Spin liquids on the tetratrillium lattice

Matías G. Gonzalez

Bonn University

Quantum Spin Liquids 2025 Budapest, Hungary October 7, 2025

Spin liquids on the tetratrillium lattice

Matías G. Gonzalez

Bonn University

Quantum Spin Liquids 2025 Budapest, Hungary October 7, 2025

In collaboration with Johannes Reuther (Freie Universität and HZB)

Spin liquids on the tetratrillium lattice

Matías G. Gonzalez

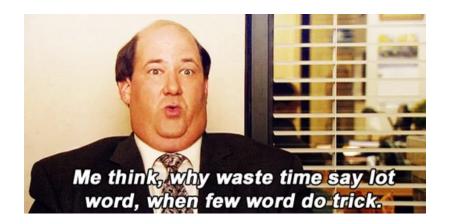
Bonn University

Quantum Spin Liquids 2025 Budapest, Hungary October 7, 2025

In collaboration with Johannes Reuther (Freie Universität and HZB) Thanks to collaborations with I. Zivkovic, Y. Iqbal, and many others.

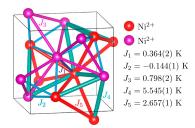
Philosophy of the talk

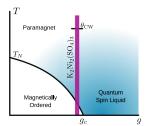
Philosophy of the talk



Motivation (see previous talk)

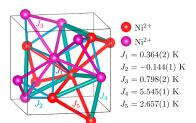
S = 1 Langbeinite $K_2Ni_2(SO_4)_3$

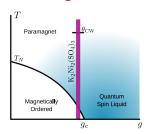




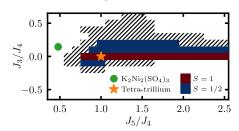
Motivation (see previous talk)

S=1 Langbeinite $K_2Ni_2(SO_4)_3$



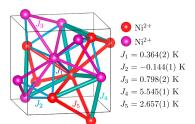


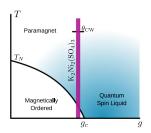
Disordered region



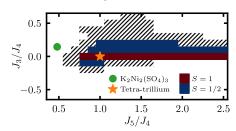
Motivation (see previous talk)

S = 1 Langbeinite $K_2Ni_2(SO_4)_3$





Disordered region



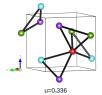
Key points

- There is a material close to a disordered region
- The disordered region exists around the Tetratrillium lattice

The trillium lattice

- Four sites per unit cell

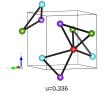
site	position		
1	(u, u, u)		
2	$\left(-\frac{1}{2}+u,\frac{1}{2}-u,1-u\right)$		
3	$(1-u,-\frac{1}{2}+u,\frac{1}{2}-u)$		
4	$\left(\frac{1}{2}-u,1-u,-\frac{1}{2}+u\right)$		

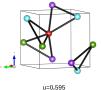


The trillium lattice

- Four sites per unit cell

site	position	
1	(u, u, u)	
2	$\left(-\frac{1}{2} + u, \frac{1}{2} - u, 1 - u\right)$	
3	$(1-u,-\frac{1}{2}+u,\frac{1}{2}-u)$	
4	$\left(\frac{1}{2}-u,1-u,-\frac{1}{2}+u\right)$	



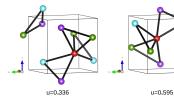


- Large-N: subextensive SL
- Heisenberg: magnetic order

The trillium lattice

- Four sites per unit cell

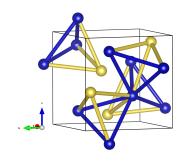
	site	position	
-	1	(u, u, u)	
	2	$\left(-\frac{1}{2} + u, \frac{1}{2} - u, 1 - u\right)$	
	3	$(1-u,-\frac{1}{2}+u,\frac{1}{2}-u)$	
	4	$\left(\frac{1}{2}-u,1-u,-\frac{1}{2}+u\right)$	



- Large-N: subextensive SL
- Heisenberg: magnetic order

The tetratrillium lattice

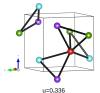
- Eight sites per unit cell

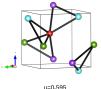


The trillium lattice

- Four sites per unit cell

site	position
1	(u, u, u)
2	$\left(-\frac{1}{2} + u, \frac{1}{2} - u, 1 - u\right)$
3	$(1-u, -\frac{1}{2}+u, \frac{1}{2}-u)$
4	$\left(\frac{1}{2}-u,1-u,-\frac{1}{2}+u\right)$



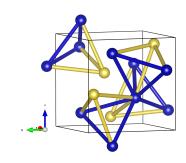


- Large-N: subextensive SL
- Heisenberg: magnetic order

J Hopkinson, et al. Phys. Rev. B 74, 224441 (2006) SV Isakov, et al. Phys. Rev. B 78, 014404 (2008)

The tetratrillium lattice

- Eight sites per unit cell



$$J_1 = 0.48 J_{12} = 1 J_2 = 0.14$$

MGG, Y Iqbal, I Zivkovic, et al. Nat Commun 15, 7191 (2024)

$$J_1 = 0.55 J_{12} = 1 J_2 = 0.02$$

W Yao, et al. Phys. Rev. Lett. 131, 146701 (2023)

We will use:
$$J_1 = 1$$
 $J_{12} = 1$ $J_2 = 0$

Spin Hamiltonian

$$\mathcal{H} = rac{1}{2} \sum_{i,j}^{M} \sum_{lpha,eta}^{N_{\mathsf{sub}}} J_{i_{lpha},j_{eta}} \mathbf{S}_{i_{lpha}} \mathbf{S}_{j_{eta}}$$

Spin Hamiltonian

$$\mathcal{H} = rac{1}{2} \sum_{i,j}^{M} \sum_{lpha,eta}^{N_{\mathsf{sub}}} J_{i_{lpha},j_{eta}} \mathbf{S}_{i_{lpha}} \mathbf{S}_{j_{eta}}$$

Classical Results

Constrainer Hamiltonian

$$\mathcal{H} \equiv \sum_{i=1}^{M} \sum_{\boxtimes =1}^{4} \mathcal{T}_{i,\boxtimes}^{2}$$

with

$$T_{i,\boxtimes}^2 = \left(S_{i,\boxtimes_1} + S_{i,\boxtimes_2} + S_{i,\boxtimes_3} + S_{i,\boxtimes_4}\right)^2$$

4 constraints and 8 sites per unit cell \Rightarrow 4 flat bands

Spin Hamiltonian

$$\mathcal{H} = rac{1}{2} \sum_{i,j}^{M} \sum_{lpha,eta}^{N_{
m sub}} J_{i_lpha,j_eta} \mathbf{S}_{i_lpha} \mathbf{S}_{j_eta}$$

Constrainer Hamiltonian

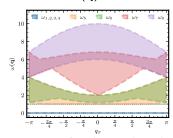
$$\mathcal{H} \equiv \sum_{i=1}^{M} \sum_{\boxtimes =1}^{4} T_{i,\boxtimes}^2$$

with

$$T_{i,\boxtimes}^2 = \left(S_{i,\boxtimes_1} + S_{i,\boxtimes_2} + S_{i,\boxtimes_3} + S_{i,\boxtimes_4}\right)^2$$

4 constraints and 8 sites per unit cell \Rightarrow 4 flat bands

Spectrum of J(q)



 $Gap \Rightarrow fragile spin liquid$

Spin Hamiltonian

$$\mathcal{H} = rac{1}{2} \sum_{i,j}^{M} \sum_{lpha,eta}^{N_{\mathsf{sub}}} J_{i_{lpha},j_{eta}} \mathbf{S}_{i_{lpha}} \mathbf{S}_{j_{eta}}$$

Constrainer Hamiltonian

$$\mathcal{H} \equiv \sum_{i=1}^{M} \sum_{\boxtimes =1}^{4} T_{i,\boxtimes}^{2}$$

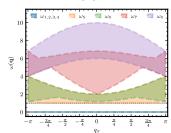
with

$$T_{i,\boxtimes}^2 = \left(S_{i,\boxtimes_1} + S_{i,\boxtimes_2} + S_{i,\boxtimes_3} + S_{i,\boxtimes_4}\right)^2$$

4 constraints and 8 sites per unit cell \Rightarrow 4 flat bands

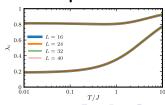
H Yan, et al. Phys. Rev. B 110, L020402 (2024) H Yan, et al. Phys. Rev. B 109, 174421 (2024)

Spectrum of J(q)

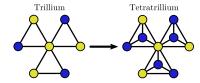


 $\mathsf{Gap}\Rightarrow\mathsf{fragile}\;\mathsf{spin}\;\mathsf{liquid}$

At finite temperatures...

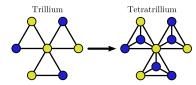


Ground-state manifold



Trillium lattice: $2 \uparrow 1 \downarrow$ or $1 \uparrow 2 \downarrow$ Tetratrillium: turn them into $2 \uparrow 2 \downarrow$

Ground-state manifold



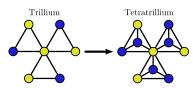
Trillium lattice: $2 \uparrow 1 \downarrow$ or $1 \uparrow 2 \downarrow$ Tetratrillium: turn them into $2 \uparrow 2 \downarrow$

Pauling counting

		s(T=0)	
unit	n	trillium	${\it tetratrillium}$
\triangle or \boxtimes	6	0.4055	0.2027
L = 1	6	0.4479	0.2240
L=2	314874	0.3956	0.1978

$$s_{\boxtimes} = 0.5 \ s_{\triangle}$$

Ground-state manifold



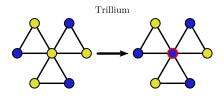
Trillium lattice: $2 \uparrow 1 \downarrow$ or $1 \uparrow 2 \downarrow$ Tetratrillium: turn them into $2 \uparrow 2 \downarrow$

Pauling counting

		s(T=0)	
unit	n	$\operatorname{trillium}$	${\it tetratrillium}$
\triangle or \boxtimes	6	0.4055	0.2027
L = 1	6	0.4479	0.2240
L=2	314874	0.3956	0.1978

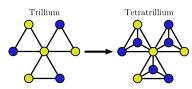
$$s_{\boxtimes}=0.5~s_{\triangle}$$

Navigating the manifold



TE Redpath, et al. Phys. Rev. B 82, 014410 (2010)

Ground-state manifold



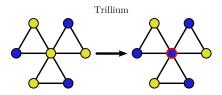
Trillium lattice: $2 \uparrow 1 \downarrow$ or $1 \uparrow 2 \downarrow$ Tetratrillium: turn them into $2 \uparrow 2 \downarrow$

Pauling counting

		s(T=0)	
unit	n	trillium	tetratrillium
\triangle or \boxtimes	6	0.4055	0.2027
L = 1	6	0.4479	0.2240
L=2	314874	0.3956	0.1978

$$s_{\boxtimes} = 0.5 \ s_{\triangle}$$

Navigating the manifold

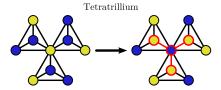


TE Redpath, et al. Phys. Rev. B 82, 014410 (2010)

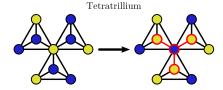
On the trillium lattice...

One can perform classical Monte Carlo simulations with Metropolis updates alone and keep the acceptance ratio finite while moving through the manifold.

Navigating the manifold



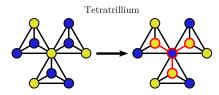
Navigating the manifold



On the tetratrillium lattice...

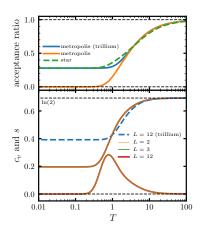
One can perform classical Monte Carlo simulations with *star* updates to keep the acceptance ratio finite while moving through the manifold.

Navigating the manifold

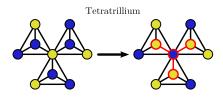


On the tetratrillium lattice...

One can perform classical Monte Carlo simulations with *star* updates to keep the acceptance ratio finite while moving through the manifold.

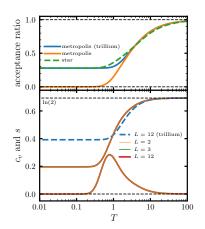


Navigating the manifold



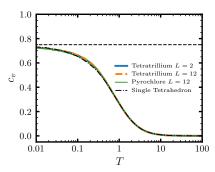
On the tetratrillium lattice...

One can perform classical Monte Carlo simulations with *star* updates to keep the acceptance ratio finite while moving through the manifold.

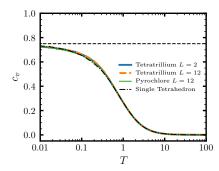


No sign of a phase transition and little to no finite-size effects. A classical spin liquid with fast-decaying correlations.

Classical Monte Carlo



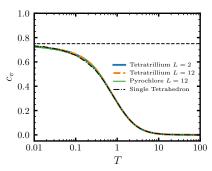
Classical Monte Carlo



Key points

- No sign of a phase transition
- $c_v(T \to 0) \to 0.75$ as for the pyrochlore lattice

Classical Monte Carlo



Key points

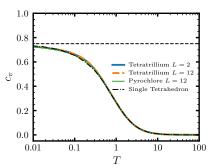
- No sign of a phase transition
- $c_v(T \to 0) \to 0.75$ as for the pyrochlore lattice

Classical Summary

Trillium Lattice

- Large-N: subextensive SL
- Heisenberg: ordered
- Ising: SL

Classical Monte Carlo



Key points

- No sign of a phase transition
- $c_v(T \to 0) \to 0.75$ as for the pyrochlore lattice

Classical Summary

Trillium Lattice

- Large-N: subextensive SL
- Heisenberg: ordered
- Ising: SL

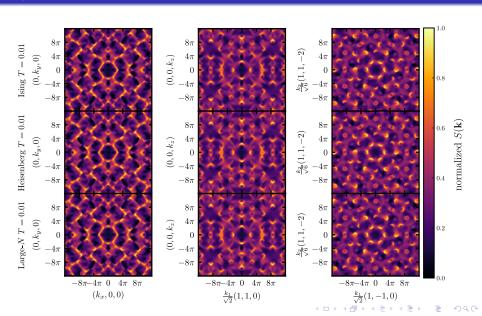
Tetratrillium Lattice

- Large-N: fragile SL with exponentially-decaying correlations
- Heisenberg: SL
- Ising: SL

Effect of decorating a lattice while keeping the number of constraints constant.

Spin structure factor

Spin structure factor



Quantum Results

Quantum Heisenberg Model

Pseudo-Majorana FRG

$$S_i^x = -i\eta_i^y\eta_i^z, \ S_i^y = -i\eta_i^z\eta_i^x, \ S_i^z = -i\eta_i^x\eta_i^y$$

with
$$\{\eta_i^{\mu},\eta_j^{\nu}\}=\delta_{i,j}\delta_{\mu,\nu}$$

- No unphysical states
- T can be used as a cutoff

N Niggemann, et al. Phys. Rev. B 103, 104431 (2021) B Schneider, et al. Phys. Rev. B 109, 195109 (2024)

Pseudo-Majorana FRG

$$S_i^x = -i\eta_i^y\eta_i^z, \ S_i^y = -i\eta_i^z\eta_i^x, \ S_i^z = -i\eta_i^x\eta_i^y$$

with
$$\{\eta_i^\mu,\eta_j^\nu\}=\delta_{i,j}\delta_{\mu,\nu}$$

- No unphysical states
- T can be used as a cutoff

N Niggemann, et al. Phys. Rev. B 103, 104431 (2021) B Schneider, et al. Phys. Rev. B 109, 195109 (2024)

Advantages

- Exact at large temperatures
- Can handle complicated 3D lattices
- Access to correlations at low temperatures
- Detect phase transitions through finite-size scaling
- Can handle Vesta files

Quantum Heisenberg Model

Pseudo-Majorana FRG

$$S_i^{\mathsf{x}} = -i\eta_i^{\mathsf{y}}\eta_i^{\mathsf{z}}, \ S_i^{\mathsf{y}} = -i\eta_i^{\mathsf{z}}\eta_i^{\mathsf{x}}, \ S_i^{\mathsf{z}} = -i\eta_i^{\mathsf{x}}\eta_i^{\mathsf{y}}$$
 with $\{\eta_i^{\mu}, \eta_i^{\nu}\} = \delta_{i,l}\delta_{\mu,\nu}$

- No unphysical states
- T can be used as a cutoff

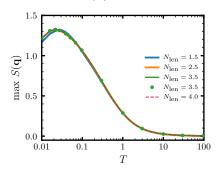
N Niggemann, et al. Phys. Rev. B 103, 104431 (2021) B Schneider, et al. Phys. Rev. B 109, 195109 (2024)

Advantages

- Exact at large temperatures
- Can handle complicated 3D lattices
- Access to correlations at low temperatures
- Detect phase transitions through finite-size scaling

· Can handle Vesta files

Maximum S(q)



Key points

No sign of a phase transition. Fast convergence with system size.

Quantum Heisenberg Model

Pseudo-Majorana FRG

$$S_i^{\mathsf{x}} = -i\eta_i^{\mathsf{y}}\eta_i^{\mathsf{z}}, \ S_i^{\mathsf{y}} = -i\eta_i^{\mathsf{z}}\eta_i^{\mathsf{x}}, \ S_i^{\mathsf{z}} = -i\eta_i^{\mathsf{x}}\eta_i^{\mathsf{y}}$$
 with $\{\eta_i^{\mu}, \eta_i^{\nu}\} = \delta_{i,l}\delta_{\mu,\nu}$

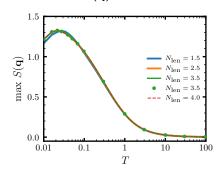
- No unphysical states
- T can be used as a cutoff

N Niggemann, et al. Phys. Rev. B 103, 104431 (2021) B Schneider, et al. Phys. Rev. B 109, 195109 (2024)

Advantages

- Exact at large temperatures
- Can handle complicated 3D lattices
- Access to correlations at low temperatures
- Detect phase transitions through finite-size scaling
- Can handle Vesta files

Maximum S(q)

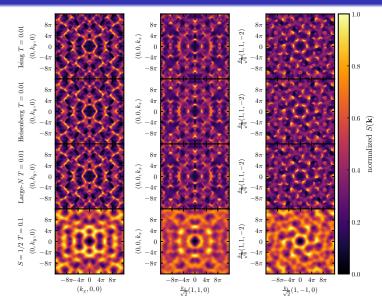


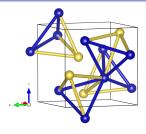
Key points

No sign of a phase transition. Fast convergence with system size.

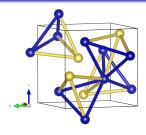
Is it a Quantum Spin Liquid?

Spin structure factor

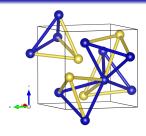




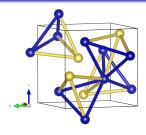
- The Tetratrillium lattice hosts a fragile spin liquid in the classical case, with exponentially decaying correlations.
- In the Ising case there is a small part of the manifold that is not accessible through star flips.



- The Tetratrillium lattice hosts a fragile spin liquid in the classical case, with exponentially decaying correlations.
- In the Ising case there is a small part of the manifold that is not accessible through star flips.
- In the quantum case we see no phase transition, but proper T=0 calculations should be carried out.



- The Tetratrillium lattice hosts a fragile spin liquid in the classical case, with exponentially decaying correlations.
- In the Ising case there is a small part of the manifold that is not accessible through star flips.
- In the quantum case we see no phase transition, but proper T=0 calculations should be carried out.
- The best way is to study the quantum case by adding a small perpendicular component to the Ising case, as for QSI.



- The Tetratrillium lattice hosts a fragile spin liquid in the classical case, with exponentially decaying correlations.
- In the Ising case there is a small part of the manifold that is not accessible through star flips.
- In the quantum case we see no phase transition, but proper T=0 calculations should be carried out.
- The best way is to study the quantum case by adding a small perpendicular component to the Ising case, as for QSI.

Thank you!