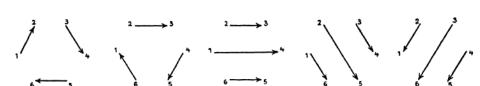


Eine für die Valenztheorie geeignete Basis der binären Vektorinvarianten.

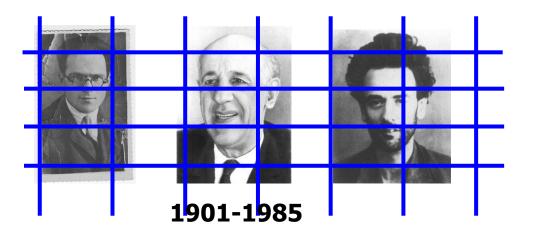
Von

6. Rumer (Moskau), E. Teller und H. Weyl (Göttingen).

Vorgelegt von H. WEYL in der Sitzung am 28 Oktober 1932.



Yurii (George) Rumer



- "sharashka" = research Gulag
- Karl Szilard (≄ but related to Leo Szilard)

7. G. Rumer, Nachr. d. Ges. d. Wiss. zu Gottingen, M. P. Klasse, 337 (1932).

ode to Hungarian math-physics

triangular XXZ

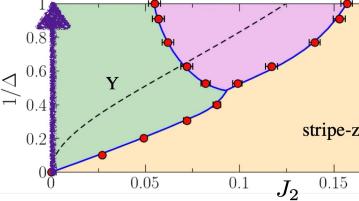
 $\hat{\mathcal{H}} = J_1 \sum_{\langle ij \rangle_1} \left(S_i^x S_j^x + S_i^y S_j^y + \Delta S_i^z S_j^z \right)$

Google Scholar: 1038 cites

$$\frac{1}{N} E_{\rm el} = -JS^2 \frac{1+\alpha+\alpha^2}{1+\alpha} \approx \frac{1}{N} E_{\rm Ising} - JS^2\alpha^2$$

In what follows we will be speaking only of the $S = \frac{1}{2}$ case. Our argument in favour of a non-Néel-type state rests on the recognition that it is possible to construct states whose energy depends linearly on α

$$\frac{1}{N} E_{\rm tr} = \frac{1}{N} E_{\rm Ising} - b\alpha, \tag{5}$$



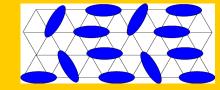
- extend Heisenberg RVB to Ising to tie it with Wannier degeneracy
- classically, near Ising, linear term in $\alpha = 1/\Delta$ is missing
- real-space perturbation theory restores linear term
- B. Kleine, E. Muller-Hartmann, K. Frahm, and P. Fazekas, Z. Phys. B 87, 103 (1992);
- B. Kleine, P. Fazekas, and E. Muller-Hartmann, Z. Phys. B 86, 405 (1992).
 - what was discovered was an order-by-disorder effect, true for **any** spin, not just S=1/2

show that the original argument [14] in favour of a spin-liquid state was fallacious. The reason for this is the highly non-trivial,

is S=1/2 special? magnetization ≈ 0 (?) while classical value = NS/3 (up-up-down)

Google Scholar: 29 and 11 cites

triangular foundation?



$$-rac{1}{J}\,E_{\triangle}{}^{
m sing}=0.527\pm0.004.$$
 Anderson
$$-rac{1}{J}\,E_{\triangle}{}^{
m sing}=0.482,$$
 Sütő

$$-\frac{1}{J}E_{\Delta}^{SW} = 0.463 \pm 0.007.$$

are not conclusive, and recent work using variational [5],

07. Néel, from Anderson

correct

J. Phys. Soc. Jpn. 52 (1983) Suppl. p. 183-186

THE SPIN WAVE THEORY IN ANTIFERROMAGNETIC LAYERED TRIANGULAR LATTICE

T. Oguchi

incorrect

Hence, the original expectations of Anderson (1973) about the excitation spectrum of the triangular antiferromagnet are only partially borne out: the singlet gap indeed is zero, but so, contrary to his conjecture, is the triplet gap. Therefore a conclusion about the impossibility of Néel-type symmetry-breaking cannot readily be made: there are low-lying excitations other than singlets. What really seems to matter is whether the singlet gap is zero or

$$E_{gs}/N = -\frac{3}{2}JS^2 \left[1 + \frac{0.436824}{2S} + \frac{0.02141}{(2S)^2} \right]$$

In this paper we return to the original RVB problem of pure spin systems. In 1973 Anderson [3] conjectured

that the isotropic, nearest-neighbour (nn) Heisenbergmodel on the triangular lattice does not have LRO but instead the ground state should be envisaged as resonating between different arrangements of singlet pair bonds.

Subsequent investigations [4] soon indicated that the original energetical arguments in favour of an RVB state

- singlet and triplet gaps both scale (1/N) to zero \Rightarrow not RVB
- 1/N scaling of E_{GS} in RVB paper is too generous, correct one \approx Néel

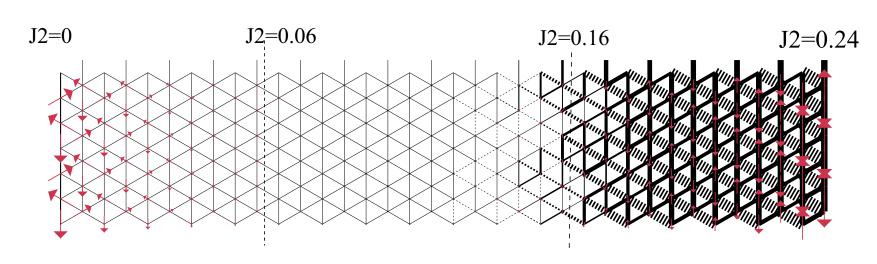
Google Scholar: 16 cites

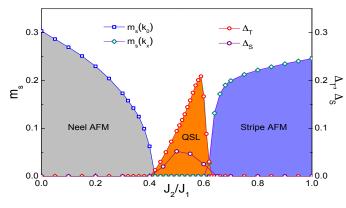
[4] András Sütő and Patrick Fazekas, Philos. Mag. **35**, 623 (1977)

B. Kleine etal., Z. Phys. B 87, 103 (1992)

$J_1 - J_2$ timeline

- why did it take so long to study triangular case?
- classically: square \Rightarrow degenerate at $J_2=0.5$, triangular at $J_2=1/8 \Rightarrow$ is not



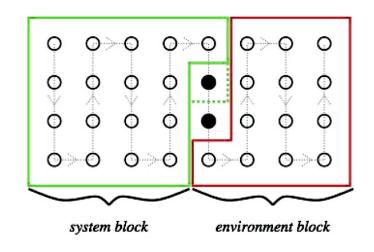


- there were earlier claims about SL in $J_1 J_2$ triangular model ...
- but nobody gave disznófing (much thought) about them, before DMRG

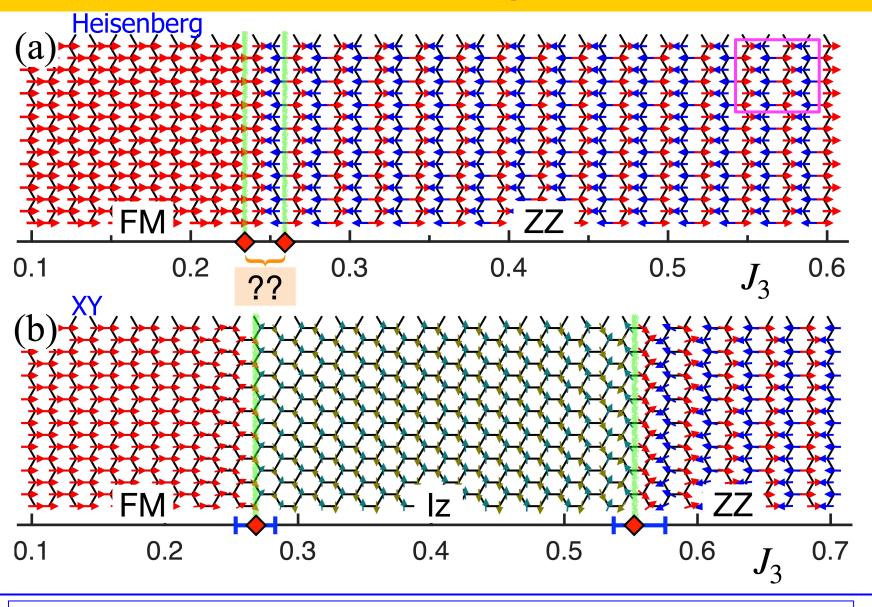
ode to DMRG

ode to DMRG

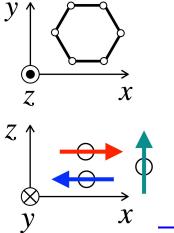
- it is a variational method in a generic sense,
 selecting the ground state from the low-energy sector
- it wants to find the low-entanglement (typically = ordered) state,
 when it cannot ⇒ this finding is (very) robust



sheer power of DMRG



- **⇒** DMRG scans
 - ⇒ great exploration tool! "direct" look at orders, focus on suspicious regions
- ⇒ open-periodic
- ⇒ $m \sim 3000$, error $O(10^{-5})$
- ⇒ further "zooms"
- ⇒ non-scans, FS scaling, ...



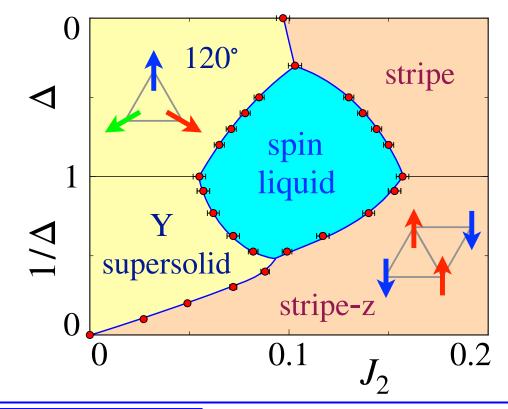
our story ...

Cesar Gallegos

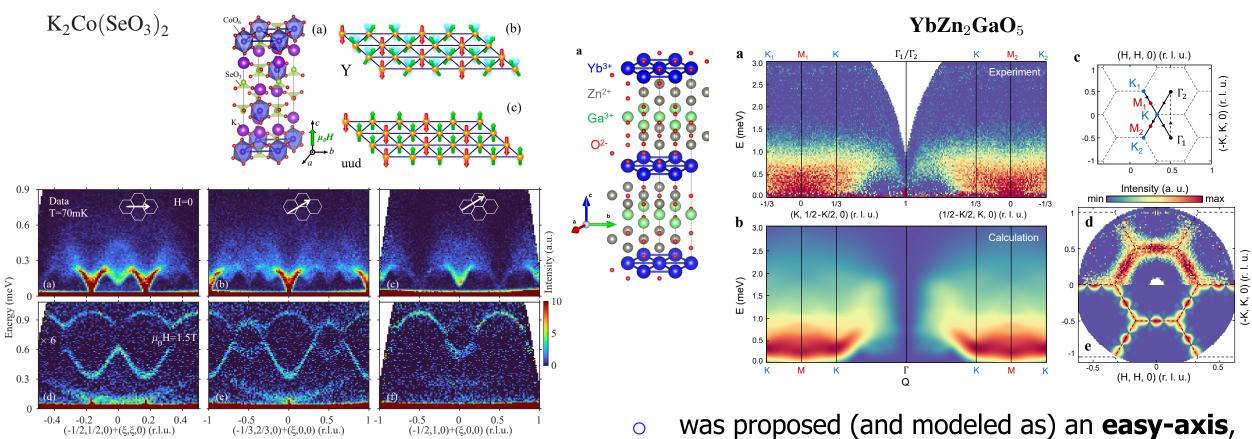
Shengtao Jiang UCIrvine

University of California, Irvine

Steven White



KITP 2023, etc.: easy-axis models



 easy-axis triangular lattice magnets: supersolids, rich dynamical properties

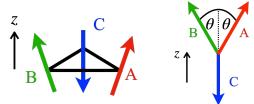
- was proposed (and modeled as) an easy-axis,
 J₁-J₂ XXZ, triangular-lattice magnet (model)
- what is its (quantum, S = 1/2) phase diagram??

phase diagram

$$\hat{\mathcal{H}} = \sum_{n=1,2} \sum_{\langle ij \rangle_n} J_n \left(S_i^x S_j^x + S_i^y S_j^y + \Delta S_i^z S_j^z \right)$$

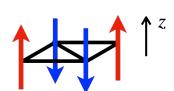
spin-1/2

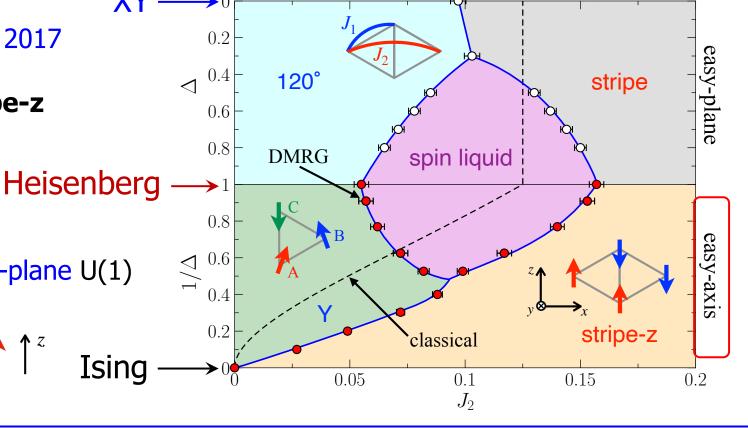
- → Heisenberg ⇒ much studied
- easy-plane part ⇒ DMRG and VMC (*) 2017
- easy-axis, ordered phases: Y and stripe-z



Y ⇒ supersolid: 3-sublattice solid + in-plane U(1)

stripe-z ⇒ 4-sublattice, order along z



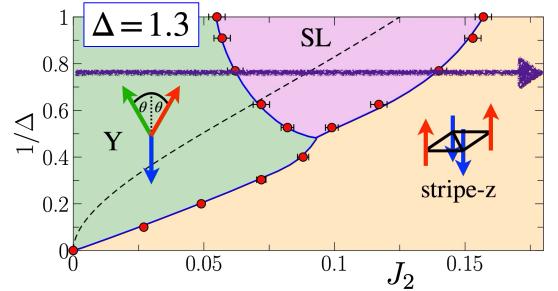


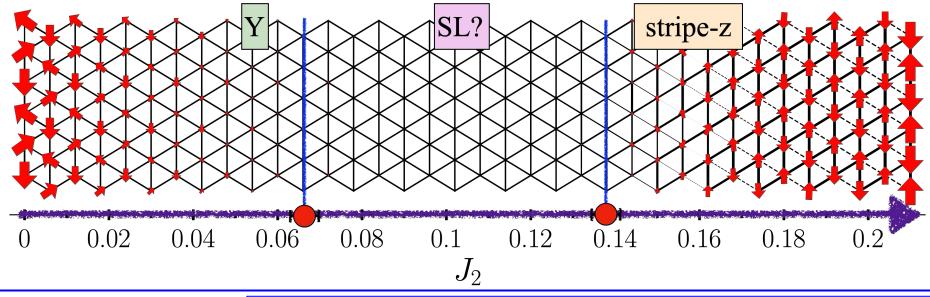
C. A. Gallegos *etal.*, PRL **134**, 196702 (2025).

(*) Z. Zhu, etal, PRL **119**, 157201 (2017); Iaconis etal, SciPost Phys. **4**, 3 (2018)

agnostic approach: DMRG scans, I

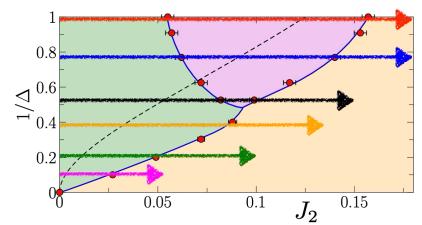
- J_2 ⇒ varied along the 6x36 cylinder, fixed Δ
- \circ measure local order $\langle S_i \rangle$
- → faithful visual extent of the phases

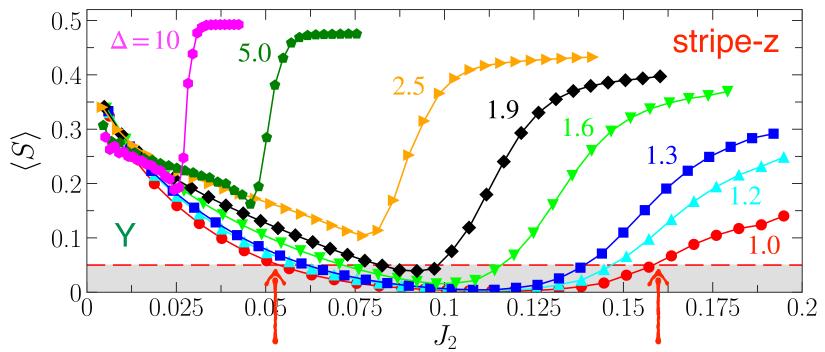


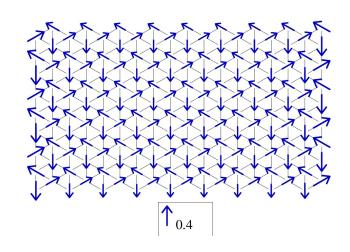


agnostic approach: DMRG scans, II

- **SL** \Rightarrow matching Heisenberg boundaries, cutoff $\langle S \rangle \leq 0.05$
- SL ⇒ verified by non-scans (all parameters fixed) in up to 9x20 cylinders (up to 5000 states)

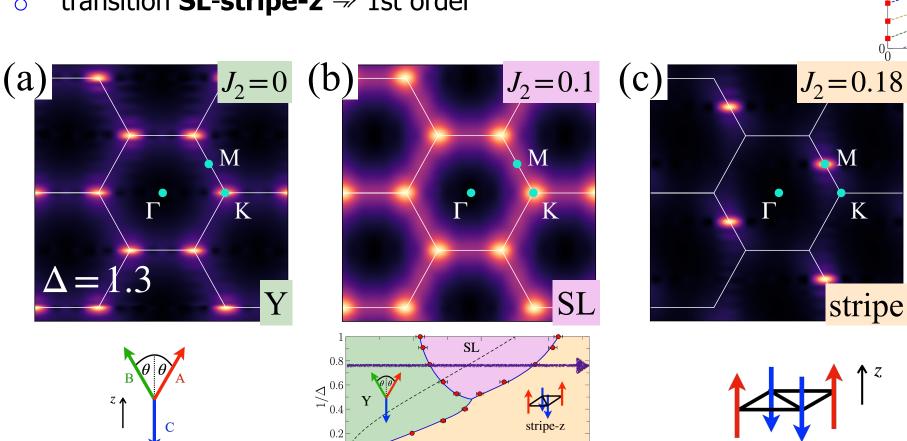






non-scans: nice visuals ...

- $S(\mathbf{q}) \Rightarrow$ static structure factor
- **SL** ⇒ broadened K peaks ⇒ "molten" **Y** phase (soft transition)
- transition **SL-stripe-z** ⇒ 1st order



0.05

0.1

 $\widehat{S}_{0.05}$

 $1/L_{u}$

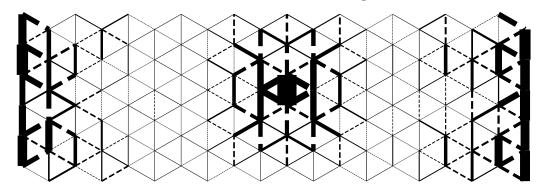
 $\circ J_2 = 0.04 \circ J_2 = 0.07$

12×6

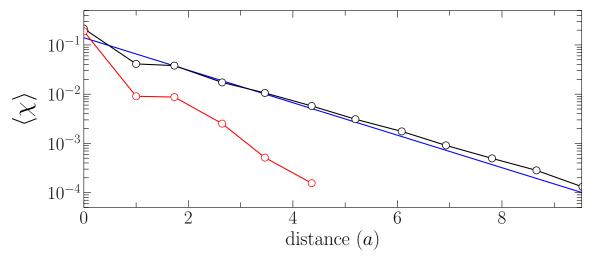
 $\langle S \rangle$

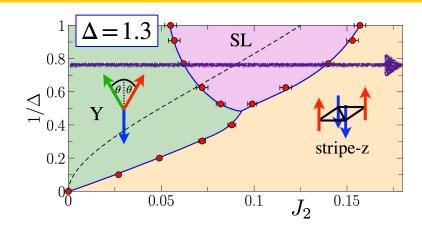
characterizing SL ...

- strongly pinned singlet bond in the center
- o bonds: $\langle \mathbf{S}_i \mathbf{S}_j \rangle \langle \mathbf{S}_i \mathbf{S}_j \rangle_{average} \Rightarrow$ no VBS response

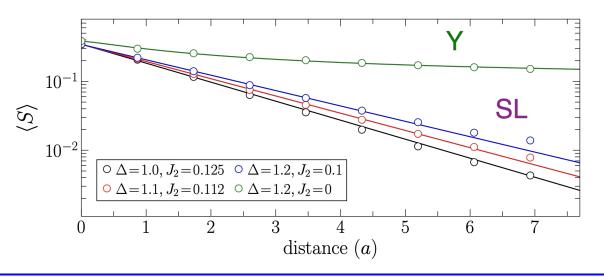


chirality induced, edge and center ⇒ no response



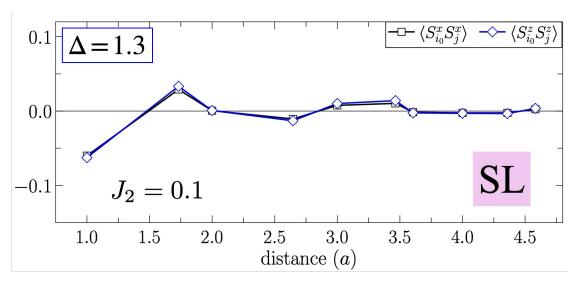


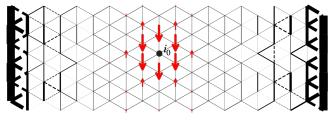
∘ spin pinned at the edge ⇒ correlation length in **SL** ($\xi \approx 1.6a$)

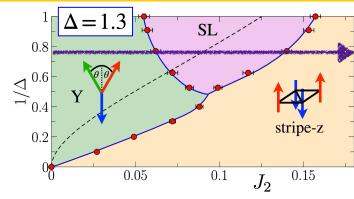


SL seems fully isotropic!

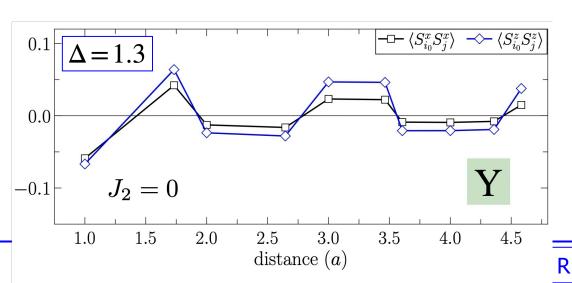
real-space correlation function

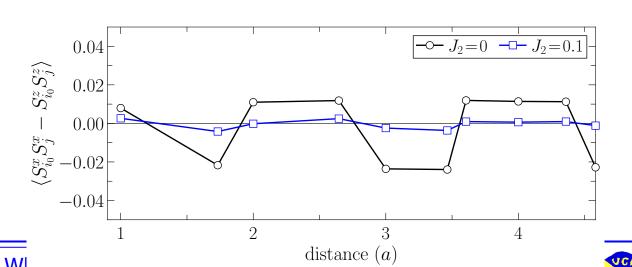




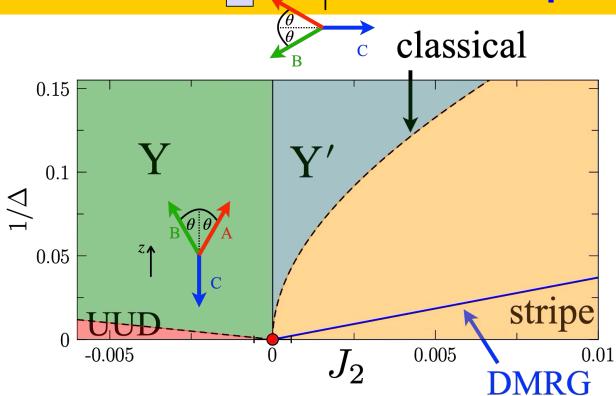


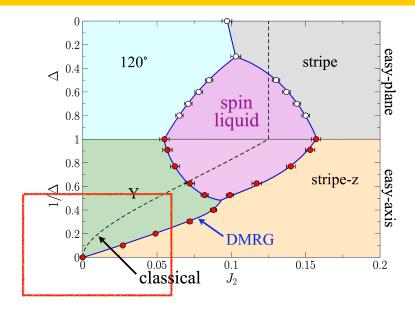
- far away from Heisenberg, yet in-plane and out-of-plane correlations are nearly equal
- no quantum numbers kept in DMRG
- ⇒ symmetry enrichment?





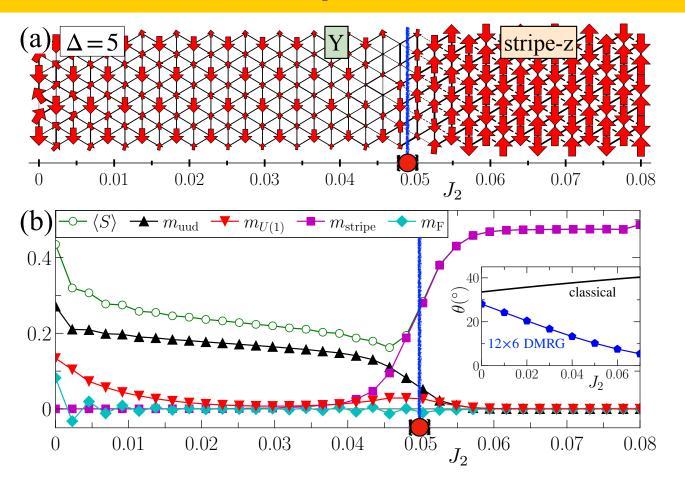
supersolid, I

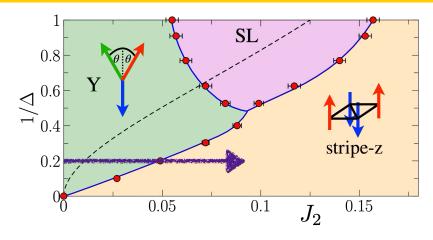




- classically, Y' is the GS for J₂>0, and Y'-to-stripe boundary is anomalous: $1/\Delta \propto \sqrt{J_2}$ this is related to the accidental degeneracy along the J₂=0 line and $E_{\rm cl} \propto -1-1/\Delta^2$
- quantum effects select Y for the GS and make the Y-stripe boundary "normal": $~1/\Delta \propto J_2$

supersolid, II, more scans

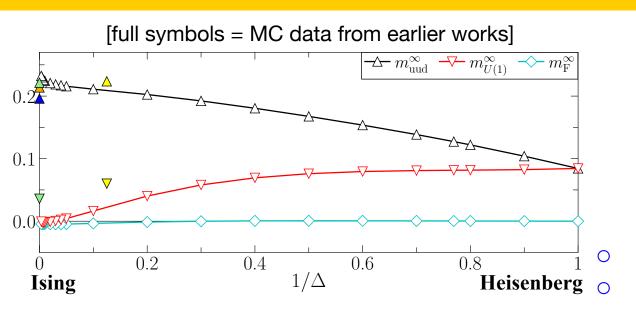


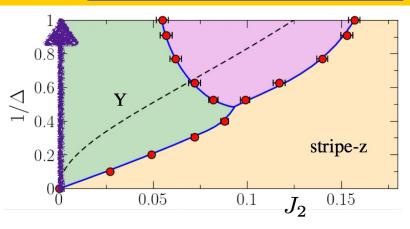


- direct Y-to-stripe transition, small U(1) component
- total moment, m_F , is close to zero, as if canceling for every unit cell: down + 1/2 up + 1/2 up

supersolid, III, J_1 —only

$$\hat{\mathcal{H}} = J_1 \sum_{\langle ij
angle_1} \left(S_i^x S_j^x + S_i^y S_j^y + \Delta S_i^z S_j^z
ight)$$





classically, $m_F \rightarrow 1/6$ in the Ising limit, DMRG \Rightarrow zero resolution \Rightarrow rewrite Hamiltonian (*)

$$\hat{\mathcal{H}}_1 = \frac{1}{2} \sum_{\Delta} \left(\left(S_{\Delta}^{\perp} \right)^2 + \Delta \left(S_{\Delta}^z \right)^2 \right) - \frac{3}{2} (\Delta - 1) \sum_i \left(S_i^z \right)^2$$

- S=1/2 is really special! last term = const
- the rest implies GS with $S^lpha_{ riangle}=0$

C. A. Gallegos *etal.*, PRL **134**, 196702 (2025).

(*) as in the Heisenberg limit:

 $\hat{\mathcal{H}}_1 = \frac{1}{2} \sum_{\triangle} \mathbf{S}_{\triangle}^2 + \text{const}$

conclusions

☑ everyone makes mistakes, it takes courage to correct them

☑ large SL region in the XXZ phase diagram

 \boxtimes SL \Rightarrow isotropic (?); (why? what kind?)

 \square zero m_F in the S=1/2 case

