Quantum Spin Liquids: Experimental Enigmas and Theoretical Challenges 6-10 October 2025, Budapest

Quantum Phase Diagram of the Bilayer Kitaev-Heisenberg Model

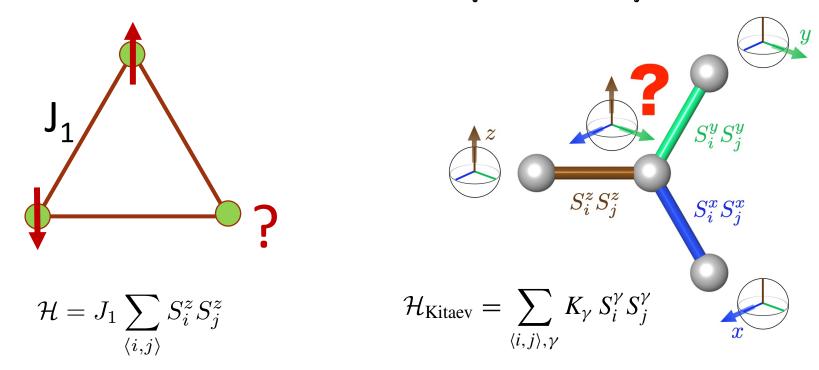
arXiv:2412.17495

Saeed Jahromi

Outline

- Kitaev Quantum Spin Liquids
- Kitaev-Heisenberg Model on the Honeycomb Lattice
- The Bilayer Kitaev-Heisenberg Model
- Tensor Networks for Layered Systems
- Phase Diagram
- Results and Discussion

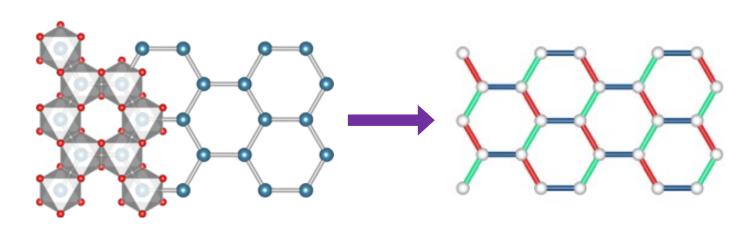
Frustration, Root to Spin Liquids



Frustration:

- Geometric frustration: Antiferromagnetic Couplings + Odd Loops (Triangular, Kagome lattices)
- **Exchange frustration:** Competition between different exchange paths
- Total energy of the system does not correspond to minimum of each interaction term in the Hamiltonian

Kitaev Spin Liquid in 2D

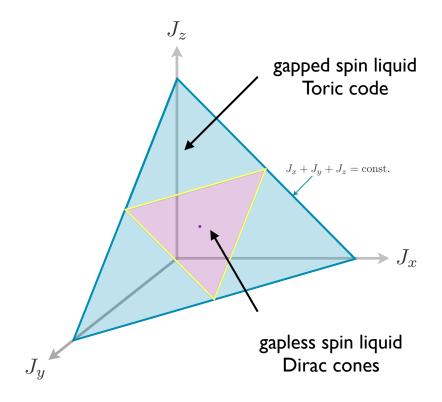


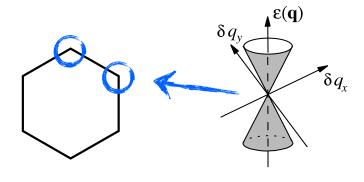
Singh et al., PRL 108, 127203 (2008)

Strong Spin-Orbit Coupling leads to bond-anisotropic exchange interactions

$$H = -\sum_{\gamma - \text{bond}} J_{\gamma} \sigma_{j}^{\gamma} \sigma_{k}^{\gamma}$$

Exactly Solvable on all trivalent lattices in 2D, 3D

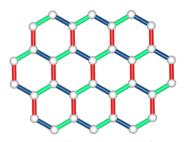




Isotropic Kitaev QSL Properties

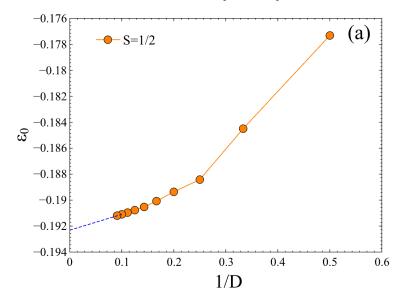
$$\mathcal{H}_{KIF} = J \sum_{\substack{\alpha - links \\ \alpha = x, y, z \\ \langle i, j \rangle}} S_i^{\alpha} S_j^{\alpha}$$

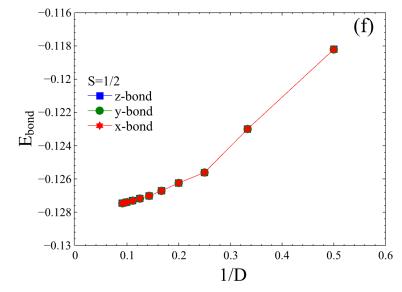
$$W_p = e^{i\pi(S_1^x + S_2^y + S_3^z + S_4^x + S_5^y + S_6^z)}$$

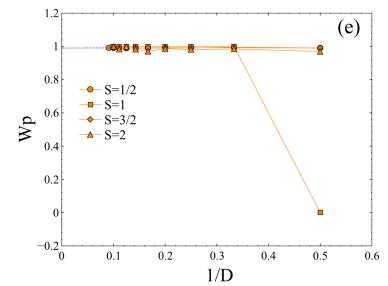


■ $[H, W_p] = 0, \rightarrow W_p$ constant of motion \rightarrow conserved quantum number per plaquette p for general S given by the eigenvalues ± 1

Tensor Networks (iPEPS) Results







Baskaran, G., Mandal, S. Shankar, R., Phys. Rev. Lett. 98, 247201 (2007)

Kitaev-Heisenberg Model in 2D

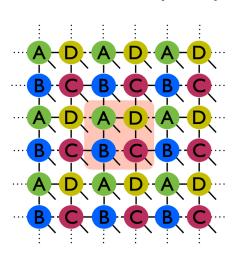
Kitaev-Heisenberg Phase diagram on the Honeycomb lattice:

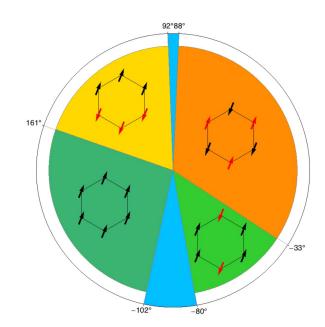
• The interplay of Kitaev and Heisenberg interaction leads to a rich phase diagram

$$\mathcal{H}_{ij}^{(\gamma)} = 2KS_i^{\gamma}S_j^{\gamma} + JS_i \cdot S_j.$$

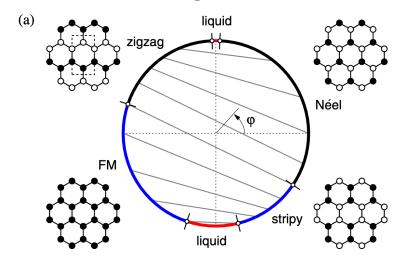
$$K = A \sin \varphi$$
 and $J = A \cos \varphi$

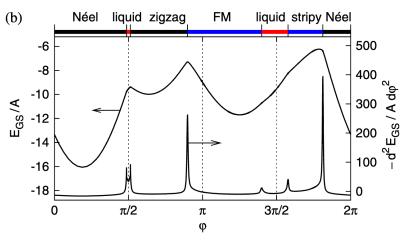
Tensor Networks (iPEPS)





Exact Diagonalization





J. Chaloupka, G. Jackeli, G. Khaliullin,PRL 105, 027204 (2010), PRL 110, 097204 (2013)

Beyond 2D: Bilayer Structure

New Physics and Phase Diagram?

- What is the phase diagram of the Kitaev-Heisenberg model on bilayer honeycomb lattice?
- Can we observe any new phase not present in the monolayer?

Geometrical Challenges for Tensor Network Algorithms:

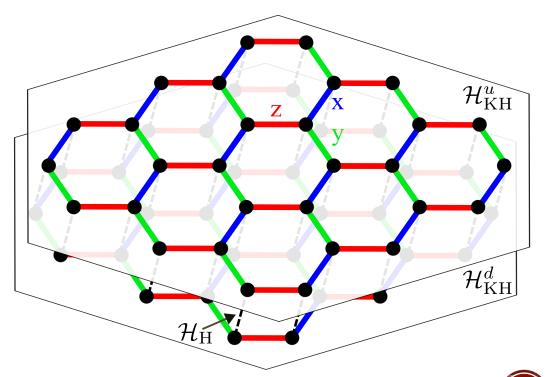
How to simulate bilayer systems with tensor networks?

Intralayer interactions:

$$\mathcal{H}_{KH}^{\ell} = K \sum_{\langle ij \rangle_{\alpha}} S_{i,\ell}^{\alpha} S_{j,\ell}^{\alpha} + J \sum_{\langle ij \rangle} \mathbf{S}_{i,\ell} . \mathbf{S}_{j,\ell},$$

Interlayer interactions:

$$\mathcal{H}_{\mathrm{H}} = J_{\perp} \sum_{i} \mathbf{S}_{iu}.\mathbf{S}_{id}$$



Tensor Network Representation of a Wave-Function

Inefficient

 $O(P^N)$

Some of the advantages of Tensor Network Methods:

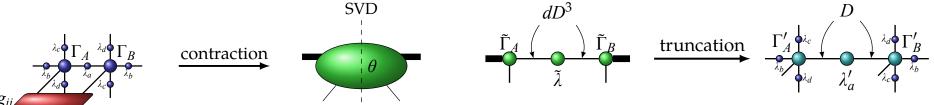
- ❖ TNs are build on genuine quantum correlations → Beyond Mean-Field calculations
- ❖ No Fermionic sign problem → Beyond QMC calculations
- ❖ Simulate systems in the thermodynamic limit → Beyond finite size Exact Diagonalization

Efficient

Infinite Projected Entangled-Pair State

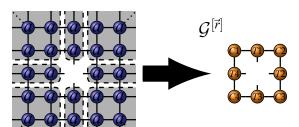
Finding the ground state of Local Hamiltonians? DMRG, TEBD, PEPS

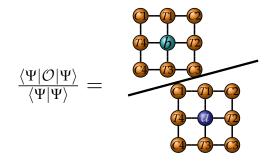
Jiang et al, PRL, (2008) Corboz et al, PRB (2010)

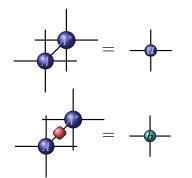


CTMRG:

Nishino et al, JPSJ, (1996) Orus et al, PRB (2009) Corboz et al, PRB (2010) Corboz et al, PRB (2014)

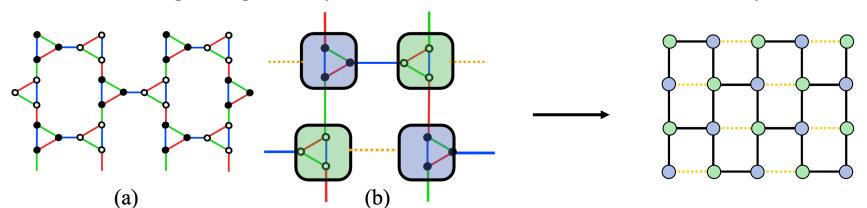






Tensor Network for the Honeycomb-like lattices

iPEPS with coerce-graining three spin-½ into a block site with d=2³ to form a square TN of block-sites



Corboz et al, PRB, (2012) Corboz et al, PRL (2014) Jahromi et al, PRB, (2018), (2019)

Tensor Networks for Layered Systems

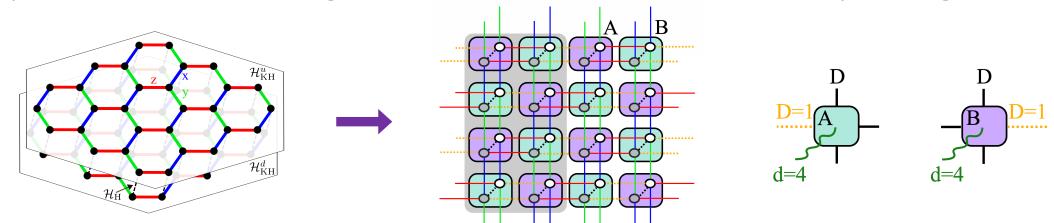
From Honeycomb to Square Geometry:

Reshape the Honeycomb lattice to Brick-Wall structure and add dummy link to obtain a Square lattice

S. S. Jahromi, R. Orus, M. Kargarian, A. Langari, PRB 97, 115161 (2018)

From Bilayer to Monolayer:

• Course-grain the two spins of a rung dimer at each site and replace it with a block-site with local Hilbert space dimension $2^2 = 4$. Then assign a rank-5 iPEPS tensor to each site with one dummy virtual leg



Phase Diagram

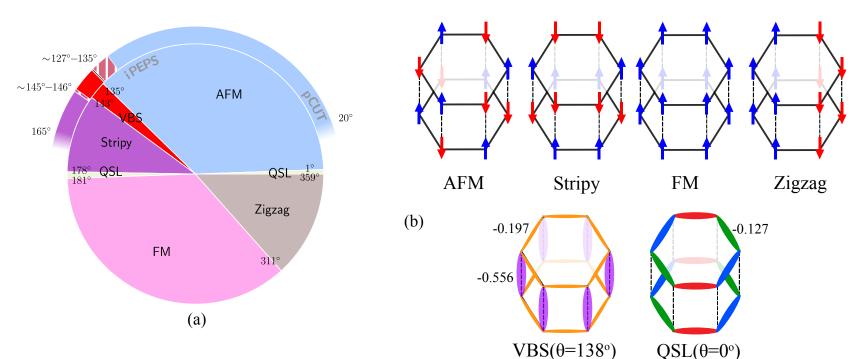
$$\mathcal{H}_{KH}^{\ell} = K \sum_{\langle ij \rangle_{\alpha}} S_{i,\ell}^{\alpha} S_{j,\ell}^{\alpha} + J \sum_{\langle ij \rangle} \mathbf{S}_{i,\ell}.\mathbf{S}_{j,\ell}, \qquad \mathcal{H}_{H} = J_{\perp} \sum_{i} \mathbf{S}_{iu}.\mathbf{S}_{id}$$

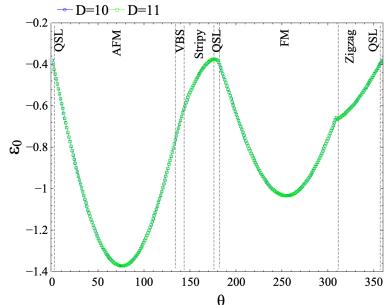
$$\mathcal{H}_{\mathrm{H}} = J_{\perp} \sum_{i} \mathbf{S}_{iu}.\mathbf{S}_{id}$$

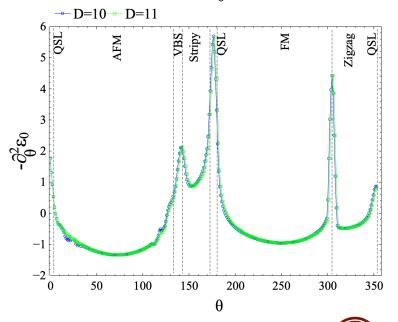
$$\mathcal{H} = \mathcal{H}_{\mathrm{KH}}^{u} + \mathcal{H}_{\mathrm{KH}}^{d} + \mathcal{H}_{\mathrm{H}}$$

$$J_{\perp} = J$$

$$J_{\perp} = J$$
 $K = \cos \theta \text{ and } J = \sin \theta$





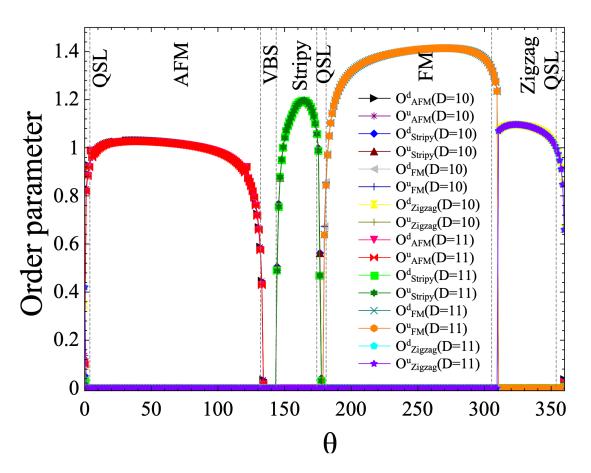


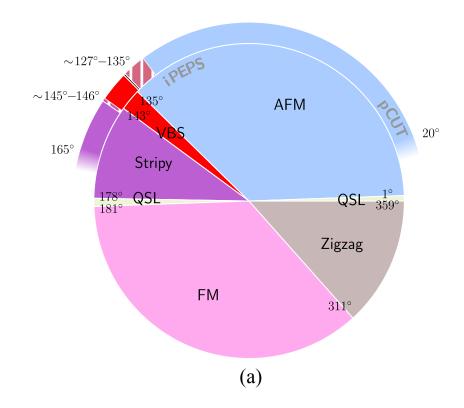
Phase Diagram

$$\mathcal{H}_{\mathrm{KH}}^{\ell} = K \sum_{\langle ij \rangle_{\alpha}} S_{i,\ell}^{\alpha} S_{j,\ell}^{\alpha} + J \sum_{\langle ij \rangle} \mathbf{S}_{i,\ell}.\mathbf{S}_{j,\ell}, \qquad \mathcal{H}_{\mathrm{H}} = J_{\perp} \sum_{i} \mathbf{S}_{iu}.\mathbf{S}_{id} \qquad \mathcal{H} = \mathcal{H}_{\mathrm{KH}}^{u} + \mathcal{H}_{\mathrm{KH}}^{d} + \mathcal{H}_{\mathrm{H}}$$

$$\mathcal{H}_{\mathrm{H}} = J_{\perp} \sum_{i} \mathbf{S}_{iu}.\mathbf{S}_{id}$$

$$\mathcal{H} = \mathcal{H}_{\mathrm{KH}}^{u} + \mathcal{H}_{\mathrm{KH}}^{d} + \mathcal{H}_{\mathrm{H}}$$



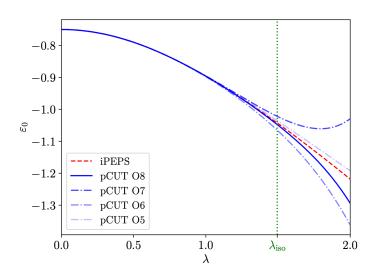


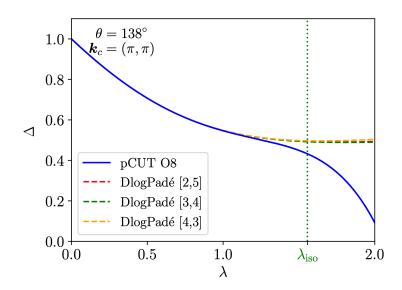
Phase Diagram

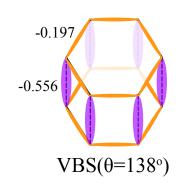
Series Expansion for the VBS Phase

$$\mathcal{H}_{KH}^{\ell} = K \sum_{\langle ij \rangle_{\alpha}} S_{i,\ell}^{\alpha} S_{j,\ell}^{\alpha} + J \sum_{\langle ij \rangle} \mathbf{S}_{i,\ell}.\mathbf{S}_{j,\ell}, \qquad \mathcal{H}_{H} = J_{\perp} \sum_{i} \mathbf{S}_{iu}.\mathbf{S}_{id}$$

- We performed series expansion around the isolated rung dimers limit.
- C. Knetter and G. Uhrig, EPJ B 13, 209 (2000).C. Knetter et. al., J. Phys. A: Math. Gen. 36, 7889 (2003).
- We rescale the Hamiltonian by J_{\perp} where the ground-state energy is given by and expand in powers of $\lambda_K \equiv K/J_{\perp} = \lambda \cos \theta$ and $\lambda_J \equiv J/J_{\perp} = \lambda \sin \theta$.
- We break the assumption of `isotropic' Heisenberg allowing $J \neq J_{\perp}$ to perform series expansions
- The isotropic Heisenberg interactions is recovered in the end for $\lambda_J=1$ i.e., $\lambda_{\rm iso}\equiv 1/\sin\theta$







• The triplon gap stays finite at the physically relevant λ_{iso} with no transition \rightarrow The VBS phase is adiabatically connected to the isolated-dimer limit.

Conclusion

- ❖ The ground-state phase diagram of the spin-½ Kitaev-Heisenberg model on the bilayer honeycomb lattice was studied.
- * We Combined the iPEPS tensor-network simulations in the thermodynamic limit with high-order series expansions from the isolated-dimer limit to obtain ground-state and excitation properties.
- ❖ We Identified **seven** distinct phases—four magnetically ordered, two quantum spin-liquid (QSL) states, and one interlayer valence-bond solid (VBS).
- * While the FM, AFM, Zigzag and Stripy phases exist in the monolayer Kitaev-Heisenberg model, the VBS phase uniquely emerges due to the bilayer structure.
- Alternative approaches for TN simulation of layered or 3D systems: gPEPS (graph projected entangled pair state).
 - S. S. Jahromi, R. Orus, PRB 99, 195105 (2019)
 - S. S. Jahromi, H. Yarloo, R. Orus, Phys. Rev. Research 3, 033205 (2021)

Kai Phillip Schmidt FAU Erlangen-Nürnberg

Patrick Adelhardt FAU Erlangen-Nürnberg

Antonia Duft FAU Erlangen-Nürnberg

Elahe Samimi IASBS

Collaborators

Thanks for your attention