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Motivation (see previous talk)

S = 1 Langbeinite K2Ni2(SO4)3

MGG, Y. Iqbal, I. Zivkovic, et al. Nat Commun 15, 7191 (2024)

Disordered region

Key points
• There is a material close to a

disordered region
• The disordered region exists

around the Tetratrillium lattice
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The Tetratrillium Lattice

The trillium lattice
- Four sites per unit cell

• Large-N: subextensive SL
• Heisenberg: magnetic order

J Hopkinson, et al. Phys. Rev. B 74, 224441 (2006)
SV Isakov, et al. Phys. Rev. B 78, 014404 (2008)

The tetratrillium lattice
- Eight sites per unit cell

J1 = 0.48 J12 = 1 J2 = 0.14
MGG, Y Iqbal, I Zivkovic, et al. Nat Commun 15, 7191 (2024)

J1 = 0.55 J12 = 1 J2 = 0.02
W Yao, et al. Phys. Rev. Lett. 131, 146701 (2023)

We will use: J1 = 1 J12 = 1 J2 = 0
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Large-N Theory

Spin Hamiltonian

H =
1
2

M∑
i,j

Nsub∑
α,β

Jiα,jβ SiαSjβ

Constrainer Hamiltonian

H ≡
M∑

i=1

4∑
⊠=1

T 2
i,⊠

with

T 2
i,⊠ = (Si,⊠1 + Si,⊠2 + Si,⊠3 + Si,⊠4)

2

4 constraints and 8 sites per unit
cell ⇒ 4 flat bands
H Yan, et al. Phys. Rev. B 110, L020402 (2024)
H Yan, et al. Phys. Rev. B 109, 174421 (2024)

Spectrum of J(q)

Gap ⇒ fragile spin liquid
At finite temperatures...
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Ising Model

Ground-state manifold

Trillium lattice: 2 ↑ 1 ↓ or 1 ↑ 2 ↓
Tetratrillium: turn them into 2 ↑ 2 ↓

Pauling counting

s⊠ = 0.5 s△

Navigating the manifold

TE Redpath, et al. Phys. Rev. B 82, 014410 (2010)

On the trillium lattice...
One can perform classical Monte
Carlo simulations with Metropolis
updates alone and keep the
acceptance ratio finite while moving
through the manifold.
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Ising Model

Navigating the manifold

On the tetratrillium lattice...
One can perform classical Monte
Carlo simulations with star updates
to keep the acceptance ratio finite
while moving through the manifold.

0.01 0.1 1 10 100

T

0.0

0.2

0.4

0.6

c v
an

d
s

ln(2)

L = 12 (trillium)

L = 2

L = 3

L = 12

0.0

0.5

1.0

ac
ce

p
ta

n
ce

ra
ti

o

metropolis (trillium)

metropolis

star

No sign of a phase transition and little to no finite-size effects.
A classical spin liquid with fast-decaying correlations.
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Heisenberg Model

Classical Monte Carlo
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Key points
• No sign of a phase transition
• cv (T → 0) → 0.75 as for the

pyrochlore lattice

Classical Summary

Trillium Lattice
• Large-N: subextensive SL
• Heisenberg: ordered
• Ising: SL

Tetratrillium Lattice
• Large-N: fragile SL with

exponentially-decaying
correlations

• Heisenberg: SL
• Ising: SL

Effect of decorating a lattice while
keeping the number of constraints
constant.
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Quantum Heisenberg Model

Pseudo-Majorana FRG

Sx
i = −iηy

i η
z
i , Sy

i = −iηz
i η

x
i , Sz

i = −iηx
i η

y
i

with {ηµ
i , η

ν
j } = δi,jδµ,ν

• No unphysical states
• T can be used as a cutoff

N Niggemann, et al. Phys. Rev. B 103, 104431 (2021)
B Schneider, et al. Phys. Rev. B 109, 195109 (2024)

Advantages
• Exact at large temperatures
• Can handle complicated 3D lattices
• Access to correlations at low

temperatures
• Detect phase transitions through

finite-size scaling

• Can handle Vesta files
https://github.com/NilsNiggemann/PMFRG.jl/tree/TemperatureFlow
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Key points
No sign of a phase transition.
Fast convergence with system size.

Is it a Quantum Spin Liquid?
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Spin structure factor

−8π

−4π

0

4π

8π
(0
,k
y
,0

)

Is
in

g
T

=
0
.0

1

−8π

−4π

0

4π

8π

(0
,0
,k
z
)

−8π

−4π

0

4π

8π

k
2 √
6
(1
,1
,−

2)

(1, 0, 0) in Å−1
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Conclusions and perspectives

• The Tetratrillium lattice hosts a fragile spin liquid in the classical
case, with exponentially decaying correlations.

• In the Ising case there is a small part of the manifold that is not
accessible through star flips.

• In the quantum case we see no phase transition, but proper T = 0
calculations should be carried out.

• The best way is to study the quantum case by adding a small
perpendicular component to the Ising case, as for QSI.
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