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the Creed: triangular foundation
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no unique ground state exists

P. W. Anderson, Mat. Res. Bul. 8, 153 (1973).

Heisenberg

G. H. Wannier, Phys. Rev. 79, 357 (1950). 

exotic state may exist

frustration yields degeneracy!

exotic states are possible
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P. W. Anderson, Mat. Res. Bul. 8, 153 (1973).

a Hungarian connection…

who is Mr. Rumer??

o Valence Bond basis
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valence bonds 

Yurii (George) Rumer

1901-1985

o “sharashka” = research Gulag

o Karl Szilard (≄ but related to Leo Szilard)
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the number of which is exponentially large [15]. Since 
the x - y  part of H connects a (still exponentially large 
[16]) number of Ising ground states, the leading quantum 
correction to the ground state energy must be linear in 
A. For S = 1/2, it was found that the ground state lies 
in the St~t~j = 0  subspace. In [14], this was contrasted to 
the classical Ndel-state with three sublattices, with one 
sublattice polarized in the spin-z direction, and the 
other two sublattice magnetizations pointing at angles 
0 = _+ arccos ( -  1/(1 + A )) (Fig. 1). The leading correc- 
tion to the classical ground state energy is easily seen to 
be quadratic in A, and St~tal approaches NS/3 as A ~ 0  
(N being the number of lattice sites). In [14], the appar- 
ently harmless but, as it turned out, erroneous assump- 
tion was made that these features of the classical (S--* oe) 
ground state carry over also to the quasi-classical limit 
of large, but finite, spin S. Then the quantum-mechanical 
ground state of the S = 1/2 system would be clearly dif- 
ferent from the quasi-classical N6el-type state. This 
seemed to be the most clear-cut argument in favour of 
an essentially quantum-mechanical spin-liquid state which 
can not be understood by continuation from the classical 
limit. 

A careful re-examination of the old arguments in our 
previous paper [16], and performing the quasi-classical 
spin-wave analysis in the present one, show that the orig- 
inal argument [14] in favour of a spin-liquid state was 
fallacious. The reason for this is the highly non-trivial, 
and hitherto unsuspected, nature of the quasi-classical 
limit. As soon as we switch on quantum fluctuations, a 
drastic departure from the classical behaviour is seen even 
in the limit of large S. The S = 1/2 case may still turn 
out to be somewhat exceptional but quantum fluctuations 
lead to a profound modification of the classical picture 
for all finite S [17]. For instance, the spin reduction on 
two sublattices will be seen to remain finite as A 4 0 .  
In some sense, there is a closer connection between 
S =  1/2 and large S, than between large S and S--* oo. 
The underlying reason is the non-trivial (i.e., not obvi- 
ously symmetry-related) degeneracy of the classical 
ground state found byMiyashita and Kawamura [18]. In 
the next section, we show that a suitable parametrization 
makes this extra degeneracy obvious. 

In Sect. 3, we perform the quasi-classical spin-wave 
analysis. Quantum fluctuations lift the non-trivial clas- 
sical degeneracy but the effect of the extra classical ground 
states becomes manifest in the appearance of a second 
gapless branch in the spin-wave spectrum. This new 
acoustical branch is responsible for the fact that spin- 
wave theory does, in fact, predict a A-linear ground state 
energy lowering, and (for S =  1/2) most probably also 
St~,~al = 0. 

The two different approaches, namely, studying H in 
the subspace of Ising ground states [14, 16], and linear 
spin-wave theory, are now seen to give qualitatively the 
same characterization of the ground state. Though the 
remaining quantitative discrepancies are quite large, and 
quantum fluctuations are clearly very important, it is clear 
that the original qualitative arguments [14] in favour of 
a spin-liquid state can not be upheld. We are fairly certain 
that the ground state is N6el-ordered for S >_ 1, and that 

for S = l /2 ,  either LRO prevails, or the three-sublattice 
order decays not faster than algebraically. 

2. The classical ground states 

The ground state of the classical systems ( S =  oo) was 
investigated by Miyashita and Kawamura [18]. It shows 
long range magnetic order with ferrimagnetic spin align- 
ment on three sublattices. The ground state is degenerate 
due to the rotational symmetry with respect to the z-axis. 
For A = 1 the full isotropy of the system leads to an even 
larger degeneracy. Miyashita and Kawamura found that 
for A < 1 there is also an additional degeneracy of the 
ground state which is not caused by an obvious symmetry 
of the system. 

Let us adopt the conventional subdivision of the tri- 
angular lattice into sublattices A, B, and C. The sublattice 
magnetizations are co-planar, with the plane containing 
the z-axis; let us choose it as the zy-plane. The ground 
state problem can thus be reduced to the study of the 
following three-spin hamiltonian 

h= ~, (cosOicosOj+A sin ~9i sin ~j) (2) 
i , j = A , B , C  

where 0i labels the angle with the z-axis. 
Now we perform the transformation f l j=0  

- (OA + O~ + Oc). Since all vectors are turned by the same 
angle, the transformation preserves the absolute value of 
the total spin. Defining the two-dimensional vectors 
S; = (sin fl~, cos fl~), the hamiltonian can be rewritten as 

h= 89 +A) I~,;=~A,.,cS-~SJ 1 

+  8 9  [ ~, S ie_y I , (3) 
t A B C   9 2 , , 

With m =_S A + _S~ + S c this finally results in 

h I + A  1 - A  = ~ (m 2 -- 3) + - ~ -  my. (4) 

The above equation makes the non-trivial degeneracy 
appear obvious. The constancy of the energy expression 
can be guaranteed by keeping m 2, and my constant, which 
imposes only two constraints on the original three vari- 
ables 0A, ~s, and Oc. Thus we are free to choose 0A, 
and can determine 9 , = e  +,~, and Oc = e - ~  so as to 
obtain one of the classical ground states: 

tan 0A = A tan e ,  (5) 

A 
cos fi ----(-1 +A ) [sin20A -kA cosZ,gA] ~/2' (6) 

and further 

A cos0A 
cos e - [sinZ 0 A +A cos20A] ~/7" (7) 
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triangular XXZ

o extend Heisenberg RVB to Ising to tie it with Wannier degeneracy
o classically, near Ising, linear term in !=1/" is missing
o real-space perturbation theory restores linear term
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funct,ions. In the fourth section second-order perturbation theory is applied 
to improve upon the energy estimates obtained previously. In the conclusion 
we comment on the general relevance of our results to the problem whether 
non-Nkel type ground states are likely to occur in S = 4 systems. 

5 2. VARIATIONAL RESULTS FOR THE GROUND-STATE ENERGY 

The aim of the present paper is to supply further evidence that the tri- 
angular antiferromagnet is likely to have a ground state which is different 
from that shown in fig. 1 ( b ) .  The motivation for the existence of such a 
&ate becomes clearer if we examine the anisotropic Heisenberg model 

ait,h 1 3 u 3 0. A peculiar non-N6el-type state is the most conspicuous in the 
a < 1 limit and, according to our estimate, i t  can be continued as ground stat,e 
up to a = 1 ,  the case investigated by Anderson (1973). 

As one of us (Anderson, to be pub- 
lished) pointed out, the best one is probably that which with increasing a: 
gradually transforms into the 120" state (fig. 1 ( b ) ) .  One starts with a parti- 
cular Ising ground state which already has the same sublattices (fig. 1 ( c ) ) .  For 
small as the 3 and C sublattice magnetizations tilt with the angle 8 (fig. 1 (d) ) ,  
where from the minimization of the classical energy E,, 

First, let us consider the NBel-state. 

1 
cos 8=- 

1 +cc' 

6 varying from 0" to 60" as a increases from 0 to 1, and 

1+a+a2 
N l+a ' 
- 1 E e l =  -JS2 

S being the spin. 
the Ising state EIsing = - JS2N,  is quadratic in u 

For small a's the energy gain with respect to the energy of 

1 1 2v E,, z EIsing - JS2a2, 

A similar conclusion could be drawn from the quasi-classical spin wave 
ca.lculat,ion based on the three-sublattice state shown in fig. 1 (d). 

In what follows we will be speaking only of the S = 4 case. Our a,rgument 
in favour of a non-Nhel-type state rests on the recognition that it is possible 
t,o construct states whose energy depends linearly on a 

where E,, is the energy of our respective trial wave functions. 
When C( = 0 (Ising model) the ground- 

state manifold has a zero point entropy, there being a macroscopic number of 
stat,es wit,h exactly the minimum number of nearest-neighbour parallel pairs 

The reason for this is the following. 
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state manifold has a zero point entropy, there being a macroscopic number of 
stat,es wit,h exactly the minimum number of nearest-neighbour parallel pairs 

The reason for this is the following. 
o what was discovered was an 

order-by-disorder effect,
true for any spin, not just S=1/2
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B. Kleine, E. Muller-Hartmann, K. Frahm, and P. Fazekas, Z. Phys. B 87, 103 (1992); 
B. Kleine, P. Fazekas, and E. Muller-Hartmann, Z. Phys. B 86, 405 (1992).

o is S=1/2 special? magnetization ≈ 0 (?) while classical value = NS/3 (up-up-down)

Patrick Fazekas
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triangular foundation?

o singlet and triplet gaps both scale (1/N) to zero ➾ not RVB 
o 1/N scaling of EGS in RVB paper is too generous, correct one ≈ Néel 

Z. Phys. B - Condensed Matter 87, 103-110 (1992) Condensed 
Zeitschrift M a t t e r  for Physik B 
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We perform the standard spin wave analysis of the 
triangular Heisenberg quantum antiferromagnet with 
nearest neighbour coupling. The exchange interaction is 
taken to be A J ~ = J x = J y ( O  < A < 1). We give a simple 
explanation of the non-trivial classical degeneracy pointed 
out by Miyashita and Kawamura and show that it is 
removed by quantum fluctuations, but that the degen- 
eracy manifests itself through the appearance of a second 
gapless spin-wave branch. The existence of a second gap- 
less mode has a drastic influence on the quasiclassical 
behaviour near the Ising limit: the energy gain with re- 
spect to the Ising state energy is found to be linear in A, 
and the reduction of the sublattice magnetization on two 
of the three sublattices remains finite as A-*0. These 
findings essentially invalidate the original qualitative ar- 
guments [14] in favour of a spin-liquid ground state of 
the anisotropic triangular antiferromagnet. 

1. Introduction 

The original problem behind the hugely proliferating res- 
onating valence bond (RVB) activity of the late eighties 
[1] is whether the (at least two-dimensional) S = 1/2 Hei- 
senberg antiferromagnet necessarily shows N6el-type 
long-range order (LRO) in its ground state. The discov- 
ery of the Cu-based oxide superconductors gave an ex- 
citing dimension to the question: if the non-conventional 
magnetic state can be considered as the insulating state 
of an assembly of preformed Cooper-pairs, then doping 
the system might well lead to a non-conventional super- 
conductor [2]. 

In this paper we return to the original RVB problem 
of pure spin systems. In 1973 Anderson [3] conjectured 
that the isotropic, nearest-neighbour (nn) Heisenberg- 
model on the triangular lattice does not have LRO but 

* Permanent address. Central Research Institute for Physics, P.O. 
Box 49, H-1525 Budapest, Hungary 

instead the ground state should be envisaged as resonat- 
ing between different arrangements of singlet pair bonds. 
Subsequent investigations [4] soon indicated that the 
original energetical arguments in favour of an RVB state 
are not conclusive, and recent work using variational [5], 
spin-wave [6], Schwinger-boson mean-field [7], and exact 
diagonalization [8] techniques converges to the view that 
the ground state shows conventional, three-sublattice 
Ndel-order with the sublattice magnetizations pointing at 
120 degrees to each other. 

The continuing search for some kind of exotic behav- 
iour in the isotropic model concentrates now on the effect 
of switching on next-to-nearest neighbour (nnn) inter- 
actions. This work is largely motivated by Baskaran's [9] 
suggestion that such an extended model could show chiral 
ordering of the type discussed by Kalmeyer and Laughlin 
[10]. Subsequent investigations have not been able to 
confirm the existence of chiral order [8, 11 ]. We mention 
in passing that an essential ingredient of Baskaran's ar- 
gument, namely the local gauge invariance of the nn model 
he inferred from the behaviour of some low-order terms 
of a Landau free energy expansion, can be disproved by 
going to higher orders [12]. This finding might, in prin- 
ciple, allow chiral symmetry breaking even in the nn 
model; however, a closer look at the higher-order terms 
of the free energy does not support this speculation [13]. 

With the possible exception of some narrow slices of 
the parameter space, the spin-liquid state seems to be 
ruled out as a possible ground state for the isotropic Hei- 
senberg model. It should be recalled, however, that for a 
nearest-neighbour anisotropic model with an easy axis 

H= J Z [S? S2 + A (S? ST + Sf S?)] (1) 
n n  

where J > 0 and 0 < A < 1, independent, and apparently 
more cogent, arguments have been advanced in favour 
of a spin-liquid state [14]. 

The reasoning is easiest to formulate if we consider 
the near-Ising limit A < 1. Then the ground state can be 
sought as the linear combination of Ising ground states, 

Z. Phys. B - Condensed Matter 87, 103-110 (1992) Condensed 
Zeitschrift M a t t e r  for Physik B 
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which is, however, not incompatible with the result given by him as 0-4902 
0.005. The extrapolation for the whole lattice proceeds as before and gives 
the interval 

1 
J 

- - E A s i n g  = 0.527 & 0.004. 

The spin-wave value is also taken from Anderson (1 973) 

1 
J - - EAs" = 0.463 I 0 . 0 0 7 .  

Considering the uncertainties in both E s i n g  and Esw, we find a wide range 
of values for 

E A s i n g / E A S W =  1.138 t 0.026. (12) 
I n  order to compare the cases of the square and triangular lattices, values 
given in eqns. (10) and (12) have to be compared, because these values have 
been obtained by the same procedure taken to the same accuracy. The 
energy discrepancy is undoubtedly larger in the case of the triangular lattice, 
but certainly not so much as to enable us to predict a singlet ground-state 
here, while denying its existence for the square lattice. Rather, if from eqns. 
(10) and (12) any conclusions can be drawn, i t  is that  the two lattices should 
behave qualitatively similarly, as far as the justification of the use of the 
conventional Nee1 picture is concerned. 

On the other hand, as pointed out recently (Fazekas and Anderson 1974), 
there are very good reasons to believe that the NCel picture will not apply to  
the triangular lattice and there are no similar grounds to doubt its validity for, 
e.g. the square lattice. This will be further corroborated in what follows by 
pointing out that, although t h e  comparison of the ground-state discrepancies 
does not yield unambiguous information, there is a qualitative difference in 
the excitation spectra. 

Let us first, however, conclude the investigation of the ground-state 
energy. For the triangular lattice, there is more than one way of deter- 
mining it, even if we stick to HulthBn's cluster method. The resulting dis- 
crepancies will show the quite large inherent inaccuracy of the method when 
applied t o  t.n.0-dimensional systems, unless one goes to  much larger clusters. 

One possibi1it.y is to extrapolate to the infinite ' zig-zag trestle ' through 
the clusters in figs. 2 ( a ) ,  ( e )  and (f). The corresponding values of the ground- 
st,ate energy per site are denoted by circles in fig. 4 .  They show more scatter 
than do the corresponding values for the milroad trestle, and, in the absence 
of a value for = 10, a numerical extrapolation would be rather meaningless. 
However, a lower limit for t'he intercept can be readily obtained : it, is 0.475, 
considerably smaller t,han 0.483, the same value for the railroad trestle. Because 
of the stronger odd-even effect, it, is mainly the uncertaint,y in the extra- 
polation that makes this value different from the previous one ; the shift in 
the ' average ' value may not be so large. 

A quit,e different result is obtained, though, when one extrapolates to the 
' infinite triangle ' through K = 6, and 10. After elementary arithmetic, one 
finds 
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E A s i n g / E A S W =  1.138 t 0.026. (12) 
I n  order to compare the cases of the square and triangular lattices, values 
given in eqns. (10) and (12) have to be compared, because these values have 
been obtained by the same procedure taken to the same accuracy. The 
energy discrepancy is undoubtedly larger in the case of the triangular lattice, 
but certainly not so much as to enable us to predict a singlet ground-state 
here, while denying its existence for the square lattice. Rather, if from eqns. 
(10) and (12) any conclusions can be drawn, i t  is that  the two lattices should 
behave qualitatively similarly, as far as the justification of the use of the 
conventional Nee1 picture is concerned. 

On the other hand, as pointed out recently (Fazekas and Anderson 1974), 
there are very good reasons to believe that the NCel picture will not apply to  
the triangular lattice and there are no similar grounds to doubt its validity for, 
e.g. the square lattice. This will be further corroborated in what follows by 
pointing out that, although t h e  comparison of the ground-state discrepancies 
does not yield unambiguous information, there is a qualitative difference in 
the excitation spectra. 

Let us first, however, conclude the investigation of the ground-state 
energy. For the triangular lattice, there is more than one way of deter- 
mining it, even if we stick to HulthBn's cluster method. The resulting dis- 
crepancies will show the quite large inherent inaccuracy of the method when 
applied t o  t.n.0-dimensional systems, unless one goes to  much larger clusters. 

One possibi1it.y is to extrapolate to the infinite ' zig-zag trestle ' through 
the clusters in figs. 2 ( a ) ,  ( e )  and (f). The corresponding values of the ground- 
st,ate energy per site are denoted by circles in fig. 4 .  They show more scatter 
than do the corresponding values for the milroad trestle, and, in the absence 
of a value for = 10, a numerical extrapolation would be rather meaningless. 
However, a lower limit for t'he intercept can be readily obtained : it, is 0.475, 
considerably smaller t,han 0.483, the same value for the railroad trestle. Because 
of the stronger odd-even effect, it, is mainly the uncertaint,y in the extra- 
polation that makes this value different from the previous one ; the shift in 
the ' average ' value may not be so large. 

A quit,e different result is obtained, though, when one extrapolates to the 
' infinite triangle ' through K = 6, and 10. After elementary arithmetic, one 
finds 
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Néel, from Anderson

I3 = !
k,q

!̃2"q,k#2

"k + "q + "k+q
= 0.137 85"1# . "41#

The above four-dimensional integral has been calculated by
two different methods: the Monte Carlo integration and the
finite-size extrapolation of lattice sums using clusters with
different aspect ratios,16 both agreeing in all significant dig-
its. Altogether, the ground-state energy in the second order of
1 /S expansion is

Egs/N = −
3
2

JS2$1 +
0.436 824

2S
+

0.021 41
"2S#2 % . "42#

The above result agrees with the previous calculation32 im-
proving on the numerical accuracy of the last term.

2. Sublattice magnetization

To calculate the staggered magnetization we use the dia-
grammatic approach which is very close, aside from a few
technical details, to the one used in Ref. 11. Within the spin-
wave approach the sublattice magnetization is

&S' = S − &ai
†ai' = S − #S , "43#

where the quantum correction #S is expressed as

#S = !
k

(vk
2 + "uk

2 + vk
2#&bk

†bk' + 2ukvk&bkb−k') . "44#

The first term under the sum is the LSWT result8,9 already
given by Eq. "18#

#S1 = !
k

vk
2 * 0.261 303 2. "45#

The two remaining terms in Eq. "44# contain bosonic aver-
ages which vanish in the linear spin-wave "LSW# approxi-
mation and contribute only to the next order in 1 /S. There-
fore, we write

&S' = S − #S1 −
#S2

2S
, "46#

where the last correction has two contributions:

#S2

2S
= #S2,1 + #S2,2,

#S2,1 = !
k

1 +
1
2

$k

"k
&bk

†bk', #S2,2 =
3
2!

k

$k

"k
&bkb−k' .

"47#

Calculation of the bosonic averages in the above expres-
sion must be performed to the first order in 1 /S. As ex-
plained in Appendix B, these averages are straightforwardly
related to the normal and anomalous self-energies "see Figs.
3 and 4#. In particular, the magnon occupation number &bk

†bk'
is only due to %11

"b# from Fig. 4"b#, while the other two normal
self-energy corrections, %11

"a# and %11
HF, have zero contribu-

tions. On the other hand, all three off-diagonal self-energies,

%12
"c#, %12

"d#, and %12
HF, contribute to &bkb−k'. Leaving the details

of the derivation to Appendix B, we present here the final
answer

#S2 = −
9
16

c1c2 +
9
16

"c2 − c1#!
k

$k"1 − $k#
"k

3

+
9
4!

k

$k

"k
2 !

q

!̃1"q;k#!̃2"q;− k#
"q + "k−q + "k

+
3
2!

k

1 +
1
2

$k

"k
!
q

!̃2"q;k#2

""q + "k+q + "k#2 . "48#

This expression agrees with the formula derived previously
in Ref. 11 apart from the corrected sign in front of the third
term.

As is often the case with the higher-order spin-wave cor-
rections, the individual contributions in Eq. "48# are diver-
gent: the integrands in the second and the third terms behave
as O"1 /k3# at k→Q, which means that not only the leading
divergences in them, but also the subleading ones O"1 /k2#
must cancel in order to produce finite result. Expanding in
small #k= +k−Q+, such a cancellation can be verified
analytically.11 Still, the expression given in Eq. "48# is not
well behaved numerically. If one tries to evaluate #S2 di-
rectly using the Monte Carlo integration, the outcome ap-
pears to be divergent. If some other methods are employed,
the result may seem to be regular. We have used the simple
finite sums in the k space that correspond to periodic clusters
with the subsequent finite-size extrapolation.16 For any given
subset of "rectangular# clusters with the fixed aspect ratio the
result of Eq. "48# converges to a finite value as the size of the
cluster L→&. However, as an indication of the problem,
subsets with different aspect ratio yield different values of
#S2 in the thermodynamic limit.

The origin of the problem is the following. The internal
integrals in Eq. "48# over q are not divergent and, generally,
scale with the lattice size as16,43

'k
"L# = !

q

"L#Fk,q = 'k
"&# +

(

L
+ ¯ . "49#

In the thermodynamic limit, two such terms cancel near cer-
tain points and regularize the ,1 /k3 singularity in the exter-
nal integral over k,

1
k3 ('k

"&# − )k
"&#) =

1
k3 (Ak2 + ¯) . "50#

However, numerically such a cancellation is not complete as
it carries a 1 /L term as in Eq. "49#

1
k3 ('k

"L# − )k
"L#) =

1
k3$Ak2 +

(̃

L
+ ¯% . "51#

Since the 2D integral of 1 /k3 diverges as L, the 1 /L correc-
tion from mutually canceling terms in Eq. "51# will give an
unphysical contribution to the L→& limit of Eq. "48#. This
explains the erratic behavior of the numerical values of #S2
and suggests that the extra care should be taken with Eq.

A. L. CHERNYSHEV AND M. E. ZHITOMIRSKY PHYSICAL REVIEW B 79, 144416 "2009#
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As the Ansatz in the variational wave function of Xarshall (1955) giving 
rise to  the presence of long-range order, is essentially exact, one can hope to  
gain insight into the apparently non-N6el-type behaviour of the triangular 
lattice by treating i t  in parallel with a case when the validity of the NBel 
picture is not disputed, namely tha t  of the square lattice. 

We started from the simplest idea of the Ngel state as a result of spon- 
taneous symmetry-breaking ; tha t  it is a wave packet mixed of the ‘ true ’ 
symmetrical ground state, and the lowest lying excited states, with vanishing 
energy cost in the limit of an infinite system. Since the antiferromagnetic 
ground-stat,e is a mixture of all angular momentum eigenstates, this implies 
the existence of excited states with non-zero total angular momentum becoming 
infinitesimally close to  the ground-state (for any finite system certainly singlet) 
as the size of the system grows macroscopically large. Consequently, the 
distribution of the lowest-lying excited states should be inspected according 
to  their total angular momenta to enable us to tell if spontaneous (spin- 
rotational) symmetry-breaking is likely to  occur in the system. 

In  this paper we have presented exact numerical results for finite clusters 
from the plane square and triangular lattices. These included data  for the 
ground-state energies and for the singlet and triplet excitation spectra. 
Wherever possible, attempts were made to extrapolate to  the corresponding 
infinite systems. The met,hod of the calculation was the same as in Anderson 
(1973). The cluster method (Hulthkn 1938) readily gives the classification 
of states according to  the angular momenta but makes calculations for higher 
than S= 1 states impracticable. Thereby we were forced to regard the triplet 
states, representative of the higher angular momentum states, generally. 

We have found tha t  a very clear distinction between the two lattice struc- 
tures can be made on the basis of the singlet spectra : For the square lattice 
there exists a large (about, 1*0-1.5J) gap between the ground-state and the 
lowest singlet excited state, while for the triangular lattice the ground-state 
belongs to  the lower edge of the continuum of singlet excitations. 

As for the triplet spectrum, in the case of the triangular lattice, i t  over- 
lays the singlet one, so there is no triplet gap, either. The situation is less 
clear-cut. in the case of the square lattice : but from all evidence, the triplet. 
gap is zero there, too. 

Hence, the original expectations of Anderson (1973) about the excitation 
spectrum of the triangular antiferromagnet are only partially borne out : 
the singlet gap indeed is zero, but  so, contrary to  his conjecture, is the triplet, 
gap. Therefore a conclusion about the impossibility of NBel-type symmetry- 
breaking camot  readily be made : t,here are low-lying excitations ot,her than 
sing1et.s. What really seems t,o matter is whether the singlet gap is zero or 
not. It is large for the square lattice, so any low-energy wave packet will 
have to be a mixture of the singlet ground-state and the continua of triplet, 
etc., states containing an asymptotically vanishing singlet component : thus 
symmetry-breaking certainly can occur. 

In  the case of the triangular lattice an,  e.g. ’ impartial. mixture of the 
lowest-lying states still leaves as with a state cont,aining a substantial singlet 
component,. Consequently, in this case a competition ma)- arise between 
symmetry-breaking and purely singlet solutions and the singlet RVB state 
is a t  least given a chance. 

Anderson, Mat. Res. Bul. 8, 153 (1973).

András Sütő
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J1- J2 timeline

Z. Zhu and S. R. White, Spin liquid phase of the !=1/2 J1-J2 Heisenberg model on the triangular lattice, PRB 92, 041105(R) (2015).

1973 2015 2025
DMRG you are here

1989
square

o why did it take so long to study triangular case?
o classically: square ➾ degenerate at J2=0.5, triangular at J2=1/8 ➾ is not
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We perform highly accurate density matrix renor-
malization group (DMRG) simulations to investigate the
ground state properties of the spin- 12 antiferromagnetic
square lattice Heisenberg J1-J2 model. Based on studies of
numerous long cylinders with circumferences of up to 10
lattice spacings, we obtain strong evidence for a topologi-
cal quantum spin liquid state in the region 0.41  J2/J1 
0.62, separating conventional Néel and striped antiferro-
magnetic states for smaller and larger J2/J1, respectively.
The quantum spin liquid is characterized numerically by
the absence of magnetic or valence bond solid order, and
non-zero singlet and triplet energy gaps. Furthermore,
we positively identify its topological nature by measuring
a non-zero topological entanglement entropy and a non-
trivial finite size dimerization effect depending upon the
parity of the circumference of the cylinder.

Quantum spin liquids (QSLs) are elusive magnets without
magnetism, resisting symmetry breaking even at zero tem-
perature due to strong quantum fluctuations and geometric
frustration1. The simplest QSLs known theoretically are char-
acterized by topological order2–4, and support fractionalized
excitations including spinons, which carry the spin (1/2) but
not the charge of the electron. Since the QSL state was sug-
gested by Anderson5, it has been sought, mostly unsuccess-
fully, in models and materials. Here we report discovery of a
QSL state in the square lattice J1-J2 antiferromagnetic (AFM)
Heisenberg model, with the Hamiltonian

H = J1
X

hiji

Si · Sj + J2
X

hhijii

Si · Sj , (1)

where Si is the spin-1/2 operator on site i and hiji (hhijii)
denotes nearest neighbors (next nearest neighbors). In the fol-
lowing we set J1 = 1 as the unit of energy, and consider only
the frustrated case J2 > 0.

Eq. (1) is of fundamental interest for its simplicity, and for
its relevance to cuprates, Fe-based superconductors6–9, and
other materials10. Accordingly, it is among the most studied
models in frustrated quantum magnetism11–19. These previ-
ous studies have established the existence of a non-magnetic
ground state between the Néel and striped AFM states which
occur for small and large J2, respectively. The majority of
studies have suggested this intermediate state has valence
bond solid (VBS) order, but this remains controversial, due
to the limitations of existing theoretical techniques. Re-
cent advances in the Density Matrix Renormalization Group
(DMRG) method20–23 now allow us to resolve this question.
Using extensive simulations (with truncation error ⇠ 10�7)
on numerous long cylinders of circumference Ly = 3 � 10,
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FIG. 1: The ground state phase diagram for the spin- 12 AFM
Heisenberg J1-J2 model on the square lattice, as determined
by accurate DMRG calculations on long cylinders with Ly up
to 10. Changing the coupling parameter J2/J1, three different
phases are found: Néel antiferromagnet (AFM), topological quan-
tum spin liquid (QSL), and stripe AFM phase. ms(k0 = (⇡,⇡))
[ms(kx = (⇡, 0))] denotes the staggered magnetization in the Néel
AFM phase [stripe AFM phase], whose saturation value is 1/2. �S

and �T denote the spin singlet gap and spin triplet gap, respectively.

we extrapolate consistently to the two dimensional (2D) limit
with minute finite size effects. Our results demonstrate (see
Fig. 1) that the ground state for 0.41  J2/J1  0.62 is
non-magnetic, with no VBS order and a gap to all excitations.
Furthermore, comparison of several additional measurements
with theoretical predictions compellingly identifies this inter-
mediate state as a QSL with Z2 topological order.

We now turn to an explanation of these results. All our nu-
merical data is based on DMRG simulations on cylinders, i.e.
finite square lattices with N = Lx ⇥ Ly sites and with open
and periodic boundary conditions in the x and y directions,
respectively. When not otherwise specified, we fix the aspect
ratio to Lx/Ly = 2, with Ly = L, then Lx = 2L, which has
been shown to optimize results in the DMRG21–23. Moreover,
to extract bulk properties, we will often work on the central
half of the system with an effective system size Nc = L⇥ L.
For instance, in computing spin correlation functions hSi ·Sji,
we restrict site indices i and j to the central half of the system
so that the obtained correlation functions could represent the
bulk properties. We keep more than m = 6000 states in each
DMRG block for most systems, which is found to give ex-
cellent convergence with truncation errors of the order or less
than 10�7.

We begin with measurements of the magnetic correlations
in the ground state, hSi · Sji, and the corresponding static
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J2=0.06J2=0 J2=0.16 J2=0.24

FIG. 1. (Color online) For a YC6 cylinder, we vary J2 with position, from J2 = 0 on the left edge to J2 = 0.24 on the right edge. We also
apply a pinning magnetic field along both the x and z directions on the left edge to favor the classical 120◦ order. Two approximate phase
transition lines are shown. The size of the arrow represents local measurement of 〈S〉 =

√
〈Sx〉2 + 〈Sz〉2 with the direction of the angle given

by tan−1[〈Sz〉/〈Sx〉], and the widths of lines proportional to |〈Si · Sj 〉 + 0.18|. The solid lines along the bonds mean the bond measurement is
negative, i.e., a stronger than average bond, while dashed lines indicate bonds that are weaker than average.

dimer picture. Given any dimer covering, if we cut the cylinder
with a vertical line not intersecting any sites, the number of
dimers cut gives another parity. Call this parity D; we also
refer to it as the even or odd (topological) sector. For a finite
cylinder, assuming perfect dimer coverings, the D parity is
determined by how the left and right ends are terminated, and
moving a site from the left end to the right (or vice versa)
switches the topological sector. In a C-odd cylinder, the two
D-parity sectors are related by a translation of one 1D unit cell,
so the bulk properties are identical. In a C-even cylinder, the
two D-parity sectors are significantly different, but the bulk
properties become identical as the cylinder width increases in
a Z2 SL. For finite width, a ground state of the higher-energy
sector may be able to fall into the lower-energy sector, through
the creation of a spinon at each end of the system. The C parity
is a rigorous concept associated with the Lieb-Schultz-Mattis
theorem. It is not obvious that the D parity is a useful concept
for every spin liquid, but for both the kagome and the triangular
SL found here, the classification appears to work perfectly.

In Fig. 2 we show results for the ground states for both
sectors for the (C-even) YC6 cylinder. Here we see that the
lower-energy sector has a very uniform bond strength pattern
(bottom panel), whereas the higher-energy sector is much less
uniform. This behavior is seen in all the C-even cylinders,
in both this triangular system and in the kagome Heisenberg
system, thought to be a Z2 spin liquid [17].

For a Z2 spin liquid, these two sectors in a C-even cylinder
should become degenerate in the two-dimensional (2D) limit,
with the energy separation depending exponentially on the
width of the cylinder. Here, for YC6, extrapolating in the
truncation error and in the cylinder length, we find an energy
per site for the lower-energy odd sector of E0 = −0.520 96(1).
For a long enough cylinder, the even sector produces end
spinons and falls into the odd sector. The end spinons cost
a finite energy, of order of the triplet spin gap, but being in
the wrong sector in the bulk costs an energy proportional
to the length of the system. Thus, short system even sector
ground states are stable. Longer systems, during the course
of a DMRG simulation, may stay in the even sector ground
state for a number of sweeps, but then as we increase the
number of states kept m, they may suddenly fall into the
lower-energy sector by producing two end spinons. (We can
also prepare the initial DMRG state to make it start off in the
two spinon sector, in which case there is no sudden fall.) For

example, for a YC6 cylinder with length Lx = 30, we have
observed a sudden drop near m ∼ 3000, but this depends on a
variety of details of the DMRG simulations. Thus, estimating
the higher-energy ground state energy cannot be done as
accurately as the low-energy sector. (The DMRG calculations
also converge faster and with smaller truncation errors for
the lower-energy sector.) Using shorter cylinders, for YC6
we find an even sector energy of E1 = −0.5152(2), higher
than the odd sector by about 0.0058(2) per site, or about 1.1%.
The magnetic correlations, the bond-bond correlations, and the
chiral correlations for the YC6 low-energy sector are all very
short ranged, with correlation lengths roughly one to two lattice
spacings [21].

Similar behavior is seen for the C-even YC4 and YC8
cylinders. However, whereas for YC6 the bond strengths in
the three bond directions were almost identical, for YC4 they
are highly anisotropic. For YC4, the ground state is in the even
sector, while the odd sector energy is higher by about 3%. In

FIG. 2. (a) The higher-energy even and (b) the lower-energy odd
sector ground states for a YC6 cylinder with J2 = 0.1, where we
subtract −0.18 from all the bonds. The odd and even sector systems
differ primarily by the removal of a single site at each edge; in
addition, we needed to make the higher-energy system shorter to
avoid falling into the low-energy sector through the creation of two
end spinons. In the plot the bond thickness is restricted to a maximum;
otherwise, many edge bonds would be much thicker. (c) Central
portion of the ground state on the XC6 cylinder. The solid (dashed)
bonds have strength 〈Si · Sj 〉 = −0.287/−0.157. (d) A similar central
region for a YC5 cylinder. The solid (dashed) bonds have strength
〈Si · Sj 〉 = −0.158/−0.126.

041105-2

o there were earlier claims about SL in J1-J2 triangular model … 
o but nobody gave disznófing (much thought) about them, before DMRG
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ode to DMRG
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ode to DMRG
o it is a variational method in a generic sense, 

selecting the ground state from the low-energy sector 

o it wants to find the low-entanglement (typically = ordered) state,
when it cannot ➾ this finding is (very) robust
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sheer power of DMRG
➾ DMRG scans
➾ great exploration tool!

     "direct” look at orders,
     focus on suspicious regions

➾ open-periodic 
➾ m ~ 3000, error #(10-5) 

➾ further “zooms”
➾ non-scans, FS scaling, …

Heisenberg

XY

S. Jiang, S. R. White, and SC, PRB 108, L180406 (2023).  J1-J3 F-AF XXZ model 
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Shengtao Jiang Steven WhiteCesar Gallegos

C. A. Gallegos, S. Jiang, S. R. White, and SC, PRL 134, 196702 (2025).
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KITP 2023, etc.: easy-axis models

R. Bag etal., PRL 133, 266703 (2024)
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Realization of U(1) Dirac Quantum Spin Liquid in YbZn2GaO5

M. Zhu etal., PRL 133, 186704 (2024)

Continuum Excitations in a Spin Supersolid on a Triangular Lattice
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Magnetic, thermodynamic, neutron diffraction and inelastic neutron scattering are used to study spin
correlations in the easy-axis XXZ triangular lattice magnet K2CoðSeO3Þ2. Despite the presence of quasi-2D
“supersolid” magnetic order, the low-energy excitation spectrum contains no sharp modes and is instead a
broad and structured multiparticle continuum. Applying a weak magnetic field drives the system into an
m ¼ 1=3 fractional magnetization plateau phase and restores sharp spin wave modes. To some extent, the
behavior at zero field can be understood in terms of spin wave decay. However, the presence of clear
excitation minima at the M points of the Brillouin zone suggest that the spinon language may provide a
more adequate description, and signals a possible proximity to a Dirac spin liquid state.

DOI: 10.1103/PhysRevLett.133.186704

The Ising antiferromagnet (AF) on a triangular lattice is
the textbook example of geometric frustration [1,2]. The
ubiquitous cartoon shows one spin pointing up, its neighbor
pointing down to minimize exchange energy, this configu-
ration leaving the preferred direction for a third spin
undefined. Beyond this simplistic picture, the problem is
actually a very complex one. The quantum S ¼ 1=2
nearest-neighbor XXZ model with easy-axis anisotropy
is predicted to have a peculiar ground state that can be
viewed as a

ffiffiffi
3

p
×

ffiffiffi
3

p
“spin supersolid” [3–5], and a series

of quantum phases in applied fields. The latter include a
collinear “up-up-down” (uud) “spin-solid” state corre-
sponding that is an m ¼ 1=3 magnetization plateau. Not
much is known about excitations in that model, even as
significant progress has recently been made in understand-
ing its “easy plane” counterpart. There, despite the presence
of long-range order, the excitations are nothing like those
predicted by semiclassical spin wave theory (SWT) [6–9].
Instead, they are dominated by bound states and continua of
partially free fractional excitations known as spinons [10].
This is taken as a fingerprint of proximate quantum spin-
liquid states first hypothesized by Anderson [11,12] and
later found in numerous triangular-lattice models (see, for
instance, Refs. [13–15]). Does the “easy-axis” triangular
AF feature similarly exotic spin dynamics?
We address this question experimentally and study the

planar XXZ Ising-like antiferromagnet K2CoðSeO3Þ2 [16].
We show that in zero field and low temperatures the system
has a two-dimensional magnetic order consistent with a

spin supersolid. The low-energy spin excitation spectrum,
however, is entirely dominated by a broad gapless spinon-
like continuum, rather than by sharp spin wave modes.
Applying a very modest external magnetic field induces a
quantum critical point. Beyond that the material enters an
m ¼ 1=3 uud plateau. The spectrum is drastically recon-
structed. It consists of sharp gapped excitations that are
perfectly reproduced by SWT.
The first magnetic studies of K2CoðSeO3Þ2 have been

reported only recently [16]. In the hexagonal structure
(space groupR-3m, a ¼ 5.52 Å, c ¼ 18.52 Å [17]) the key
features are ABC-stacked triangular planes of Co2þ ions, as
illustrated in Fig. 1(a). As in the structurally related
Na2BaCoðPO4Þ2 [5,18], the local environment is close to

FIG. 1. (a) Crystal structure of K2CoðSeO3Þ2. (b) The “Y” spin
supersolid phase predicted to be the ground state of an easy-axis
XXZ triangular-lattice antiferromagnet. The cyan cones symbol-
ize rotational degeneracy. (c) A magnetic field applied along the c
axis stabilized a collinear “uud” spin-solid phase.*Contact author: zhelud@ethz.ch; http://www.neutron.ethz.ch/.
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o was proposed (and modeled as) an easy-axis, 
J1-J2 XXZ, triangular-lattice magnet (model)

o what is its (quantum, S =1/2) phase diagram??
o easy-axis triangular lattice magnets: 

supersolids, rich dynamical properties
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phase diagram

C. A. Gallegos etal., PRL 134, 196702 (2025).
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(*) Z. Zhu, etal, PRL 119, 157201 (2017); Iaconis etal, SciPost Phys. 4, 3 (2018)

o Heisenberg ➾ much studied
o easy-plane part ➾ DMRG and VMC (*) 2017

o easy-axis, ordered phases: Y and stripe-z

o Y ➾ supersolid: 3-sublattice solid + in-plane U(1)
o stripe-z ➾ 4-sublattice, order along z
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agnostic approach: DMRG scans, I

C. A. Gallegos, S. Jiang, S. R. White, and SC, PRL 134, 196702 (2025).

o J2 ➾ varied along the 6x36 cylinder, fixed Δ
o measure local order $!

 

o ➾ faithful visual extent of the phases
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o SL ➾ matching Heisenberg boundaries, cutoff   
o SL ➾ verified by non-scans (all parameters fixed) 

         in up to 9x20 cylinders (up to 5000 states) 

agnostic approach: DMRG scans, II

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
J2

0

0.1

0.2

0.3

0.4

0.5

hS
i

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
J2

Y SL stripe-z Δ=1.3(a)

(b) stripe-zΔ=10 5.0
2.5

1.9 1.6
1.3

1.2
1.0Y



QSL:EETC, 10-6-25

non-scans: nice visuals …

C. A. Gallegos, S. Jiang, S. R. White, and SC, PRL 134, 196702 (2025).

o  S(q) ➾ static structure factor
o SL ➾ broadened K peaks ➾ “molten” Y phase (soft transition)
o transition SL-stripe-z ➾ 1st order
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characterizing SL …

C. A. Gallegos, S. Jiang, S. R. White, and SC, PRL 134, 196702 (2025).
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o strongly pinned singlet bond in the center
o bonds: !!!" − !!!" "#$%"&$	➾ no VBS response

o chirality induced, edge and center ➾ no response

o spin pinned at the edge 
➾ correlation length in SL
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SL seems fully isotropic!

C. A. Gallegos, S. Jiang, S. R. White, and SC, PRL 134, 196702 (2025).
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o far away from Heisenberg, yet in-plane and 
out-of-plane correlations are nearly equal

o no quantum numbers kept in DMRG
o ➾ symmetry enrichment?

o real-space correlation function
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supersolid, I

C. A. Gallegos, S. Jiang, S. R. White, and SC, PRL 134, 196702 (2025).

o classically, Y’ is the GS for J2>0, and Y’-to-stripe boundary is anomalous:  
      
      this is related to the accidental degeneracy along the J2=0 line and 

o quantum effects select Y for the GS and make the Y-stripe boundary “normal”:
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supersolid, II, more scans
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o direct Y-to-stripe transition, small U(1) component

o total moment, mF , is close to zero, as if canceling for every unit cell: down + 1/2 up + 1/2 up
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supersolid, III, J1-only
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Ĥ1=
1
2

∑
↔

((
S↓
↔
)2
+!

(
Sz
↔
)2)

↑
3
2 (!↑1)

∑
i

(
Sz
i

)2
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Ĥ1/
P

4S2
4

S↵
4=0

mF =0

mF =0

1

0.0 0.2 0.4 0.6 0.8 1.0

1/¢

0.00

0.05

0.10

0.15

m
F

classical
DMRG

(*) as in the Heisenberg limit: 

o classically, mF à 1/6 in the Ising limit, DMRG ➾ zero
o resolution ➾ rewrite Hamiltonian (*)

o S=1/2 is really special! last term = const

o the rest implies GS with 
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conclusions
þ everyone makes mistakes, it takes courage to correct them

þ anisotropic directions ➾ rich physics

þ large SL region in the XXZ phase diagram
þ SL ➾ isotropic (?); (why? what kind?)
þ zero mF in the S=1/2 case

þ more puzzles near Ising (dynamics, etc.)


