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Response of a homeotropic nematic liquid crystal to rectilinear oscillatory shear

T. Börzsönyi and Á. Buka
Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hu

A. P. Krekhov* and L. Kramer
Institute of Physics, University of Bayreuth, D-95440 Bayreuth, Germany

~Received 19 March 1998!

The response of a homeotropically aligned nematic liquid crystal layer to oscillatory rectilinear shear~Cou-
ette flow! was investigated for frequenciesf between 0.01 and 200 Hz and layer thicknessd between 10 and
130mm. Below the onset of instability the cell was placed between crossed polars and light transmission was
studied using a parallel light beam. The experimental results for the transmitted light intensity agree quantita-
tively with numerical solutions of the nematodynamic equations for different cell thicknesses, oscillation
frequencies, and amplitudes. For frequencies between 25 and 150 Hz the critical oscillation amplitude for the
onset of a spatial pattern, observed in polarized white light, could be reached. The pattern consisted of
stationary rolls perpendicular to the direction of the oscillation. The experimentally obtained frequency depen-
dence of the critical shear amplitude for the roll instability for different cell thicknesses is compared with an
existing theory and the results of numerical calculations.@S1063-651X~98!09411-2#

PACS number~s!: 61.30.Cz, 61.30.Gd, 64.70.Md, 47.20.2k
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I. INTRODUCTION

Nematic liquid crystals~NLCs! exhibit interesting flow
phenomena due to the coupling between the local molec

orientation ~director n̂! and the velocity fieldv. The flow
properties of NLCs are characterized by Leslie viscosity
efficientsa1 ,...,a6 , two of which a2(,0) anda3 are im-
portant in describing the coupling between flow and direc
orientation@1–4#. In the case of steady, plane, parallel she
flow, e.g., along thex axis with a velocity fieldvx(z) (vy

5vz50) and in the absence of other torques, the direc
will tend to align in the flow plane (x-z plane! at a fixed
angleu f l56arctan(a3 /a2)

1/2 with thex axis if a3,0 ~the6
sign pertains to positive/negative shear rate]vx /]z). Nega-
tive a3 is found in common nematics. In materials witha3

.0, which occurs in particular near a nematic-smectic tr
sition, instead of flow alignment there is a more complica
motion @5–7#. In the usual situation of a nematic layer san
wiched between confining plates atz56d/2 the director is
anchored at the boundaries and the hydrodynamic torq
are countered by elastic torques. Then orientational insta
ties can result~see, e.g.,@4,8,9#!.

Of particular interest have been flow phenomena in ne
atic layers where a steady rectilinear Couette flow is indu
by moving one of the confining plates parallel to its plane
the x direction. The drawback of this situation is that a
~approximately! steady state cannot be maintained expe
mentally for a long time. Here we are concerned withoscil-
latory rectilinear Couette flow where the velocity fie
vx(z,t) oscillates with a time averagêvx&50.

There are two quite different cases depending on whe
the prealignment of the director is perpendicular to the fl
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plane, i.e., in they direction, or within the flow plane. The
first case has been clarified in classical experiments by P
anski and Guyon@10,11# and theoretical work of Dubois
Violette and Manneville~for an overview see@9#!. For NLCs
with a3,0 one finds a transition to rolls oriented along t
flow direction, which transforms into a homogeneous dist
tion when a stabilizing magnetic field is applied@11#.

In the second case when the director is prealigned wit
the flow plane the dynamical behavior under oscillatory flo
can be quite complex and has not been clarified complet

First, one must consider the response of the system be
any instability occurs~basic state! where the director gener
ally oscillates around its equilibrium position induced by t
boundaries. Beyond the small-amplitude linear regime o
finds a response that is nonlinear in the shear strain. U
this shear amplitude the temporal behavior of the director
been calculated for a specific frequency range using ap
priate approximations@12,13#.

In this frequency range the viscous penetration de
Ah/rv, v52p f , is much larger than the cell thicknessd,
where h is an appropriate effective shear viscosity andr
denotes the NLC mass density~alternatively the inequality
can be written in the formtvv!1, wheretv5rd2/h is the
viscous damping time!. Then the flow can be approximate
by the simple linear Couette flow field, which amounts
neglecting the time derivative~inertia term! in the Navier-
Stokes equation. This assumption applies also to the pre
work.

Next, one may consider Fre´edericksz-type instabilities
where the time-averaged director reorients homogeneo
in the plane of the layer. For the simple linear Couette fl
field no homogeneous instabilities are predicted to occur~in
contrast to the case of Poiseuille flow! @14,15#, even if the
possibility of transitions out of the flow plane is include
@15,16#.

In fact, above a critical flow amplitude, transitions to sp
tially periodic roll states with period of the order of the ce

s,
7419 © 1998 The American Physical Society



lar
-

l t
ve
b
ut
ar

a
-
n-
ed
w
oo

d

e
ub
n

,
th
t

in
e
er
Th
ic
nl
h
g

a

I
o

s
m
n
of
/c

ll

b

ial

um

f a

ine
of

ch
up-

l-
e
.
rti-
ion

an
ne

n-
allel

her
ght
ice

in-

ctor
nu-
ce.
fter

acy
re

ith

ne
of
r to

tem,
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thickness have been observed in homeotropic~director per-
pendicular to the confining plates! @17–20# and planar align-
ment ~director along the flow direction! @21,22#. In the ex-
periments of Scudieri at ultrasonic frequencies~15 kHz! a
transition to stationary rolls with the roll axis perpendicu
to the flow was observed@17#. Subsequently, at low frequen
cies stationary rolls with the axis perpendicular or paralle
the flow, depending on the applied frequency, were obser
@18#. A perpendicular stationary roll pattern was also o
served by Guazzelli@19# at 500 Hz. Some other results abo
optically detected transitions at low frequencies without p
ticular information on the evolving pattern~wave number
and orientation! have also been published@20#. An approxi-
mate theoretical treatment for homeotropic alignment w
presented by Kozhevnikov@23# and compared with the re
sults of @20#. A similar treatment was done for planar alig
ment@21,22#. The investigation by Guazzelli was embedd
in a study of instabilities resulting from elliptic shear flo
@24–26#, where a mechanism is operative that is underst
quite well @27,28#.

A transition to a state with broad, oblique traveling ban
was observed by Clarket al. @12# for planar~at a3.0) and
homeotropic alignment~for both signs ofa3). We are not
aware of an explanation for this phenomenon.

In this paper we present a systematic, quantitative, exp
mental study of homeotropically oriented nematic layers s
ject to oscillatory rectilinear Couette flow covering a reaso
able range of frequencies (0.01 Hz, f ,200 Hz) and cell
thicknesses (10mm,d,130 mm). An investigation of the
situation in the basic state, before any instabilities arise
included since a thorough understanding and control of
situation are essential before proceeding to the onset of
roll instability.

Above the critical amplitude, which decreases with
creasing frequency, we find stationary rolls oriented perp
dicular to the flow plane with period of the order of the lay
thickness. The bifurcations appear to be reversible.
threshold is compared with results obtained from a numer
evaluation of the hydrodynamic equations and with the o
available analytic theory@23#. Whereas the agreement wit
the numerical results is good except in parameter ran
where the critical oscillation amplitude becomes large~in
physical units!, there is substantial deviation from the an
lytic theory.

In Sec. II the experimental setup is described. In Sec.
the experimental results are presented and discussed. S
conclusions and an outlook are given in Sec. IV.

II. EXPERIMENTAL SETUP

A nematic liquid crystal layer of thicknessd is confined
between two parallel horizontal glass plates~see Fig. 1!
without a spacer. The lower plate is rigidly fixed to a bra
block, which is adjustable in order to control the parallelis
of the glass plates. This is done by observing the interfere
fringes in coherent visible light. By changing the tilt angle
the brass block one is able to have less than 2 fringes
which means that the cell thickness varies about 0.5mm/cm
or even less. The temperature of the brass block is contro
by a thermostat with an accuracy of 0.1 °C.

The upper plate is attached to a steel rod that is guided
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two high-precision linear ball bearings. The maximum rad
play of the ball bearings is 6mm unloaded, but in our setup
the ball bearings are preloaded, which gives us a maxim
radial play below 3mm.

One end of the metal rod is bound to the membrane o
loudspeaker~membrane diameter 24 cm! that is driven by
the amplified signal of a signal generator. When using a s
excitation the displacement of the upper plate is ideally
the formx(t)5Ax sinvt, wherev52p f . This is the case to
a very good approximation forf .20 Hz. For f ,20 Hz
higher harmonics become noticeable, although with mu
smaller amplitudes. The angle between the plane of the
per glass plate and the metal rod is below 108. This tilt
would cause add/d50.003 during one period of the osci
lation if Ax5d. This is negligible compared to the sid
movement caused by the radial play of the ball bearings

The cell thickness could be varied by changing the ve
cal position of the brass block. The extrapolated posit
corresponding to zero thickness could be determined with
accuracy'62 mm. Once the zero point was determined o
could vary the cell thickness with an accuracy of60.2mm
with respect to it.

Below the onset of instability the transmitted light inte
sity was measured by a semiconductor detector using par
light ~source: diode laser, wavelengthL5670 nm) between
crossed polarizers. The spatial patterns occurring at hig
amplitude were observed in transmitted polarized white li
~without analyzer! and detected by a charge coupled dev
camera. The images were recorded onto video tape.

The motion of the upper plate was monitored by two
dependent methods.

~i! The displacement in thex and one more (y or z)
direction was detected by a one-dimensional semicondu
position-sensitive detector. This detector provides conti
ous position data of a light spot traveling over its surfa
Using a laser diode as the illumination source, we have a
amplification a signal that is roughly 0.2 V/mm. It allows us
to measure the position of the upper plate with an accur
of 60.2mm. This can be improved by using a focused, mo
intensive light spot and more carefully depressed noise.

~ii ! The acceleration of the upper plate was measured w
piezoelectric accelerometers in all three directions (x, y, and
z). A piezoelectric accelerometer is mainly sensitive in o
specific direction with a maximum transverse sensitivity
2–3%. Using three accelerometers, directed perpendicula
each other and parallel to the axes of our coordinate sys

FIG. 1. Experimental setup.
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one gets the signalsax , ay , andaz from which the ratio of
the transverse acceleration could be determined. These
tios, which we call ellipticities (ey5ay /ax and ez5az /ax),
are easier to measure at higher frequencies since the a
eration is proportional tof 2.

Signals for a typical motion are shown in Fig. 2. Th
different curves correspond, respectively, to the displa
ment x(t) of the upper plate measured with the on
dimensional position detector and the acceleration va
ax(t), 10ay(t), and 10az(t). By calculating the ratios of the
maxima of the accelerations in the different directions o
obtains the ellipticitiesey50.06 andez50.03 for this case.
Alternatively, if one first calculates the Fourier spectrum
the acceleration signals and determines the ellipticity fr
the ratios of only the first harmonics one gets for the sa
measurementsey15ay1 /ax50.05 and ez15az1 /ax50.02.
The same ratios for the side movement were detected
the position-sensitive detectors at smaller frequencies
larger amplitudes.

In all of our experimentsey1 andez1 were less than 0.07
and in many cases they were in the range of the error of
piezoaccelerometers~maximum transverse sensitivity!. The
origin of the side movement is on the one hand the ra
play of the ball bearings and on the other hand the mech
cal resonances of the setup at its eigenfrequencies. Du
the measurements we avoided mechanical resonance
choosing appropriate frequencies of the oscillation becau
possible oscillation in thez direction would cause a Poi
seuille component in the flow making the situation mu
more complicated.

The substance K15@or 4-n-pentyl-48-cyanobiphenyl
~5CB!# was used for investigation. It has a nematic pha
between 22.4 °C and 34.5 °C. The Leslie coefficienta3 of
5CB is negative in the whole temperature range, wh
means that in steady flow at large flow gradients one
flow alignment. In the experiments the temperature was k
atT525 °C. By using float glass plates a homeotropic init
alignment was achieved, which was checked between ro
ing crossed polars.

FIG. 2. Displacement of the upper platex(t) ~h!, measured by
the position-sensitive photodetector and the acceleration of the
per plate in all three directionsax ~s! @ay ~n! and az ~3! are
multiplied by a factor of 10# measured with the piezoacceleromete
as a function of time. The frequencyf 5186 Hz, the cell thickness
d550 mm, and the oscillation amplitudeAx51.4 mm.
ra-
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III. RESULTS AND DISCUSSION

A. Basic state

In order to gain confidence in the results for the instabil
~to be discussed subsequently! we first set out to reach quan
titative agreement between the experiments for the b
state and the results of numerical solution of the standard
of nematodynamic equations@3,16#. From an analysis of the
underlying hydrodynamic problem one expects the direc
to oscillate within the flow plane~see also the Appendix!.
Then the experimental signal, i.e., the transmitted light int
sity I Tr between crossed polars, should be related to the
culated director angleu0 ~measured from thex axis!:

I Tr5I 0 sin22a sin2
F

2
, F5

2p

L E
2d/2

d/2

Dn dz, ~1!

whereL is the wavelength of the light. The anglea between
the x direction and the polarization of the incident light
kept at 45°. The birefringence is given by

Dn5n'S 12
ni

22n'
2

ni
2 cos2u0D 21/2

2n' , ~2!

where ni and n' are the refractive indices for light with
polarization parallel and perpendicular to the director,
spectively. One can see that the maximum transmitted in
sity is I max5I 0 .

The experiments were carried out for different cell thic
nesses in the range 10mm,d,70mm. We measure the dis
placement of the upper plate in dimensionless unitsx(t)/d,
while the transmitted light intensityI Tr measured between
crossed polars is normalized by its maximum valueI max ~see
above!.

In Figs. 3~a!–3~d! the experimental data for the norma
ized transmitted light intensity versus time are plotted fof
542.5 Hz, d552 mm, and four values ofAx /d. Also
shown is the normalized upper-plate displacement, whic
in this range of frequency accurately described byx(t)/d
5(Ax /d)sinvt. The continuous lines are theoretical curv
evaluated from the nematodynamic equations using mate
parameters for 5CB~see the Appendix!. One can see that a
this frequency the maximum of the intensity of the transm
ted light coincides with the maximum of the upper plate
displacement in time~no phase shift!. This is typical for the
range where the elastic terms are irrelevant in the dire
equation, i.e., whene51/(tdv)!1 ~here td5g1d2/K11 is
the director relaxation time ande'1023).

Comparing Figs. 3~a! and 3~b! one sees that a rather sma
increase of the amplitude can induce a remarkable incre
in the intensity of the optical signal, in agreement with t
results of the calculations. Above a certain amplitude@see
Fig. 3~c!# the maximum path differenceF @see Eq.~1!# ex-
ceedsp. Then the maximum of the optical signal splits up
time into two peaks and at significantly larger amplitud
shows oscillatory behavior@Fig. 3~d!#. We note good quan-
titative agreement between experiment and theory with
any fitting parameters in numerical simulations.

In Fig. 4 the normalized transmitted light intensity d
tected at the time of maximum displacement of the up
plate is plotted as a function of the reduced amplitudeAx /d

p-
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FIG. 3. Normalized displacement of the upper platex(t)/d ~crosses! and the normalized transmitted light intensityI Tr(t)/I max ~dia-
monds! between crossed polars plotted as a function of time for the amplitudes~a! Ax /d50.11, ~b! Ax /d50.18, ~c! Ax /d50.22, and~d!
Ax /d50.63. The frequency of oscillatory flowf 542.5 Hz and the cell thicknessd552 mm. The continuous lines are calculated from t
standard set of nematodynamic equations@3,16# using 5CB material parameters.
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for the same parameters as in Fig. 3 and compared with
results of nematodynamic equations simulations. As
pected, the optical signal generally oscillates between 0
1. However, when approaching the onset of the pattern
mation~in this caseAxc /d'1) the hydrodynamic instability
develops at some locations in the cell, which can be obser
by the decrease of the maxima and increase of the minim
the optical signal.

In Fig. 5 the behavior at low frequency is demonstrate
The normalized transmitted light intensity and upper-pla
displacement versus time are shown ford544 mm and f
50.1 Hz, wheree50.6 and the amplitude was fairly smal
Ax /d50.2. At this frequency, as mentioned before, the d
placement curvex(t) is quite anharmonic. The positions o
the extrema ofx(t) and the maximum ofI Tr(t) clearly dis-
play a phase shift between the upper-plate displacement
the optical response. This results from the influence of
elastic terms in the director dynamic equation. The exp
mental results are compared with full numerical solutions
nematodynamic equations~including elastic terms!, repre-
sented by continuous lines in the figure.

In Fig. 6 measurements of the phase shift,~the phase shift
equals 0 if the maxima of the transmitted light intensity c
incide with the extrema of the displacement in time and61
if its maxima coincide with the zero points of the displac
ment! versus frequency are presented for three cell thi
nesses. The amplitudeAx was around 7mm in the high-
frequency regime, while at small frequencies (f ,0.1 Hz)
larger amplitudes were needed up toAx'20 mm in order to
obtain the same optical intensity. One clearly sees the t
sition from the elasticity dominated regime occurring at ve
low frequency, where the phase shift is21, to the high-
frequency regime with vanishing phase shift.

The maximum of the transmitted intensity, which fo
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small amplitudes is obtained at the moment of maxim
distortion of the director (F,p), was measured as a fun
tion of the frequency for various values ofAx /d. In Fig. 7
the normalized transmitted intensity is shown forAx /d
50.14. The continuous curve corresponds again to di
numerical simulations of the nematodynamic equations.

We note that the good agreement between experime
data and numerical result~as presented above! justifies the
prediction thatny50 ~no out-of-plane motion! @15,16#. This
agreement could be achieved ford<70 mm up to an ampli-

FIG. 4. Normalized transmitted intensityI (Ax)Tr /I max at the
moment of maximum displacement of the upper plate plotted a
function of the oscillation amplitudeAx /d ~crosses!. Otherwise the
parameters are the same as in Fig. 3. The continuous line is c
lated from nematodynamic equations using 5CB material par
eters.
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tudeAx /d<1 or Ax<Axc ~whichever occurred first!. Other-
wise discrepancies developed.

B. Onset of the roll structure

When increasingAx at the fixed frequency, above a crit
cal value (Axc) one observes the onset of a stationary p
tern. The pattern consists of rolls with their axes norma
the oscillation direction. It is observable in white polariz
light ~see Fig. 8 as an example!.

The threshold amplitude (Axc) has been determined pre
cisely at several frequencies by the following method. T
driving voltage of the loudspeaker was increased slo
~controlled by computer! until the pattern had developed
then it was decreased to the starting value. The oscilla
amplitude of the upper plate was detected and the co
sponding images were recorded and analyzed. The con
was defined to be the root mean square of the variation
the intensity in a chosen horizontal line. The contrast a
function of the oscillation amplitude is plotted in Fig. 9. Th
two symbols correspond to increasing and decreasing am
tudes, respectively. The curves appear continuous and
hysteresis was observed. Consequently, linear stab

FIG. 5. Normalized displacement of the upper platex(t)/d
~crosses! and the normalized transmitted light intensityI Tr(t)/I max

~diamonds! between crossed polars plotted as a function of time
the amplitudesAx /d50.2. The flow frequencyf 50.1 Hz and the
cell thicknessd540 mm. The continuous lines are calculated usi
5CB material parameters.

FIG. 6. Phase shift between the upper plate oscillation and
transmitted intensity as a function of frequency. The data were m
sured for cell thicknessesd530, 40, and 50mm. The continuous
lines correspond to the simulations of nematodynamic equati
The steps observed atf 51, 2, and 5 Hz in the experimental da
originate from the data processing.
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analysis should be applicable for the determination of
threshold.

We mention that at some frequencies in the range 45
, f ,80 Hz we observed tilted rolls as well as nonstationa
patterns consisting of traveling rolls. In these cases the e
ticity of the motion (ey andez) was observed to be slightly
larger than usual, probably due to mechanical resonance
the setup.

The experiment was carried out for cell thicknesses in
range 30mm,d,130mm. The threshold amplitudeAxc as
a function of the frequencyf is shown in Fig. 10~a!. The
different data correspond to thicknesses in the above ra
As one can see in Fig. 10~a!, the threshold increases rapid
with decreasing frequency. In Fig. 10~b! the same data are
plotted in the form ofAxc /d versusd with the frequency as
a parameter. Finally, in Fig. 11 we plot the data in the fo
suggested by the scaling lawAxc /d5F(tdv) with some

r

e
a-

s.

FIG. 7. Maximum value of the transmitted light intensity no
malized toI max as a function of the flow frequency for cell thick
nessd544 mm and displacement amplitudeAx /d50.14. The the-
oretical curve is obtained from the full numerical simulation of t
nematodynamic equations.

FIG. 8. Roll pattern observed in polarized white light atf
540 Hz andAx /d50.7. The rolls are perpendicular to the dire
tion of the upper plate oscillations.



a
ul
e
ec

is

ll

w
e of

d,
f
ble
for
all

dif-

ant

cy

bil-
put

a

t

lts
s,

he
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function F. This scaling property can be read off the nem
todynamic equations. Also included in Fig. 11 are the res
of Ref. @23# ~dashed line! as well as numerical results on th
linear stability analysis of the basic state obtained by negl
ing the inertia term in the nematodynamic equations~dotted
line! ~see the Appendix!. Whereas there are substantial d
crepancies between experiment and the results of Ref.@23#,
the agreement with the numerical simulations is actua

FIG. 9. Contrast of the images observed in polarized light
increasing~3! and decreasing~n! oscillation amplitude. The fre-
quency wasf 5127 Hz, while the cell thicknessd590 mm.

FIG. 10. ~a! Threshold amplitudeAxc for the formation of the
roll pattern as a function of the frequencyf for cell thicknessesd
540 mm ~h!, d550 mm ~,!, d560 mm ~2!, d570 mm ~u!, d
580 mm ~L!, d590 mm ~s!, d5100 mm ~n!, d5110 mm ~3!,
d5120 mm ~* !, and d5130 mm ~1!. ~b! Normalized threshold
amplitudeAxc /d as a function of the cell thickness for differen
frequencies: f 528 Hz ~h!, f 533 Hz ~n!, f 538 Hz ~3!, f
540 Hz ~,!, f 575 Hz ~s!, and f 5133 Hz ~1!.
-
ts

t-

-

y

quite good, including the scaling behavior, except for lo
frequencies in thick samples. This corresponds to the cas
large oscillation amplitudes~in physical units!. The discrep-
ancies are discussed in Sec. IV. At low frequencies (f below
about 25 Hz! no periodic roll structure is observed; instea
at large amplitudes~when one would expect the formation o
rolls! irregular patterns appear. Above 150 Hz the attaina
maximum amplitude of the loudspeaker was not enough
the development of a spatial pattern. When going to sm
thicknesses (d'30 mm and below! the contrast of the roll
pattern diminishes, thus making threshold measurements
ficult.

Concerning the wave numberqc of the roll pattern at
threshold, we find experimentally an approximately const
valueqcd/p;1 in the frequency range investigated~see Fig
12!. From our simulations follows a very weak frequen
dependence for the critical wave numberqc and qcd/p
;0.8, whereas@23# predictedqcd/p;0.5.

IV. CONCLUDING REMARKS AND PERSPECTIVE

With regard to the basic state before the onset of insta
ity, we may emphasize that considerable effort had to be

t
FIG. 11. Normalized threshold amplitudeAxc /d for the forma-

tion of the roll pattern as a function of the quantitytdv for cell
thickness d530 mm ~d!, d540 mm ~h!, d550 mm ~,!, d
560 mm ~2!, d570 mm ~u!, d580 mm ~L!, d590 mm ~s!, d
5100 mm ~n!, d5110 mm ~3!, d5120 mm ~* !, and d
5130 mm ~1!. The dotted line corresponds to the numerical resu
of the linear stability analysis with fully rigid boundary condition
while the dashed line is calculated from@23#.

FIG. 12. Wave number of the roll pattern as a function of t
cell thickness.



ee
h

sh

ow
ar
io
rit

te
ic
ld

fu

a
at
-
of
a

is
rm

it
d
n
e

t
si
rt

n
h
ll-
de
it
s
a-
gi
r
as
e
r
e
-
a

th
er
po

t b
ctu
om

e
th
id

ad

e
a

sen-

lly
ous,
if-
ero-
in-
ue

-

is
is
he

hen

ver
m-

of
sti-
so
e

al-
er
ge,
t for

l
us-
l-
d,
of
kir
tal
-
lid

t
d

s

PRE 58 7425RESPONSE OF A HOMEOTROPIC NEMATIC LIQUID . . .
into optimizing the experiment before the quantitative agr
ment with theory as reported here could be achieved. T
optimization was a prerequisite for capturing the roll thre
old quantitatively.

We suspect that deviations from the ideal rectilinear fl
excitation, which become relevant at large amplitude,
responsible for the remaining discrepancies. An indicat
for this conjecture is the discrepancy arising already subc
cally in the basic flow~see the end of Sec. III A!. Even a
rather smallz component of the motion of the upper pla
may excite a substantial uncontrolled Poiseuille flow, wh
could lead to out-of-plane motion of the director. This wou
presumably delay the roll instability, as observed.

When trying to assess the theoretical situation it is use
to make a connection with theelliptically sheared case
@19,24–26#. There one has satisfactory agreement with
approximate analytic stability analysis of the basic st
@27,28#. The approximations mainly involve a time
averaging procedure that can be rephrased in terms
lowest-order time Fourier expansion and a one-mode
proximation with simple symmetry of thez dependence. The
mechanism does not involve the inertia term, so it was d
carded in the analysis. The threshold condition is of the fo
XcYc /d2;(tdv)21, whereXc andYc are the critical oscil-
lation amplitudes in the two directions. Clearly in the lim
where one amplitude becomes small, the critical amplitu
for the other diverges. Therefore, this mechanism does
lead to a threshold for rectilinear shear, so here a differ
mechanism is needed.

In the case ofrectilinear shear employing a somewha
similar approximation scheme for the linear stability analy
as was used for the elliptic case, but not dropping the ine
term, Kozhevnikov @23# arrived at a thresholdAc /d
;@(tdtv)1/2v#21. It diverges when the viscous dissipatio
time is set to zero, i.e., when the inertia term is dropped. T
approximations made involve, in particular, a sma
amplitude approximation of the basic state, a lowest-or
time Fourier approximation, a one-mode approximation w
simple symmetry for thez dependence, and neglect the ela
tic torque in the oscillatory part of the destabilizing fluctu
tions. Then one can see that a mechanism for instability
ing a time-averaged destabilizing torque on the directo
indeed provided through the phase shift between the b
state velocity oscillations and the oscillatory part of the v
locity fluctuations, induced by the inertia term in the Navie
Stokes equation~without the phase shift the relevant tim
averages are zero!. However, another source of a time
averaged torque is provided by the elastic terms, which
effective in a boundary layer of thickness (tdv)21/2. Unfor-
tunately, a one-mode approximation does not capture
effect and therefore an analytic treatment is difficult. Nev
theless, it is clear that the latter mechanism becomes im
tant at low frequencies. The results of@23# do not describe
our experimental data. On the other hand, the agreemen
tween experiment and a numerical stability analysis is a
ally quite good. Where the experimental data deviate fr
that theory, they violate an analytic scaling property. W
tentatively conclude that the approximations made in
analytic theory are not valid at the low frequencies cons
ered here.

From a more general point of view the mechanism le
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ing to the roll instability involves the following aspect. W
are dealing with a system that is parametrically driven in
time-periodic and, when inertia terms are neglected, es
tially spatiallyhomogeneousmanner~the velocity gradient of
the basic flow, which is the relevant quantity, is spatia
constant!. Then, as long as the state remains homogene
the spatial coupling of the director through orientational d
fusion is not activated. The system behaves as a z
dimensional one, which is integrable and cannot develop
stabilities. The only way to produce a time-averaged torq
on the director is to establish~spontaneously! a space depen
dence, thereby activating the spatial coupling~and escape
integrability!. A positive growth rate of spatial fluctuations
then possible. Thus, paradoxically, the diffusive coupling
instrumental in producing the spatial inhomogeneities. T
effect is complementary to the mechanism operative w
the driving isinhomogeneous~as in Poiseuille flow! and the
director undergoes ahomogeneoustransition@14–16#.

Although our results represent a substantial advance o
previous studies of this problem they leave room for i
provement. In the future we hope to develop an analytic~or
semianalytic! approach to capture the essential features
the numerical results presented here. Hopefully our inve
gation can be extended to include ellipticity of the shear
that the crossover to that domain can finally be clarified. W
are currently working on an experimental apparatus that
lows us to apply a controlled ellipticity of the shear in ord
to approach the crossover experimentally. To our knowled
this crossover has been observed only in one experimen
d550 mm andv5500 Hz @19#.
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APPENDIX: NUMERICAL SIMULATIONS

A previous study of the uniform response~i.e., nox andy
dependence! under oscillatory rectilinear Couette flow show
that the director oscillates within the flow plane (x-z plane!
without out-of-plane instabilities@15,16#. Allowing for peri-
odic modulations of the director and the velocity alongx one
can write

nx5cosu~x,z,t !, ny50, nz5sin u~x,z,t !,
~A1!

vx5vx~x,z,t !, vy50, vz5vz~x,z,t !.

Then the standard nematodynamic equations@3,4# assume
the form ~the notationf ,i5] i f has been used throughout!
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g1Fnznx,t2nxnz,t1nz~v•“ !nx2nx~v•“ !nz

2
1

2
~vx,z2vz,x!G1g2Fnxnz~vx,x2vz,z!1~nz

22nx
2!

3
1

2
~vx,z1vz,x!G

5K11@nz]x~“•n̂!2nx]z~“•n̂!#

1K33@nz]z~nx,z2nz,x!1nx]x~nx,z2nz,x!#, ~A2!

r@vx,t1~v•“ !vx#52p,x1sxx,x1szx,z ,
~A3!

r@vz,t1~v•“ !vz#52p,z1sxz,x1szz,z ,

with the components of the stress tensor

sxx52K11~“•n̂!nx,x1K33~nx,z2nz,x!nz,xa1Anx
2

1~a21a3!nxNx1a4vx,x1~a51a6!nx

3Fnxvx,x1nz

1

2
~vx,z1vz,x!G ,

~A4!
szx52K11~“•n̂!nz,x2K33~nx,z2nz,x!nx,x1a1Anxnz

1a2nzNx1a3nxNz1a4

1

2
~vx,z1vz,x!1a5nzFnxvx,x

1nz

1

2
~vx,z1vz,x!G1a6nxFnx

1

2
~vx,z1vz,x!1nzvz,zG ,

where

A5nx
2vx,x1nz

2vz,z1nxnz~vx,z1vz,x!,

Nx5nx,t1~v•“ !nx2
1

2
nz~vx,z2vz,x!, ~A5!

Nz5nz,t1~v•“ !nz2
1

2
nx~vz,x2vx,z!.

The componentssxz ,szz can be obtained by exchanging
the indicesx andz in the expressions~A4! for szx andsxx ,
respectively. In addition, one has the director normalizat
equation and the incompressibility condition

nx
21nz

251, vx,x1vz,z50. ~A6!

Equations~A2!–~A6! are to be supplemented by the boun
ary conditions

u~z56d/2!5p/2,

vx~z52d/2!50, vx~z5d/2!5Axv cosvt, ~A7!

vz~z56d/2!50, vz,z~z56d/2!50,

For sufficiently small shear amplitudes the system remain
a state that retains all the symmetries compatible with
external constraints, i.e., nox dependence andvz50 ~from
n

-

in
e

incompressibility!. Then one has for the basic stateu
5u0(z,t), vx5v0x(z,t) from Eqs.~A2! and ~A3!

g1u0,t2~a2sin2u02a3cos2u0!v0x,z

5~K11cos2u01K33sin2u0!u0,zz

1~K332K11!sinu0cosu0u0,z
2 , ~A8!

rv0x,t5]zH 2~a2sin2u02a3cos2u0!u0,t

1
1

2
@a41~a52a2!sin2u01~a31a6

12a1sin2u0!cos2u0#v0x,zJ . ~A9!

The direct numerical simulations of Eqs.~A8! and~A9! with
boundary conditions~A7! were performed. In the frequenc
rangev!1/tv to be considered here (tv5rd2/g1 so that for
r'103 kg/m3, d'1024 m, and g1'1021 N s/m2 one has
1/tv'104 s21) we found essentially no difference if the in
ertia term (rv0x,t) was dropped in Eq.~A9!. Omitting also
the elastic coupling terms on the right-hand side of Eq.~A8!
one can easily find

u0~ t !5
p

2
2arctanH 1

Al
tanhF Al

12l
a sin vtG J ,

~A10!

v0x~z,t !5avS z1
d

2D cosvt,

wherea5Ax /d, l5a3 /a2 , and the director is independen
of z @12,16#. For torque-free boundary conditions@u0,z(z
56d/2)50] Eq. ~A10! is in fact an exact solution of Eqs
~A8! and ~A9! with the inertia term dropped. For strong a
choring @u0(z56d/2)5p/2# the elastic terms generat
boundary layers of thicknessA1/tdv ~in physical units
AK11/g1v), which corresponds to the orientational diffusio
length, which is neglected here. This is valid for the con
tion A1/tdv!1, i.e., v@1/td (td5g1d2/K11 and for g1
'1021 N s/m2, d'1024 m, and K11'10211 N one has
1/td'1022 s21). The approximate solution~A10! is appli-
cable for frequencies 1/td!v!1/tv .

For the linear stability analysis of the basic state we l
earize Eqs.~A2!–~A6! around the solution~A10!

u5u0~ t !1u1~x,z,t !,
~A11!

vx5v0x~z,t !1v1x~x,z,t !, vz5v1z~x,z,t !

with small perturbationsu1 ,v1x ,v1z . The pressure perturba
tion is eliminated by cross differentiation of thex and z
components of the Navier-Stokes equation~A3! and v1x is
eliminated by the incompressibility condition. One is th
left with two ~rather lengthy! linear equations for the vari
ablesu1 ,v1z with the coefficients depending on the bas
solution u0 ,v0x . The boundary conditions for the directo
and velocity perturbation are

u1~z56d/2!50, ~A12!
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v1z~z56d/2!50, v1z,z~z56d/2!50.

From Floquet’s theorem follows the general form of the s
lution of our linear problem

@u1~x,z,t !,v1z~x,z,t !#5esteiqx (
m52`

`

@bm~z!,cm~z!#eimvt

1c.c., ~A13!

whereq is the wave number in thex direction. The coeffi-
cients@bm(z),cm(z)# are expanded in a complete set of o
thogonal functions that satisfy the boundary conditio
~Galerkin method; see, e.g.,@29#!. We used a set of trigono
metric functions for the angle@bm(z)# and Chandrasekha
functions for the velocity@cm(z)# @30#. After a projection
procedure and truncation of time series andz modes one
obtains a linear system for the expansion coefficients.
solvability condition gives the growth rate functions(q,a).
The condition Re@s(q,a)#50 yields as usual the neutral curv
a0(q). The threshold is given byac5minqa0(q), which also
yields the critical wave numberqc for the pattern.

The calculations show that one has at threshold Ims)
50, i.e., the bifurcation has a stationary character. Bey
threshold there are nonzero time averages^u1& and ^v1z&
corresponding to a stationary spatial modulation of the dir
tor and velocity in the form of a periodic roll structure. W
lie

.

-

s

ts

d

-

have tested the error of the critical oscillation amplitudeac

by changing the order of truncation of the Galerkin expa
sion @Eq. ~A13!#. We chose a sufficient number of time an
z modes in the Galerkin expansion to restrict the relat
error of the thresholdac to well below 1022.

Since the basic state solution~A10! pertains to torque-free
boundary conditions, we checked its stability also for tho
boundary conditionsu1,z(z56d/2)50. This was found to
lead to a small decrease of the critical amplitudeac . The
reduction increased with decreasing frequency from;4% at
tdv5105 to ;8% at tdv5103. We have also tested th
influence of the inertia termrv i ,t in the Navier-Stokes equa
tion for the perturbations. In the frequency range 1/td!v
!1/tv considered here, where the basic state solution~A10!
is valid, inclusion of the inertia term leads to a small d
crease of ac . The reduction was about 2% atv
'0.2tv

21 (tdv'105 in Fig. 11! and decreased with decrea
ing frequency.

The numerical computations were carried out for the f
lowing 5CB material parameters at 26 °C@31,32#: elasticity
coefficients in units of 10212 N, K1155.95, K2253.77, and
K3357.86; viscosity coefficients in units of 1023 N s/m2,
a1526.6, a25277.0, a3524.2, a4563.4, a5562.4,
anda65218.4, and mass densityr51021.5 kg/m3; and re-
fractive indices for wavelength of lightL5670 nm at
24.3 °C,ni51.708 andn'51.530.
e

n-
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y
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