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One slide summary

Competition between two different manifestations of SO coupling:

Easy-axis anisotropy of the exchange couplings Easy-plane anisotropy in the single-ion energetics

Tight-binding descriptions for SO coupled Mott insulators suggest such regimes can exist

Lee, Bhattacharjee, Kim, PRB 87, 214416 (2013) Rau, Lee, Kee, PRL 112, 077204 (2014)

Our message-
Interplay of geometric frustration and this competition drives interesting physics

However-

Caveat emptor: No candidate materials known to us...



1. Competing anisotropies and the S=1 kagome 1/3-magnetization plateau

Representative Hamiltonian: Herp=J? Z SEST + A 2(85)2 — B Z Sy 4+

JF=J, A=J+u
Quantum fluctuations, additional interactions negligible  (.J, | J <« T)
T pJ

One-third magnetization plateau
(O(J) width around B~2.J)

Each kagome triangle has: S*=1

Two ways to add up to 5*=1 (1,0,0) or (1,1, -1) (Large O(.J) energy gap to other values)

(with slightly different energies)

Souvik Kundu & KD, Phys. Rev. X 15, 011018 (2025)



Fully-packed configurations of loops + trivial loops (dimers)

Divergence-free polarization
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Half-charges (half-vortices) forbidden
Integer charges (unit-vortices) also forbidden
Two distinct length-1 objects if half vortices

allowed (drive transition to 2/3 magnetization
plateau)

Souvik Kundu & KD, Phys. Rev. X 15, 011018 (2025)



Dimer-loop partition function

Z = Z w4 (€)

C

w = exp(—2u/T)

Physics of kagome magnet described in terms of dimer-loop partition function on honeycomb lattice

Tool: Classical Monte Carlo using a worm algorithm

Also useful to study square lattice dimer loop model (to check universality of honeycomb model transitions)



Some theoretical perspective

w=0 is fully-packed O(1) honeycomb loops (loop fugacity is unity). Configurations in one-to-one
correspondence with fully-packed dimers (empty links form loops)

Limit of infinite w is usual fully-packed dimer model.

Warning: no obvious duality between w and 1/w for general w

Expect:

At w=0: Power-law loop size distribution, dipolar correlations.

At infinite w: dipolar correlations

(Baxter, Moessner-Tchernyshyov-Sondhi 2004, Jaubert-Haque-Moessner 2011, Jacobsen-Kondev 1998, Saleur-
Duplantier 1987)



Coarse-grained height field-theory

S = 7rg/(Vh)2

his an angle: h-->h+1 redundancy in pure dimer limit, h-->h+1/2 redundancy in pure loop limit

(Youngblood 1980, Henley, Fradkin et al 2004, Vishwanath et al 2004, Alet et al 2005, Moessner et al 2004 ...)

Since loops exist at any finite w, expect h-->h+1/2 redundancy for all finite w?
Smooth crossover as a function of w as we go from 0 to infinity?



Numerics:

Classical Monte Carlo using two worm updates
One uses a unit-vortex antivortex pair, the other does the same with half-vortices
Allows measurement of test half-vortex correlator

Periodic boundary conditions: Two independent fluxes of polarization field (winding
numbers) well-defined

Fluxes are allowed to be half-integer in general except in pure dimer limit.



Measurements

Loop-size distribution and moments  P;(s,L) S = (Z s5")
J
Loop-size Binder ratio Z S; / S3
1]
Flux (winding number) distribution P(¢5, ¢y)

Probability of having fractional fluxes Ppac = 1 — Z P(¢g, py)
Pa €L, pyEZ

Three-sublattice spin order parameter and half/unit-vortex correlators Cw(r)

Ci(r) for ¢ =1/2,1



Preview: Conclusion from numerics

Two distinct Coulomb liquids separated by continuous transition

Multiple characterizations of the two Coulomb liquids and transition between them:
Geometric: Long-loop phase vs short-loop phase

Topological: Flux confinement-deconfinement transition

Dynamical: Half-vortices are deconfined in one phase but not other

Long-wavelength correlations: Power-law three-sublattice order in one but not other phase

Ising transition: Hidden Ising order parameter

Souvik Kundu & KD, Phys. Rev. X 15, 011018 (2025)

Jay Pandey & KD, unpublished



Geometric characterization: short-to-long loop phase transition
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Topological characterization: Flux confinement-deconfinement transition
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Dynamical characterization: Half-vortex (charge) correlators in two phases
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Transition observable in kagome spin structure factor

Power-law feature at
three sublattice
wavevector absent in
long-loop phase
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Souvik Kundu & KD, Phys. Rev. X 15, 011018 (2025)



co(w, L) /log(L/a)
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Thermodynamic characterization: Specific heat singularity

Honeycomb

Ising-like

0.20

0.18-

c.(w, L) /log(L/a)

0.141

0.12

Square

—_ ==

L

256 a=0.7

e 5 <}
on
F.
]

Suw L

Souvik Kundu & KD, Phys. Rev. X 15, 011018 (2025)




“Hidden” Ising order parameter

7(x,y) = +1 if 3H(z,y)mod (3) =0,1,2 for (z,y) € sublattice 0, 1, 2 respectively

7(x,y) = —1 otherwise for the kagome magnet (honeycomb dimer-loop model)

Strictly speaking: Each dimer-loop state maps to pair of Ising configurations C; and C*;

T(x,y) = +1 if 4H(x,y)mod (4) =0,1,2,3 for (x,y) € sublattice 0, 1, 2, 3 respectively

T(% y) — —1 otherwise for the square lattice dimer-loop model (planar-pyrochlore spin model)

Jay Pandey & KD, unpublished



illustrated here for the square-lattice dimer-loop model
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Transition seen by Ising Binder ratio
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Scaling of Ising Binder

illustrated here for the square-lattice dimer-loop model
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Xm(w, L)/ L*7"

Transition seen by Ising susceptibility

illustrated here for the square-lattice dimer-loop model
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Scaling of Ising susceptibility

illustrated here for the square-lattice dimer-loop model
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2. Competing anisotropies and the S=1 kagome in zero field

Representative Hamiltonian: Hopr=J* Z SZ5% + A Z(Sﬁ’)? ...
rr T

JF=J, A=J+u
Quantum fluctuations, additional interactions negligible  (.J, | J <« T)
T pJ

zero field physics: Each kagome triangle has: S:=0 (Large O(J) energy gap to other values)

Multiple ways to add up to 5°=0:  (with slightly different energies)

(0,0,0), or (1,-1, 0) and permutations (a “vertex model”)

Each S;= 41 contributes one factor of w=exp(—/fu) to the Boltzmann weight

Jay Pandey & KD, unpublished



Description in terms of fluctuating polarization field and heights

Divergence-free polarization on honeycomb links: Py, _,p = SﬁAB

SZ =0 implies A-P =0

Periodic boundary conditions: Two independent fluxes of polarization field (winding numbers) well-defined
Microscopic height construction:. P = A x H

Expect coarse-grained theory: S = 7rg/(Vh)2

h is an angle: h-->h+1 redundancy

Jay Pandey & KD, unpublished



Question:

|s there a smooth crossover from small w to large w, or a thermodynamic phase transition?

By analogy to superfluids, expect a (inverted) KT transition driven by relevance of exp(+2nih) (?7?)



Answering this: Vertex model partition function

Z = Z w"*1(C)
C

w = exp(—p1/T)

Physics of kagome magnet described in terms of vertex model partition function on honeycomb lattice

Tool: Classical Monte Carlo using a worm algorithm

Jay Pandey & KD, unpublished



Answering this...
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Jay Pandey & KD, unpublished



Answering this...

Jay Pandey & KD, unpublished
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Answering this...
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3. Competing anisotropies and the S=1 pyrochore in zero field

Representative Hamiltonian: Hopr=J* Z SZ5% + A Z(Sﬁ’)? ...
rr T

JF=J, A=J+u
Quantum fluctuations, additional interactions negligible  (.J, | J <« T)
T pJ

zero field physics: Each pyrochlore tetrahedron has: 5°=0 (Large O(J) energy gap to other values)

Multiple ways to add up to 5°=0:  (with slightly different energies)

(a “vertex model” on the diamond lattice)

Each S;=41 contributes one factor of w=exp(—/fu) to the Boltzmann weight

Jay Pandey & KD, unpublished



4. Competing anisotropies and the S=3/2 pyrochore in zero field

Representative Hamiltonian: Hopr=J* Z SZ5% + A Z(Sﬁ’)? ...
rr T

JF=J, A=J+u
Quantum fluctuations, additional interactions negligible  (.J, | J <« T)
T pJ

zero field physics: Each pyrochlore tetrahedron has: 5°=0 (Large O(J) energy gap to other values)

Multiple ways to add up to 5°=0:  (with slightly different energies)

(a “vertex model” on the diamond lattice)

Each S;=43/2 contributes one factor of w=exp(—25u)to the Boltzmann weight

Jay Pandey, Souvik Kundu, & KD, unpublished



Description in terms of fluctuating polarization field and vector potential

Divergence-free polarization on diamond links: Py = SﬁAB

Z . .
tetrahedron — 0 lmplles A P =0

Periodic boundary conditions: Three independent integer-valued fluxes of polarization field well-defined

Microscopic height construction: P=AxA

K
Expect coarse-grained theory: S = E) /(V X a)2



Question(s):

Is there a smooth crossover from small w to large w, or thermodynamic phase transitions?

Our answers-

Three phases in the S=1 case:
small-w paramagnet, intermediate-w flux-deconfined Coulomb, & large-w flux-confined Coulomb phases.
(with intervening 3dxy transition followed by flux confinement-deconfinement transition with Z, character.

Jay Pandey & KD, unpublished

Two phases in the S=3/2 case:
Small-w flux-deconfined Coulomb phase separated from large-w flux-confined Coulomb phase by a first
order flux confinement-deconfinement transition with Z; character

Jay Pandey, Souvik Kundu, & KD, unpublished



Answering these questions in both cases: Vertex model partition function

Z = Z w™(©)
C

w = exp(—cp/T)

Physics of S=1 and S=3/2 pyrochlore magnets described by respective vertex models on diamond lattice

Tool: Classical Monte Carlo using a worm algorithm



Answering this question for S=1 case...
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“Insulator-Superfluid” transition from paramagnet to flux-deconfined Coulomb phase
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Answering this question for S=1 case...
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“Insulator-Superfluid” transition from paramagnet to flux-deconfined Coulomb phase
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Answering this question for S=1 case...
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Z> Flux confinement-deconfinement transition between two Coulomb phases
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Answering this question for S=1 case...
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Answering this in the S=3/2 case...

1.0r L
0.8¢

0.6

P3/2
P1/2

0.4F

0.2F

0.0h5 . . .

First-order transition between two Coulomb phases
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Answering this in the S=3/2 case...
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First-order transition between two Coulomb phases
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Answering this in the S=3/2 case...
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First-order transition between two Coulomb phases
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Answering this in the S=3/2 case...
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Transition is a Z; flux confinement-deconfinement transition between two Coulomb liquids
Jay Pandey, Souvik Kundu, & KD, unpublished
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Supplementary

Slide(s) used in response to question during talk...



Universal loop size distribution in 2d long-loop phase
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