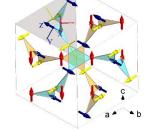


High entropy materials as a platform to explore frustrated magnets


F. Damay

ICMMO

F. Vayer, C. Decorse, D. Bérardan, N. Dragoe (powder samples synthesis and characterizations)

LLB

S. Petit (INS, modelling)

ILL

C. Colin (D1B)

S. Rols (Panther)

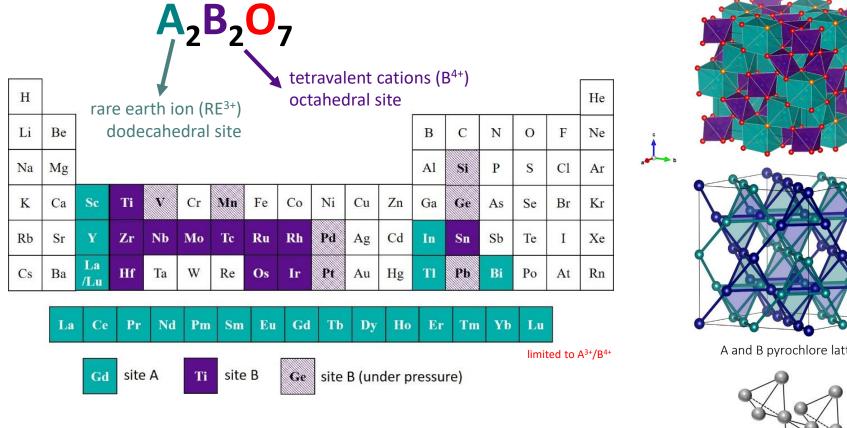
PSI

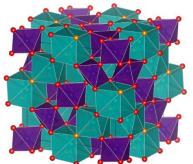
J. Embs (Focus)

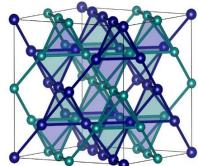
Institut Néel

E. Lhotel

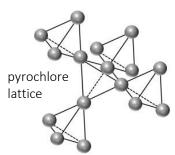
(LT magnetisation measurements)




Pyrochlores synthesis, an old story



Stability criterion $1.46 \le r_A/r_B \le 1.78$


- → $r_{\Delta}/r_{B} \le 1.46$ fluorite + vacancies
- → $r_{\Delta}/r_{R} \ge 1.78$ other structures

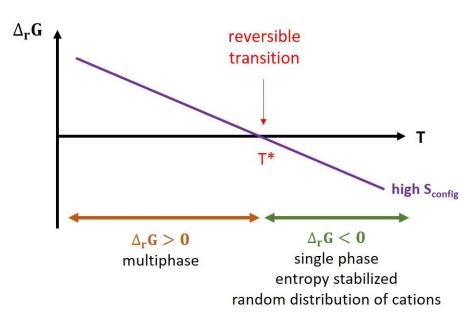
Quite a flexible structure! Many compositions possible... ...but most have been investigated

A and B pyrochlore lattices

Disorder – an original tool to design new materials

In 2004, first high-entropy alloys (at least 5 cations on a given crystallographic site)

Free enthalpy of formation

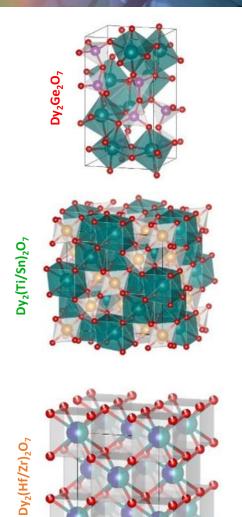


Classical route

Classical route fails Stabilisation possible through the T Δ S term (Δ G < 0 at high T, METASTABLE at RT)

- ★ disorder(s) and cocktail effect
- ★ stabilization of unusual geometries/valencies/structures

Very large range of NEW compounds
NEW unexpected properties

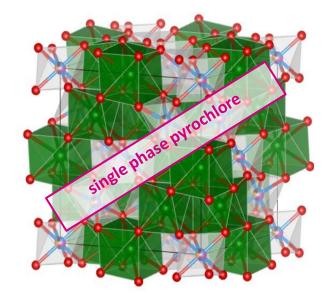


Design of an entropy-stabilized compounds with a pyrochlore structure

Some criteria

- preserve the A lattice, HEOx on the B site
- not the same structure/coordination in the parent compounds
- $r_{(avg)B}$ in the pyrochlore structure stability range
- equimolar mixture on B
- (isovalent and non-magnetic cations to start with)

Parent compound	r _B	r_A/r_B	Structure	Magnetic
	D			behaviour
Dy ₂ Ge ₂ O ₇	0.53	1.04	tetragonal	-
	0,53	1,94	or pyrochlore*	spin ice
Dy ₂ Ti ₂ O ₇	0,605	1,70	pyrochlore	spin ice
Dy ₂ Sn ₂ O ₇	0,69	1,49	pyrochlore	spin ice
Dy ₂ Hf ₂ O ₇	0,71	1,45	fluorite	45
Dy ₂ Zr ₂ O ₇	0,72	1,43	fluorite	
2(TiZrHfGeSn)2O7	r _{(avg)B}			
uimolar mixture on B site)		?	3	

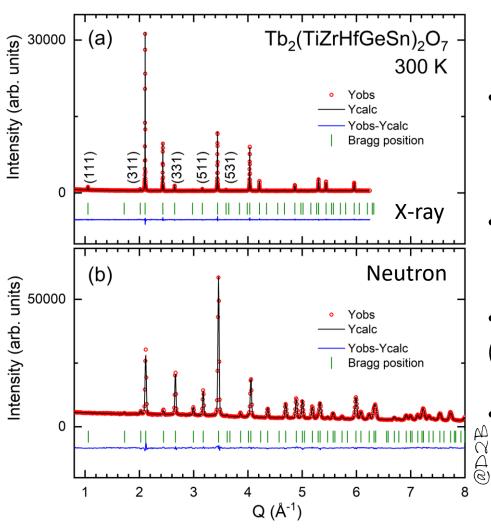

Synthesis at sufficiently high T (1600 °C) + quenching

1st entropy stabilized pyrochlore : Dy₂(TiZrHfGeSn)₂O₇

- single phase compound
- reversible transition between single phase HT and multiple phases at LT proves the entropy stabilization

$A_2B_2O_7$	a (Å)	T freeze (K)	Ground state
Dy ₂ Ge ₂ O ₇	9,93	0,83	spin ice
Dy ₂ Ti ₂ O ₇	10,10	1,2	spin ice
Dy ₂ (TiZrHfGeSn) ₂ O ₇	10,30	?	? in progress!
Dy ₂ Sn ₂ O ₇	10,40	1,2	spin ice

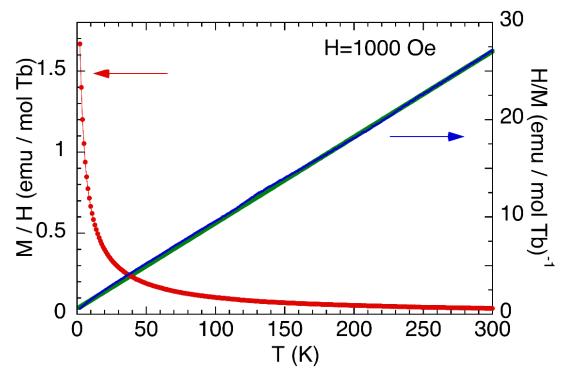
Robustness of the spin ice ground state in Dy pyrochlores


This new route offers rich perspectives for the design of original materials

- o possibility to extend to all REs by changing the cations mixture
- o multiplication of possibilities using mixtures of alliovalent cations

New hints on the enigmatic ground state of $Tb_2Ti_2O_7$?

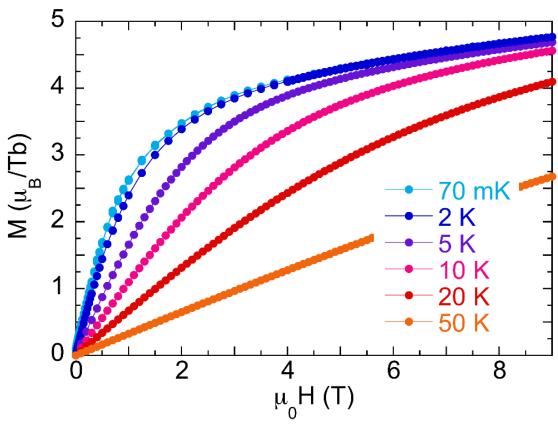
Crystal structure characterizations


Th on the A-site of the pyrochlore structure

Disorder introduced on the B site with 5 non-magnetic cations (Ti^{4+} , Zr^{4+} , Hf^{4+} , Ge^{4+} and Sn^{4+})

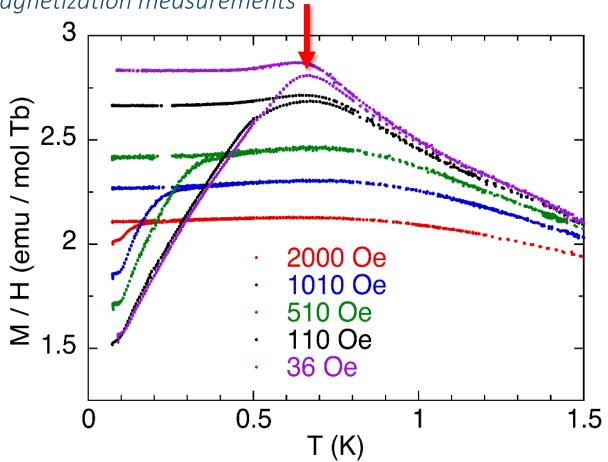
- Single phase cubic Fd-3m
 a = 10.3287(10) Å at RT
 Confirmed stoichiometry
- Debye-Waller parameter large on O
 (> 1 Å²) position disorder
- Antisite (RE <-> B) disorder possible (as b for Tb, Hf, Ti are similar)
 - No broadening, or short range structural disorder signature

Magnetization measurements

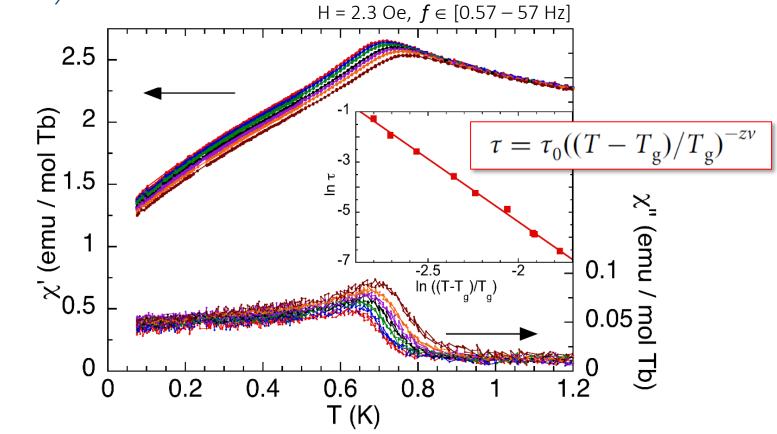


- No ordering down to 2 K
 Almost linear behaviour above 20 K, like in other Tb pyrochlores
- $\theta_{CW} = -6.4 \text{ K}$ (≈ Tb₂ScNbO₇), $M_{eff} = 9.5 \mu_{B}$ (g_J $J = 9 \mu_{B}$ for Tb³⁺)

$$\theta_{\rm CW} = \theta_0 + \theta_{\rm CW}^{\rm CEF}$$
, if $\theta_{\rm CW}^{\rm CEF} \approx -6$ K, $\theta_0 \approx -0.5$ K


Magnetization measurements

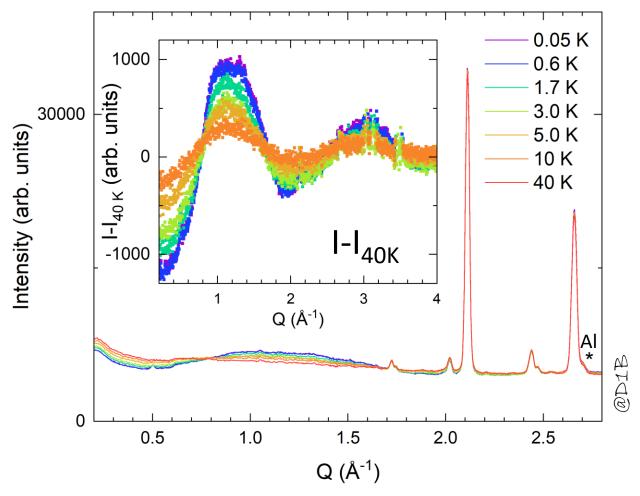
- o No saturation in 70 mK, 9 T
- o $M_{\text{max}} \approx 4.75 \,\mu_{\text{B}}/\text{Tb}$, like $Tb_2Ti_2O_7$ or $Tb_2Nb_2O_7$


- Maximum a T ≈ 0.65 K, irreversibility ≈ 0.8 K
- Broadening when H increases, irreversibility suppressed for H > 0.5 T

Spin freezing,
$$r \approx 50 \%$$
 ($r = 1-M_{ZFC}/M_{FC}$)

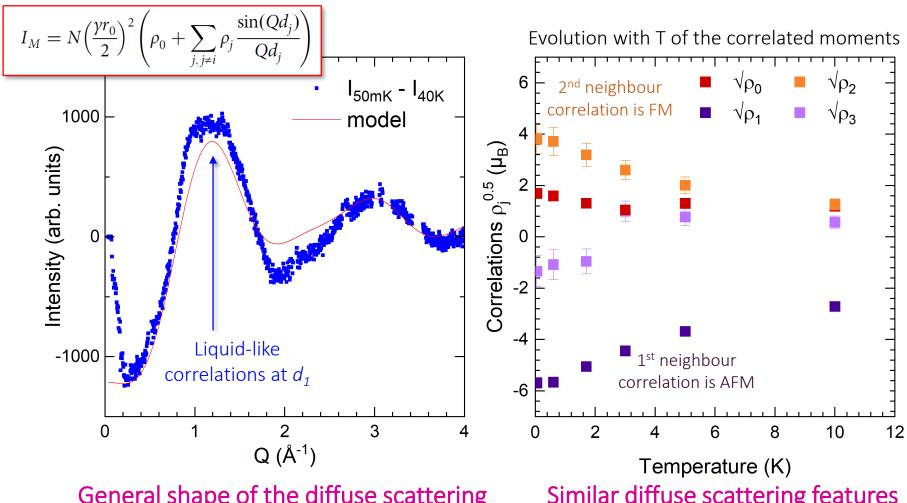
like Tb_ScNbO_z

Ac susceptibility measurements

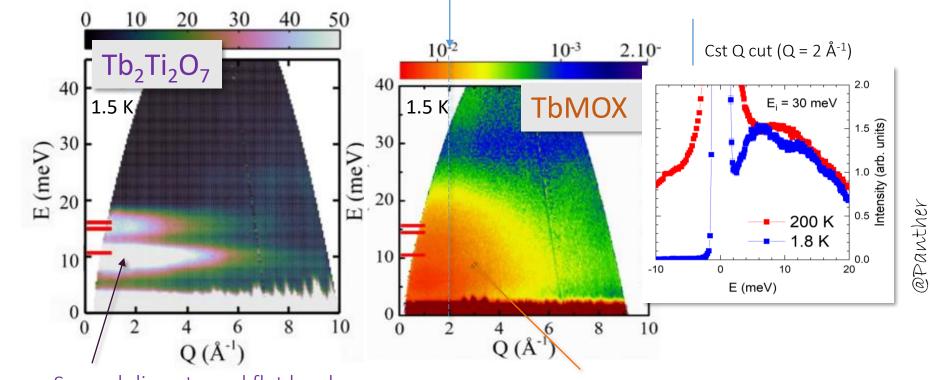


- o Frequency dependence of χ' and χ''
- o Described by a scaling law
- Similar parameters in other disordered Tb pyrochlores (Tb₂Hf₂O₇ and Tb₂ScNbO₇)

$$\tau_0 = 2.10^{-7} \pm 5.10^{-8} \text{ s}, T_g = 0.675 \pm 0.05 \text{ K} \text{ and } zv = 5 \pm 1$$


Neutron powder diffraction

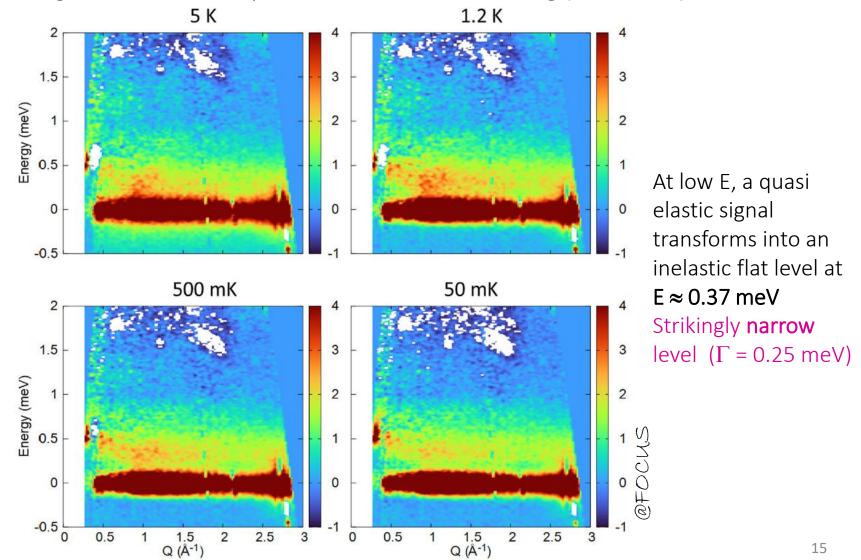
- No long range ordering down to 50 mK
- Strong diffuse scattering signal


Correlated spin modelling of the magnetic diffuse scattering

General shape of the diffuse scattering reproduced by the modelling

Similar diffuse scattering features to Tb₂Ti₂O₇

Probing CEF excitations by inelastic neutron scattering (0 – 40 meV)

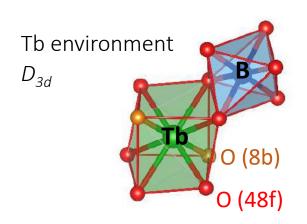

Several discrete and flat levels below 20 meV*

*Ruminy, Magnetoelastic effects in rare earth Titanate Pyrochlores, Thèse de Doctorat, ETH Zurich, (2016).

Broad signal between 4 and 40 meV Reflects the distribution of oxygen positions around Tb ions

Probing CEF excitations by inelastic neutron scattering (0 - 2 meV)

Tb₂(Ti_{0.2}Zr_{0.2}Hf_{0.2}Ge_{0.2}Sn_{0.2})₂O₇ Entropy-stabilized pyrochlore


Modelling (CEF part)

CEF Hamiltonian

Stevens parameters
$$H_{\it CEF} = \sum_{n,m} B_{n,m} O_{n,m}$$
 Stevens operators

For a pyrochlore A site (D_{3d} symmetry): B_{20} , B_{40} , B_{43} , B_{60} , B_{63} , B_{66} only are non zero

Simple approach to estimate B_{nm}: the point charge model

To model B-site entropy: oxygen coordinates are shifted by an isotropic shift parameter δ , away from their actual values.

 $\delta \approx \text{Debye-Waller parameter}$

Importantly: random δ on the 8 oxygen atoms introduce a symmetry breaking of the local D_{3d} symmetry.

All B_{nm} now allowed, D_{3d} symmetry fulfilled only in average

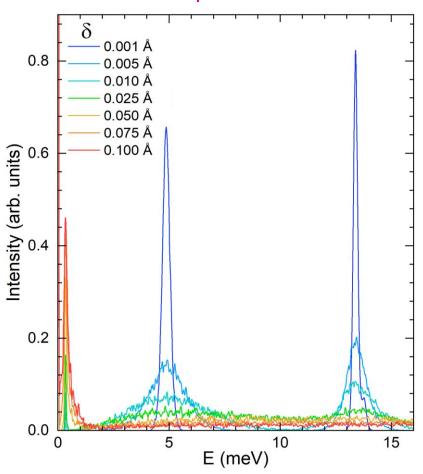
Modelling (magnetic interactions part)

Magnetic diffuse scattering implies magnetic interactions between Tb moments:

$$\mathcal{H}_{mag} \approx \sum_{\langle i,j \rangle} g^{zz} I_i^z I_j^z$$
 Owing to the non-Kramers nature of the Tb³⁺ ions $z // <111>$, g^{zz} the magnetic coupling

To keep the approach simple, a mean field approximation is used, involving a local molecular field H

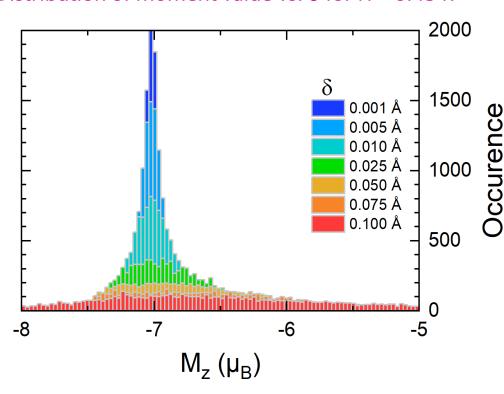
Modelling (CEF + magnetic interactions)


$$\mathcal{H} \approx \mathcal{H}_{CEF} + HI_i^z$$

This model only has two parameters, the molecular field H and the oxygen position shift δ

Modelling (CEF + magnetic interactions)

Calculations CEF spectra vs. δ for H = 0.45 K



- H = 0.45 K leads to a split ground state with a first level at 0.4 meV
- With increasing δ (disorder), clear broadening of the CEF levels at high energy
- Spectral weight of the low E mode (at 0.4 meV) is zero if $\delta = 0$
- Spectral weight of 0.4 meV mode increases with increasing δ , without broadening or E shift

Disorder must be present to visualize this mode!

Modelling (CEF + magnetic interactions)

Distribution of moment value vs. δ for H = 0.45 K

The distribution of Tb³⁺ moment values broadens also with δ , but remains peaked around 7 μ_B up to δ = 0.05 Å.

Nearly uniform distribution of local moments!

This simple modelling reproduces rather well experimental findings!

Can we go further....?

More complex modelling.....introducing quadrupole interactions

In Tb₂Ti₂O₇, quadrupolar interactions are a key ingredient to the understanding of the ground state

A simplified way to tackle quadrupolar interactions is to use a projection of the Hamiltonian on a subspace formed by the two states \uparrow and \downarrow of a pseudo spin ½ (σ_i). This approach only works for the ground doublet, which is the one of interest here. At the mean field level :

$$\mathcal{H}' pprox \sum_{i} h \sigma_{i}^{z} + \sum_{i} h_{\perp} \sigma_{i}^{x}$$

Longitudinal molecular field due to magnetic interactions

 $M_z = g_I \langle I_i^z \rangle \approx 7 \,\mu_{\rm B}$

Transverse effective field

$$h_{\perp} = \left(\bar{h}_{\perp} + \delta h_{\perp}\right)$$

Quadrupole -quadrupole interactions

Net effect of random deviations out of D_{3d} symmetry

The z component of the pseudo spin is directly related to the local magnetic moment M_z

More complex modelling.....introducing quadrupole interactions

Diagonalization of ${\mathcal H}'$ shows that there are two eigenstates separated by :

$$\Delta = \sqrt{h^2 + {h_\perp}^2}$$

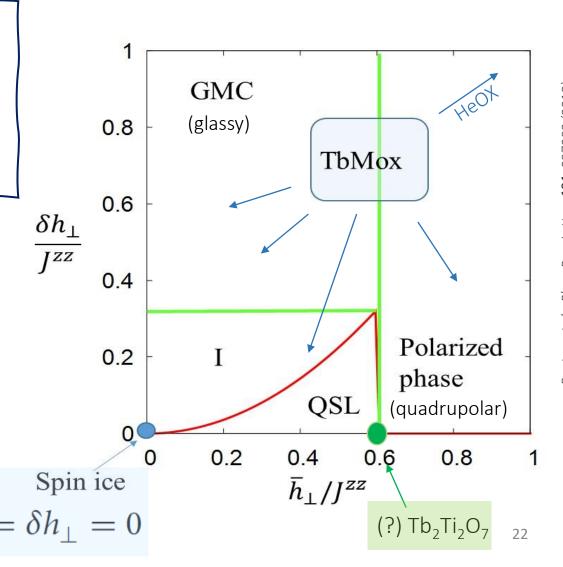
Corresponding neutron spectrum:

$$S(\omega) \approx \mu^2 / 4 \left\{ \frac{h^2}{h^2 + h_{\perp}^2} \delta(\omega) + \frac{h_{\perp}^2}{h^2 + h_{\perp}^2} \delta(\omega - \Delta) \right\}$$
Complementary spectral weight Elastic Inelastic

Physical understanding of the low energy peak and its behaviour with $\boldsymbol{\delta}$

Peak at finite ${\scriptstyle \Delta}$ whose spectral weight depends on h_{\perp}

Benton et al., *Phys. Rev. Letters* **121**, 037203 (2018) Savary et al., *Phys. Rev. Letters* **118**, 087203 (2017)


More complex modelling.....introducing quadrupole interactions

Approximations

$$\Delta = \sqrt{h^2 + {h_\perp}^2} = 0.37 \, \mathrm{meV}$$

 $\delta h_\perp = 0.25 \, \mathrm{meV} \, (\approx \Gamma)$
 $h \approx J^{zz} \approx 0.32 \, \mathrm{meV} \, (\sqrt{\rho_1} = 6 \, \mu_\mathrm{B})$

$$\frac{\delta h_{\perp}}{J^{zz}} \sim 0.8, \, \frac{\bar{h}_{\perp}}{J^{zz}} \sim 0.6$$

Disorder and quadrupolar effects of same order of magnitude

Conclusions

- A new, entropy-stabilized terbium pyrochlore!
- Like in Tb₂Ti₂O₇: AF interactions and a narrow low energy flat mode
- Compositional disorder leads to random shifts of oxygen atoms
- o Disorder
 - does not impact Tb³⁺ magnetic moment
 - broadens high energy CEF levels
 - increases low energy excitation mode intensity
- High entropy provides a tunable and smooth disorder: promising to achieve QSL phases!

Thank you for your attention!