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An exact method for the evaluation of the images reconstructed from holograms recorded in nonlinear media is
reported for what is to the author's knowledge the first time. The method is based on the use of the nonlinear
holographic characteristics of the recording material without any limitation on the range of bias exposures
and visibilities. These characteristics have been obtained by fitting analytical functions to experimental data
describing practical recording materials. Numerical calculations have been carried out for high-numerical-
aperture thin amplitude holograms of a five-element Ronchi ruling. The contrast of the reconstructed image
as a function of the bias exposure and beam ratio is computed.

Although many valuable papers have been published
on the theory of holography and especially on the
effects of nonlinear recording since the late 1960’s,!-12
the results of the majority of them are not applica-
ble to the solution of the real problems of practical
holography. The authors of these papers applied
binomial and polynomial expansions of various forms
to the nonlinear transmittance—exposure function of
the recording material such as an expansion on a set
of Chebyshev polynomials’ or expansion into Fourier
series.’” Owing to the approximations applied, none
of the above studies could give accurate methods with
universal applicability.

The aim of this Letter is to develop an exact
method for the evaluation of the direct effects of
film nonlinearity on the reconstructed holographic
image. The philosophy of the following calculations
is similar to those presented in two earlier papers by
the author,'®!

The amplitude transmission of the photographic
material in the case of amplitude (absorption) holo-
grams is given by the following relationship:

t(¢) = t{E(¢)], (1)

where ¢ is the spatial coordinate along the one-
dimensional hologram and E is the exposure. If
we want to obtain exact results that are valid for
strongly modulated object waves (i.e., in a broad
range of exposures) we cannot rely on the expan-
sion of the #(E) function since it does not apply to
high exposures. The experimental —FE curves of the
standard holographic recording materials are readily
available in holography textbooks.~'?> These curves
can easily be incorporated into numerical calculations
either in the form of a look-up table or by fitting
an empirical formula to them. However, the numer-
ical quadrature of the diffraction integral involves
a high-density sampling of the complex amplitude
transmittance of the hologram. The local spatial
frequency of the space-dependent total exposure and
hence that of the transmission in off-axis holography
is mainly determined by the carrier spatial frequency.
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Its maximum value in the hologram plane is typically
in the range of 1000—-3000 lines/mm. According to
the sampling theorem, a sampling frequency of at
least double this maximum frequency is required for
the correct representation of the {—E function. In
the case of the holograms studied here this means a
minimum of approximately 160,000 sampling points
per hologram. Consequently a large storage capacity
and computing time are required, even with powerful
computers. Calculations based on this direct method
are in progress.

Instead of applying the direct approach, the author
has developed the following method. Let us denote
the first-order diffraction efficiency of a holographic
grating by 7 and the square root of it by o. For
elementary holograms (produced by plane waves) the
first-order diffraction efficiency as a function of the
bias exposure and the fringe visibility can be mea-
sured easily. The amplitude diffraction efficiency
versus the bias exposure and fringe visibility func-
tion, o(E,,V), gives a complete description of the
nonlinearity of the holographic recording material
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Fig. 1. (V) function of Kodak 649f, Symbols: exper-
imental data from Ref. 15. Solid curves: values fitted
by Eq. (3) with the parameters shown in Table 1. The
parameter E; is in units of ud/cm?,

© 1993 Optical Society of America



Table 1. Parameters of the o(E,,V) Function
of Kodak 649f

Indices (xx) Cfex Vi ClWay
01 0.56 1 0.9
11 41.7 35 61
12 11 18.3 8.5
13 0 0.36 1.22
21 104 81.4 77
22 62.5 16 11.4
23 0 0.47 0.58
31 24 13 15.8
32 1.5 25 22.5
33 0 0 0

(see, e.g., Ref. 9, Chap. 10, paragraphs 6—8), hence it
can be used for the evaluation of the nonlinear effects
instead of the ¢#(¥) curve.

Based on previous experience in numerical mod-
eling, the author succeeded in fitting the following
empirical function to a representative o(E,, V) curve
of a standard silver halide recording material, Kodak
649f (Ref. 15):

V — Vo(Ey)?
0B, V) = )L ~ exp(—mexp| -[——ﬁ()”—] ,

(2)
where E, is the bias exposure, V is the visibility of

the interference fringes, and AE,), V,(E,), and w(E,)
are parameter functions of the following form:
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where Par stands for f, V,, and w, and ci,, represents
the three sets of constants (i = £, V,W). This o(E,, V)
function, fitted to the experimental characteristics
of the Kodak 649f photomaterial,'® is presented in
Fig. 1. The parameters of the actual function are
listed in Table 1. This function describes the non-
linear behavior of all the silver halide holographic
recording materials, and the evaluation of its param-
eters for further particular materials is in progress.
The use of an empirical analytical function fitted to
experimental data offers two advantages over that
of look-up tables made from the same data. First,
it is easy to handle and much faster in a computer
program. Second, one can easily create hypothetical
characteristics by modifying one or more parameters
of the analytical function and establish relationships
between these parameters and the quality of the
holographic image.
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Let us denote the complex amplitude transmit-
tance of the one-dimensional amplitude object by s(u),
where u is the local object coordinate. In the case of
a perpendicular plane-wave illumination the complex
amplitude distribution of the object wave in the holo-
gram line can be described by the Fresnel—Kirchhoff
integral®

S(¢) = f S e @

1 r

where ri(u, £) is the separation of the actual source
and observation points and 6(u, ¢) is the inclination
angle.

The complex amplitude of an off-axis plane refer-
ence wave at the hologram line is

P(¢) = Pexp(—iké sin a,), (5)

where P is a constant and e, is the angle of incidence
of the reference wave. If the intensity distribution
of the object wave in the hologram plane is a slowly
varying function compared with the carrier fringe
spacing, a sufficiently small surrounding of each holo-
gram point can be regarded as a plane-wave hologram
recorded at a well-defined bias exposure and visibil-
ity. The local bias exposure at point ¢ is

Eo(¢) = [S(&)I* + [P(&)I%. (6)
The local fringe visibility at point ¢ is
|P(£)I?
IS(&)[?
Vi¢) = QITP(‘E—]IZ- (7
IS(&)I?

We can evaluate the actual o[Ey(¢), V(¢£)] function
by substituting Eq(¢) and V(¢) into Egs. (2) and (3).
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Fig. 2. Calculated intensity distributions of images re-
constructed from nonlinear holograms. The beam ratios
R are indicated above the corresponding columns, while
the bias exposures Ej (uJ/cm?) are to the right of the
corresponding rows.
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Fig. 3. Calculated contrast versus bias exposure funec-
tion of the holographic image at three beam ratios. Solid
curves: spline functions fitted to the calculated points.

The complex amplitude of the diffraction-limited first-
order real image at the hologram line is

G(£) = M(£P(£)S*(¢), (8)

where the asterisk denotes complex conjugation and
for perfect reconstruction the complex amplitude of
the reconstruction wave is the complex conjugate of
the reference wave:

M(¢) = P(&)™. 9)

In case the different diffraction orders do not
overlap in the image position, the complex am-
plitude of the reconstructed nonlinear first-order
real image is readily obtained by multiplying the
diffraction-limited complex amplitude [Eq. (8)] by the
o[Eo(£),V(¢£)] function and performing the second
Fresnel—Kirchhoff integration:

£a
2x) — ] oEo(£), V(E)IM(£)P(£)S*(&)

£1

cos p
s

X

exp(ikry)dé (10)

where x is the image coordinate, r, is the separation
of the source and observation points (in the hologram
and image planes), and p is the inclination angle.
Nonlinear reconstructed images of a five-element
Ronchi ruling of a grating constant of 2 um have
been calculated. The characteristics of the recording
material were those presented in Table 1 and Fig. 1.
The parameters of the recording geometry were as
follows: the hologram width was 84 mm, the object
was centered at the hologram normal, the separa-
tion of the object and hologram lines was 32 mm,
and the angle of incidence of the reference wave
was 66 deg. Hence the numerical aperture of the
hologram was 0.8. Both the recording and recon-
struction wavelengths were 633 nm. A set of the

intensity distributions of the reconstructed images
is shown in Fig. 2, where E; is the maximum bias
exposure and R is the minimum reference-to-object
beam ratio through the hologram.

In order to get a more quantitative picture of the
nonlinear effects, the contrast of the reconstructed
image (defined as the integral of the intensity distri-
bution on the transparent lines divided by that on the
opaque lines, including the two at both ends) has been
evaluated for a range of bias exposures and beam
ratios. The results are presented in Fig. 3. As one
can expect, the higher the beam ratio the broader
the range of the bias exposures that result in im-
ages of acceptable contrast. Although the maximum
achievable contrasts do not differ significantly for the
three values of the beam ratio, a glance at the first
two images of the middle row of Fig. 2 reveals that,
in spite of having the same value of contrast, they
are far from being of the same quality. This implies
that, for establishing more accurate relationships,
other characteristics of the image, e.g., the fluctuation
of the peak intensities, are to be calculated, too.

It has been proved that this new method, based
on the use of the experimental o(E,, V) function of
the recording material, is applicable in predicting
the quality of the holographic image and establishing
practical rules for optimizing the holographic record-
ing of different sets of objects.
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