
Letter

Fourier analysis of high-spatial-frequency holographic phase gratings

I. BÁNYÁSZ*
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Plane-wave holograms were recorded on Agfa–Gevaert 8E75HD holographic
plates, in a wide range of bias exposures and fringe visibilities. Plates
were processed by developer AAC and bleaching agent R-9. Phase gratings
were studied by phase-contrast microscopy, using a high-power immersion
(100�) objective. Phase-contrast photomicrographs were Fourier analysed. Thus
first-, second- and third-order modulations of the refractive index as functions of
bias exposure and visibility of the recording interference pattern could be
determined. Relative amplitudes of the higher-order modulations to that
of the first-order modulation can serve as a measure of the nonlinearity of the
holographic recording. The results presented here can be used to check the validity
of grating profile calculations based on higher-order coupled-wave theory.

1. Introduction

The aim of this work was to obtain direct information on the nonlinearity
of holographic recording material and processing via Fourier analysis of the
holographic grating.

Holography is a relatively new way of imaging, since its principles were first
published by its inventor Dénes Gábor [1] in 1948. It reconstructs the image of an
object from a (photographically recorded) interferogram of the object wave and a
coherent reference wave. An ideal hologram would reconstruct a perfect replica of
the object wave. The principal limitation of holographic imaging is imposed by the
laws of physical optics; the resolution of the reconstructed image is determined by
the wavelength of the light and the numerical aperture (NA) of the hologram.

Besides other imperfections of holographic recording and reconstruction, such as
aberrations due to misalignement of the reconstructing wave [2], the second most
important, and very often neglected, factor that limits the quality of holographic
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imaging is the recording material itself. After a series of important and valuable
studies on holographic materials published in the early years of laser holography,
it was Lin [3] who proposed and developed a really useful concept and method
for characterization of holographic materials. He used the so-called Lin curves
for the characterization of holographic recording materials; the square root of
the diffraction efficiency of plane-wave gratings, recorded in the material as a
function of the bias exposure and fringe visibility at recording: �(E0,V ). An ideal
recording material would respond linearly to the holographic exposure, so that Lin
curves of an ideal holographic material are sets of lines. However, as Lin pointed out
and demonstrated in his article, all real holographic materials are nonlinear, and
their Lin curves can be considered to be quasilinear only locally. The concept of Lin
curves applies for both amplitude and phase holograms.

The author of this article developed a method for the evaluation of the effects of
material nonlinearity via incorporation of the Lin curves of holographic materials in
the double Fresnel–Kirchhoff integral describing the full process of hologram
recording and reconstruction [4]. He measured and published complete sets of Lin
curves of silver halide materials, even completing the basic Lin function with a third
independent variable: the spatial frequency of the plane-wave holographic grating [5].
So the complete Lin function describing nonlinearities of a holographic material is of
the following form: �(E0,V, �), where E0 and V are the bias exposure and fringe
visibility at recording respectively and � is the spatial frequency of the grating.

In the above-mentioned methods, hologram recording and reconstruction were
treated in the framework of transparency theory; that is, holograms were regarded as
very thin phase, amplitude or mixed transparencies, and reconstruction was the
result of diffraction of the reconstruction waves on those thin transparencies. It was
Kogelnik [6] who proved that diffraction from volume gratings could not be
described by transparency theory. The diffraction efficiency of such gratings has
to be calculated using coupled-wave theory that describes correctly the interaction of
the various diffraction orders inside the grating (hologram). First-order coupled-
wave theory assumes a linear recording material, that is a sinusoidal grating profile,
and the expression derived for the square root of the diffraction efficiency
of a transmission phase hologram is

�ð�Þ ¼ sin
��n d

� cos½arcsin ð��=2Þ�

� �����
����, ð1Þ

where � is the spatial frequency of the grating, �n is the modulation of the refractive
index, d is the hologram thickness and � is the wavelength of the light. So, if one
knows �n(E0,V, �), � can be calculated using equation (1). However, as we
emphasized above, real holographic materials do not respond linearly to the
holographic exposure, and that means in the coupled-wave theoretical treatment
of holography that holographic gratings do not have a pure sinusoidal profile. The
effects of higher-order harmonics in volume holographic gratings have been studied
by various workers [7–9]. It was Solymar and his co-workers [9] who developed
a numerical method for computing diffraction efficiencies of volume holograms
that have higher-order harmonics in their refractive index profile. Based on their
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precise experiments of diffraction efficiency measurements, they deduced that even
fourth-order harmonics should exist in strongly modulated gratings. The aim of the
present work was to measure directly the �n1(E0,V), �n2(E0,V) and �n3(E0,V)
characteristics of the material, that is the dependences of the first-, second- and third-
order harmonics of the refractive index modulation of the holographic gratings on
the bias exposure and the visibility of the recording interference pattern for a fixed
spatial frequency and processing, using phase contrast microscopy and Fourier
analysis.

Phase-contrast microscopy, invented by Zernicke [10], was used in these
experiments. This powerful method for the observation of transparent microobjects
was improved by others. Contributions made by Françon [11–13] were especially
important.

Kostuk and Goodman [14] used phase-contrast microscopy to prove the
existence of a spatial-frequency-dependent diffusion process in the fixation-free
rehalogenating bleach of holograms recorded in Agfa 8E75HD emulsion at low
(up to 100 line pairs per millimetre (lpmm�1)) spatial frequencies.

It was the author of this article who first tried to apply phase-contrast and
interference microscope to a quantitative study of phase gratings. Systematic study of
phase gratings fabricated via ion implantation in glass both with interference- and
phase-contrast microscopies was performed by the author of the present article
and his co-workers [15]. In those experiments the highest spatial frequency of the
implanted gratings was 250 lpmm�1.

Semiphysically developed phase holograms in Agfa 8E75HD emulsion were also
studied by the present author using phase-contrast microscopy [16]. It was proved
that phase-contrast microscopy could be used for the quantitative determination of
refractive index modulation in holographic phase gratings [17].

2. Hologram recording

Detailed description of the recording conditions and the diffraction efficiency
measurements were published earlier [18]. They are summarized briefly here.
Plane-wave holograms were recorded in Agfa–Gevaert 8E75HD plates with a
helium–neon laser operating at 632.8 nm. The spatial frequency of the gratings
was �¼ 1200 lpmm�1. Holograms at seven values of fringe visibility, namely at
V¼ 0.2, 0.4, 0.6, 0.8, 0.9, 0.95 and 1.0 were recorded. Twelve holograms at exposures
ranging from 10 mJ cm�2 to 1.3mJ cm�2 were recorded at each visibility. Holograms
have been developed with AAC developer and bleached in R-9 solvent bleach.

Use of the Agfa–Gevaert 8E75HD recording material, which is no longer being
produced, in these experiments can be justified by the fact that currently available
silver halide emulsions of similar parameters, that is silver halide grain size distri-
bution, sensitisation and emulsion quality, must have similar �n1(E0,V), �n2(E0,V)
and �n3(E0,V) characteristics, too. Specifications of PFG-02 holographic plates,
fabricated by Slawich (Russia), and of FT340T/SP696T plates, fabricated by Ilford,
are very close to those of Agfa–Gevaert 8E75HD. Very thorough and detailed
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treatment of these commercial holographic materials can be found in chapter 3 of the
monograph by Bjelkhagen [19].

3. Microscopic study of the holograms

The microscope used in the measurements was a Nikon Labophot 2 with a phase-
contrast attachment. Each hologram was observed using a phase-contrast micro-
scope objective. The objective was a CF N Plan DL 100X immersion type one with
an NA of 1.25 and a focal length of 1.71mm. The refractive index of the cedar wood
oil was noil¼ 1.515 at the D line of sodium at 23�C. A green interference filter
centred at �¼ 540 nm was used. The measurements yielded only the optical path
variations due to the index-of-refraction grating (assuming a good match of the
index of refraction between the emulsion and the oil).

Each phase-contrast micrograph was recorded photographically, using the
Microflex photomicrographic attachment of the Labophot 2 microscope and
Kodak HR12 (ISO 100) films. It was possible to set automatically the exposure
times to maintain bias exposure at the middle of the quasilinear range of the D–log E
curve of the photographic emulsion. The photomicrographs were scanned in a
special high-resolution scanner and stored in files.

According to the theory of phase-contrast microscopy, the phase difference in a
phase-contrast micrograph is

� ¼
�

2
, ð2Þ

where � is the phase difference in radians and � is the measured contrast of the
phase object [13]. However, especially when fine objects (gratings of high spatial
frequency in this case) are studied, one has to take into account the modulation
transfer function (MTF) of the microscope objective, too. According to the
theory developed by Françon [12, 13], contrast of a phase-contrast image is
influenced by the MTF of the microscope objective in the same way as that of a
‘normal’ amplitude object. MTF of a diffraction-limited lens is described by the
following formula [20]:

T ¼
2 arccos Kð Þ � K 1� K2

� �1=2h i
�

, ð3Þ

where T is the MTF value and K is the normalized spatial frequency given by

K ¼ ��f#, ð4Þ

where � is the spatial frequency in line pairs per millimetre, � is the wavelength and
f # is the ratio of the focal length to the diameter of the lens.

With �¼ 540 nm and S¼ 1200 lpmm�1, in the case of the 100� immersion
objective we obtain K100¼ 0.222 and an MTF value T1

100 ¼ 0:720: The spatial
frequency of the second harmonics is S2¼ 2400 lpmm�1, which corresponds to a
normalized spatial frequency K2¼ 0.444 and T 2

100 ¼ 0:454. In the case of the third
harmonics, K3¼ 0.666 and T 3

100 ¼ 0:220.
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So the measured values of � should be divided by these values of Ti
100ði ¼ 1, 2, 3Þ

respectively to obtain the correct phase differences.
Further correction was made for the MTF of the photographic material. Its value

for the film and processing used was Mf¼ 0.417. The formula for the corrected value
of the phase difference is

’corr ¼
�

2TMf
: ð5Þ

Hence the modulation of the optical path becomes

�d ¼
’corr�

2�
: ð6Þ

Assuming uniform modulation throughout the depth of the holographic emulsion,
setting its thickness to d¼ 5 mm [17], we can determine the refractive index
modulation �n by dividing the �d values by d.

To determine �n1(E0,V), �n2(E0,V) and �n3(E0,V), that is the first-, second-
and third-order refractive index modulations as functions of the bias exposure and
fringe visibility, each phase-contrast photomicrograph was Fourier transformed,
and then the corresponding spectral amplitudes were determined. The refractive
index modulations were obtained using equations (2)–(6).

4. Results and discussion

One of the 84 phase contrast images is shown in figure 1, together with its profile and
spectrum. The real size of the photomicrographs was 150 pixels by 3500 pixels. By
simply regarding the profile of the grating, one can see a rather regular grating with
some fluctuations. The non-sinusoidal shape of the grating is clearly demonstrated
by its spectrum. Even the peak belonging to the third harmonic of the grating can be
distinguished well (note the logarithmic scale of the ordinate). Bias exposure for this
hologram was only E0¼ 92 mJ cm�2. At higher exposures (a few hundred microjoules
per square centimetre), nonlinearity of the recording increases, and a peak corre-
sponding to the fourth harmonic appears in the spectrum. This fact corroborates the
results of Slinger et al. [9] who, using their higher-order coupled-wave theory,
predicted the existence of a small fourth-order harmonic in the profile of the
holographic phase gratings studied by them.

The �n1(E0)IV¼ constant curves belonging to the combination of AAC with R-9
are shown in figure 2. The absolute maximum is 0.027. �n1 increases monotonically
up to an exposure of about 70 mJ cm�2 at all the visibilities. There are no deep
minima, except for some oscillations in the V¼ 0.8 curve. Note that the V¼ 1.0, 0.8
and 0.6 curves almost coincide beyond E0¼ 600 mJ cm�2. This fact indicates a high
degree of nonlinearity.

The highest value of the second-order refractive index modulation is attained
around E0¼ 200 mJ cm�2; it is 0.0044, about 16% of the maximum of �n1 (figure 3).
Oscillations in the V¼ 0.8 curve can be seen in this figure, too.
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The highest value of the third-order refractive index modulation is attained
around 300 mJ cm�2 at V¼ 0.8; it is 0.0012, about 4.4% of the maximum of �n1
(figure 4). The curves corresponding to V¼ 0.2, 0.6 and 1.0 are similar; however,
at V¼ 0.8 there are strong oscillations. The same experiments performed with other
combinations of developers and bleaches gave similar results; so these oscillations
cannot be due to any error in the measurements.

To the knowledge of the present author, this work was the first attempt to
infer the complete �ni(E0,V) (i¼ 1, 2, 3) characteristics of phase gratings from
phase-contrast microphotographs.

Figure 1. Phase-contrast photomicrograph of (a) a grating, (b) its profile and (c) its
spectrum (a.u., arbitrary units) (AAC; R-9; V¼ 1.0; E0¼ 92mJ cm�2).
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Figure 2. First-order refractive index modulation as a function of bias exposure, at fringe
visibility V¼ 0.2, 0.6, 0.8 and 1.0: symbols, data inferred from microphotographs; curves,
B-spline fits.

Figure 3. Second-order refractive index modulation as a function of bias exposure, at fringe
visibility V¼ 0.2, 0.6, 0.8 and 1.0: symbols, data inferred from microphotographs; curves,
B-spline fits.
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The characteristics obtained in this work can make it possible to calculate the
reconstructed image of holographically recorded complex diffractive optical elements
using the extension of coupled-wave theory to non-sinusoidal phase gratings, as it
was envisaged in the article by Slinger et al. [9].

Similar characteristics for other combinations of developers and bleaches used
with the same and other recording materials will be available soon; so it will be
possible to make comparisons between various processing schemes and recording
materials, regarding the fidelity of holographic recording.
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