Lieb-Schultz-Mattis constraints for 3D quantum paramagnets

Scipost Phys. 18 (5), 161 (2025)

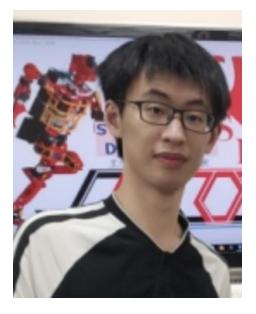
Chunxiao Liu LPS Orsay

QSL2025, Budapest 6–10 Oct. 2025

Crystallography, group cohomology, and Lieb-Schultz-Mattis constraints

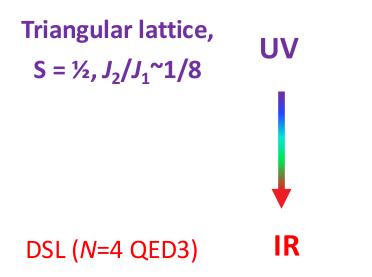
Chunxiao Liu¹* and Weicheng Ye²†

 Department of Physics, University of California, Berkeley, California, USA 94720
 Department of Physics and Astronomy, and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, BC, Canada V6T 1Z1



Weicheng Ye
(U of British Columbia)

DSL in triangular J_1-J_2 Heisenberg model



Iqbal, Hu, Thomale, Poilblanc, Becca, PRB '16; Zhu, Maksimov, White, Chernyshev, PRL '18; Ferrari, Becca, PRX '19; Hu, Zhu, Eggert, He, PRL '19; Drescher, Vanderstraeten, Moessner, Pollmann, PRB '23; Wietek, Capponi, Läuchli, PRX '24; Gallegos, Jiang, White, Chernyshev, PRL '25...

	T_1	T_2	R	C_6	\mathcal{T}
Φ_1^\dagger	$e^{i(-\pi/3)}\Phi_1^{\dagger}$	$e^{i(\pi/3)}\Phi_1^\dagger$	$-\Phi_3^\dagger$	Φ_2	Φ_1
$\Phi_2^{\hat{\dagger}}$	$e^{i(2\pi/3)}\Phi_2^{\dagger}$	$e^{i(\pi/3)}\Phi_2^{\hat{\dagger}}$	$oldsymbol{\Phi}_2^\dagger$	$-\Phi_3$	Φ_2
$\Phi_3^{ ilde{7}}$	$e^{i(-\pi/3)}\Phi_3^{ ilde{ au}}$	$e^{i(-2\pi/3)}\Phi_3^\dagger$	$-oldsymbol{\Phi}_1^\dagger$	$-\Phi_1$	Φ_3
	$e^{i(2\pi/3)}\Phi_{4/5/6}^{\dagger}$	$e^{i(-2\pi/3)}\Phi_{4/5/6}^{\dagger}$	$\Phi_{4/5/6}^{\dagger}$	$-\Phi_{4/5/6}$	$-\Phi_{4/5/6}$

Monopole quantum numbers associated with order-2 symmetries **determined by LSM constraints**

Song, He, Vishwanath, Wang, PRX '20

$$\Delta \mathcal{L} = \Phi_1 \Phi_2 \Phi_3 + h.c.$$

Monopoles: irrelevant!

Song, Wang, Vishwanath, He, Nat comms '19.

Outline

Lieb-Schultz-Mattis (LSM) theorems

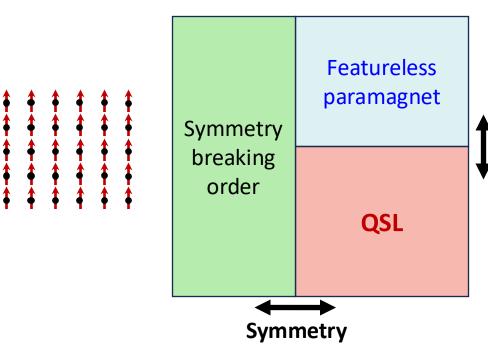
- In 1D and 2D
- In 3D

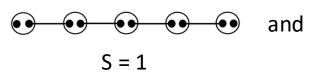
Topological theory of LSM

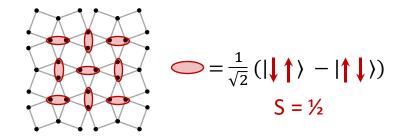
- Crystalline topological responses
- Applications (Triangular, pyrochlore...) and challenges

Quantum magnetism – a (crude) phase diagram

Phases of ground states:

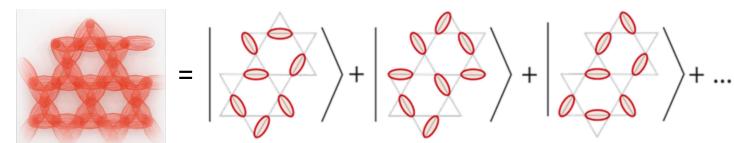






Featureless paramagnet: Product-like ground state – Short-range entangled

Entanglement



QSL: massive quantum superposition – Long-range entangled

Original Lieb-Schultz-Mattis (LSM)

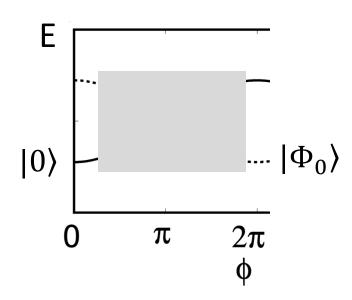
Lieb, Schultz, Mattis, Ann. Phys. '61

Thm. In a S=1/2 spin chain with translation symmetry and on-site SO(3) symmetry. If it has an odd number of spin-1/2's per unit cell, then the ground state cannot be a featureless paramagnet.

Flux threading argument

Oshikawa, PRL '00; Hastings, PRB '04

Ground states before/after flux threading differ in crystal momentum:



(unique, symmetric, SRE ground state)

LSM for 2D lattice magnets

Theorem (LSM in 2D).

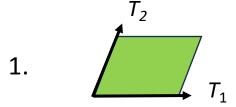
Po, Watanabe, Jian, Zaletel, PRL '17

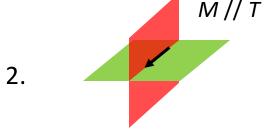
Assume the spin-1/2 lattice preserves lattice x SO(3)symmetry. The ground state cannot be a featureless paramagnet if the lattice has an odd number of spin-½'s

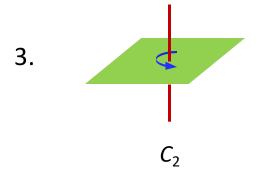
- 1. per 2d unit cell*, or *Translation, screw, glide
- 2. per 1d unit cell defined by translation along a mirror axis, or
- 3. at a C_2 <u>rotation center</u>.

Application:

- 1. The S=1/2 Heisenberg model on the **triangular** lattice cannot be a featureless paramagnet.
- 2. A S=1/2 featureless paramagnet exists on the honeycomb lattice.

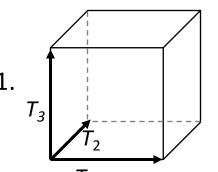






LSM for 3D magnets

CL, Ye, Scipost Phys. 18 (5), 161 (2025)

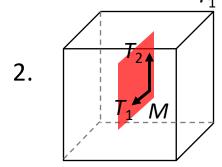


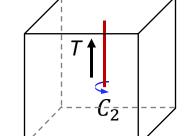
3.

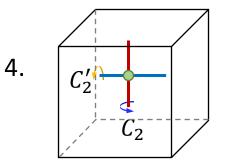
"No-go" Theorem in 3D

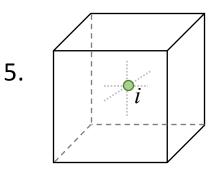
Assume the spin-1/2 lattice preserves lattice x SO(3)symmetry. Ground state cannot be a featureless paramagnet if the lattice has an odd number of spin- $\frac{1}{2}$'s

- 1. per <u>3D unit cell</u>, or
- 2. per <u>2D unit cell</u> spanned by two translations in a mirror, or
- 3. per <u>1D unit cell</u> defined by a translation/screw/glide along a C_2 axis, or
- 4. at the intersection of two C_2 axes, or
- 5. at a 3D inversion center.



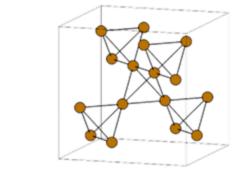






Application:

The S=1/2 Heisenberg models cannot be a featureless paramagnet on either diamond or pyrochlore lattice.



Overarching LSM

CL, Ye, Scipost Phys. 18 (5), 161 (2025)

Statement (LSM).

A featureless paramagnet cannot exist when spin-1/2's sit at \mathbb{Z}_2 -Irreducible Wyckoff Positions.

Wyckoff Positions of Group $P2_1/c$ (No. 14) [unique axis b]

Multiplicity	Wyckoff letter	Site symmetry	Coordinates
4	е	1	(x,y,z) (-x,y+1/2,-z+1/2) (-x,-y,-z) (x,-y+1/2,z+1/2)
2	d	-1	(1/2,0,1/2) (1/2,1/2,0)
2	С	-1	(0,0,1/2) (0,1/2,0)
2	b	-1	(1/2,0,0) (1/2,1/2,1/2)
2	а	-1	(0,0,0) (0,1/2,1/2)

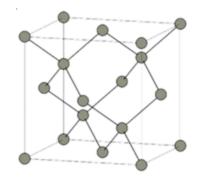
All Z_2 -Irreducible Wyckoff Positions are listed in our paper:

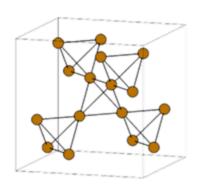
٠ ا		tle group Schönflies	Coordinates	LSM anomaly class	Topo. inv.
2a	$\overline{1}$	C_i	(0,0,0), (0,1/2,1/2)	$(A_i + A_x)B_{\beta}$	$arphi_1[I]$
2b	$\overline{1}$	C_i	(1/2,0,0), (1/2,1/2,1/2)	A_xB_eta	$arphi_1[T_1I]$
2c	$\overline{1}$	C_{i}	(0,0,1/2),(0,1/2,0)	$\left (A_i + A_x)(A_i^2 + B_\beta) \right $	$\varphi_1[T_2I]$
2d	$\overline{1}$	C_i	(1/2,0,1/2), (1/2,1/2,0)	$A_x(A_i^2+B_{eta})$	$\varphi_1[T_1T_2I]$

Example: No. 227 (diamond/pyrochlore)

CL, Ye, Scipost Phys. 18 (5), 161 (2025)

Table 232: IWPs and group cohomology at degree 3 of $Fd\overline{3}m$.





	XAZ1 CC	Little group		Coordinates		
	Wyckoff position	Intl.	Schönflies	(0,0,0)+(0,1/2,1/2)+	LSM anomaly class	Topo. inv.
	_	mi.	Benomines	(1/2,0,1/2)+(1/2,1/2,0)+		
	8a	4 3 <i>m</i>	T_d	(1/8, 1/8, 1/8), (7/8, 3/8, 3/8)	$C_{\alpha} + C_{\gamma}$	$\varphi_2[C_2,C_2']$
ı	8b	4 3 <i>m</i>	T_d	(3/8,3/8,3/8), (1/8,5/8,1/8)	C_{γ}	$\varphi_2[T_3C_2,T_2C_2']$
	16c		D_{3d}	(0,0,0), (3/4,1/4,1/2),	$A_i(A_i^2 + A_iA_m + B_{xy+xz+yz})$	$arphi_1[I]$
	100	Siit	D_{3d}	(1/4, 1/2, 3/4), (1/2, 3/4, 1/4)	$n_i(n_i + n_i n_m + D_{xy+xz+yz})$	Ψ1[1]
	16d	<u>-</u> 3m	D_{3d}	(1/2, 1/2, 1/2), (1/4, 3/4, 0),	A.R	$arphi_1[T_1T_2I]$
	100	SIIL	D3d	(3/4, 0, 1/4), (0, 1/4, 3/4)	$A_i B_{xy+xz+yz}$	Ψ1[11121]

Summary of Part 1

- LSM: crystal symmetry-based criteria for when a featureless paramagnet cannot exist at T = 0.
- Applicable to SOC, but only to half-integer spins
- 1D, 2D, 3D now complete!
- 3D: five criteria (0D + 0D + 1D + 2D + 3D)
- Tables for 230 space groups also available

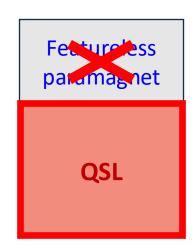
Outline

Lieb-Schultz-Mattis (LSM) theorems

- In 1D and 2D
- In 3D

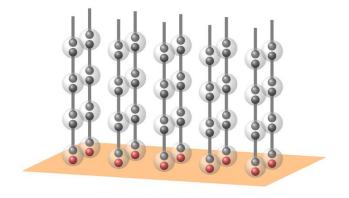
Topological theory of LSM

- Crystalline topological responses
- Applications (Triangular, pyrochlore...) and challenges



A bulk-boundary corresp. for quantum magnets

QSL in *d* spatial dim



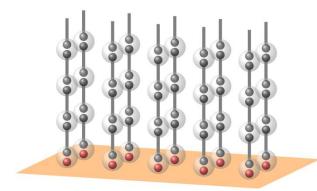
Featureless paramagnet in *d+1* spatial dim

QSL in *d* spatial dim

Topological crystalline response theory

- *G*: crystallographic space group.
- A: gauge field of G.
- Topological Quantum Field Theory (TQFT):

$$Z[A] = e^{i\pi \int_{\mathcal{M}_{d+2}} \lambda[A] \cup \omega_2^{spin}}$$



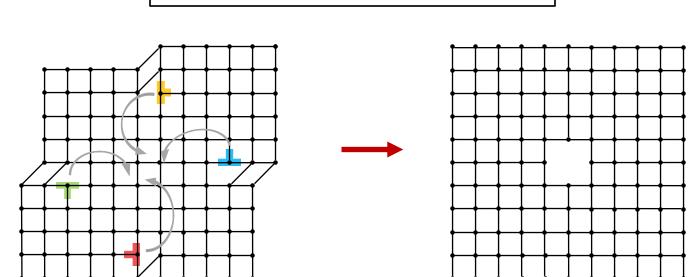
$$Z[A]$$
 $\in H^{d+2}(G \times SO(3), U(1))$
group cohomology

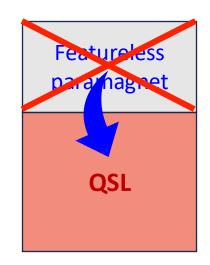
Dijkgraaf, Witten, Comm. Math. Phys., '90

LSM as a topological crystalline response

Thm(LSM). In a 2D lattice with odd number of spin-1/2's and translation x SO(3) symmetry, fusing four dislocations leaves no dislocations behind, but traps a spin-1/2.

$$Z[A] = e^{i\pi \int_{\mathcal{M}_4} A_x \cup A_y \cup \omega_2^{spin}}$$





Topological crystalline response – viewpoint 1

Thm(LSM). In a 2D lattice with odd number of spin-1/2's and translation x SO(3) symmetry, fusing four dislocations leaves no dislocations behind, but traps a spin-1/2.

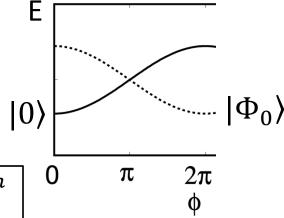
$$Z[A] = e^{i\pi \int_{\mathcal{M}_4} A_{\mathcal{X}} \cup A_{\mathcal{Y}} \cup \omega_2^{spin}}$$

	$G = \mathbb{Z}^d$ (Translation)	SO(3) (spin rotation)
Charge (linear or proj. rep)	momentum	spin-1/2 or spin-1
Topological defect (group element)	dislocation	2π flux

Topological crystalline response – viewpoint 2

Flux threading argument for LSM

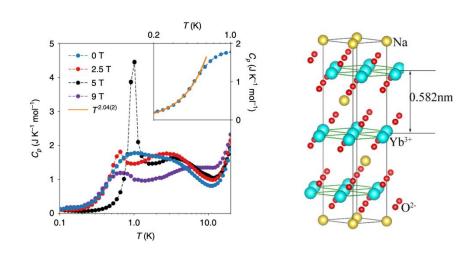
Oshikawa, PRL '00; Hastings, PRB '04



$Z[A] = e^{i\pi \int_{\mathcal{M}_4} A_{\mathcal{X}} \cup A_{\mathcal{Y}} \cup \omega_2^{spin}}$
--

	$G = \mathbb{Z}^d$ (Translation)	SO(3) (spin rotation)
Charge (linear or proj. rep)	momentum	spin-1/2 or spin-1
Topological defect (group element)	dislocation	2π flux

NaYbO, as a Dirac spin liquid candidate

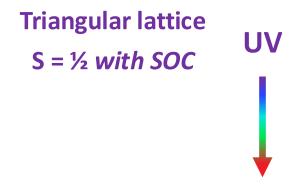


29 July 2019

Field-tunable quantum disordered ground state in the triangular-lattice antiferromagnet NaYbO₂

Bordelon, Kenney, CL, Hogan, Posthuma, Kavand, Lyu, Sherwin, Butch, Brown, Graf, Balents, Wilson

SciPost Phys. 13, 066 (2022)



DSL (N=4 QED3)

IR

Topological characterization of Lieb-Schultz-Mattis constraints and applications to symmetry-enriched quantum criticality

Weicheng Ye^{1,2}, Meng Guo^{1,3}, Yin-Chen He¹, Chong Wang¹ and Liujun Zou¹

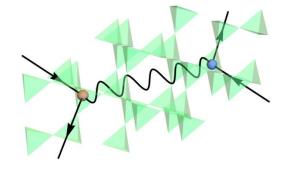
"... our exhaustive search finds 3 realizations of DSL. for all three realizations, symmetries of NaYb O_2 are sufficient to forbid all relevant operators of DSL."

Symmetry fractionalization in pyrochlore QSI

Pyrochlore lattice
S = ½ XXZ model

UV

 $Z[A] = e^{i\pi \int_{\mathcal{M}_5} \lambda[A] \cup \omega_2^{spin}}$



Hermele, Fisher, Balents, PRB '04

3+1D Maxwell

IR

$$Z_m[A] = e^{i\pi (A_i^2 + B)}$$

$$B) \mid \mid \mid$$

$$Z_{e}[A] = e^{i\pi(\omega_{2}^{spin} + \chi_{1}B + \chi_{2}B_{\alpha})}$$

Inv. + trans.

(spinon)

Trans. + rotation

CL, Halász, Balents PRB '21

Symmetry fractionalization

Summary

- Lieb-Schultz-Mattis criteria for featureless paramagnets
- Topological crystalline response for QSLs

Challenges

Use crystalline defects to probe QSLs

- Topological framework established
- But exactly how unclear yet!

Realistic systems with disorder

- Some results established (translation)

 Needs generalization to other symmetries

