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Regular dendritic patterns induced by nonlocal time-periodic forcing
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The dynamic response of dendritic solidification to spatially homogeneous time-periodic forcing has been
studied. Phase-field calculations performed in two dimengi@Ds and experiments on thifguasi-2D liquid-
crystal layers show that the frequency of dendritic side branching can be tuned by oscillatory pressure or
heating. The sensitivity of this phenomenon to the relevant parameters, the frequency and amplitude of the
modulation, the initial undercooling and the anisotropies of the interfacial free energy, and molecule attach-
ment kinetics, has been explored. It has been demonstrated that in addition the side-branching mode synchro-
nous with external forcing as emerging from the linear Wentzel-Kramers-Brillouin analysis, modes that oscil-
late with higher harmonic frequencies are also present with perceptible amplitudes.

PACS numbg(s): 05.45.Xt, 81.10.A], 64.70.Dv, 68.78w

[. INTRODUCTION laser beanj29-31 (which has the advantage of being well

Complex patterns observed in nature have attracted corsontrollable but cannot be applied homogeneously in large
siderable interest recentl—3]. The complicated spatiotem- Vvolumes, or by exposing it to an oscillatory flow fielB2]
poral behavior that leads to the formation of such patterns iéwhich is global, but spatially homogeneous forcing cannot
usually associated with the instabilities of systems transformbe easily achieved Both methods lead to the formation of
ing under nonequilibrium conditions. A spectacular examplgairly regular morphologies in a suitable frequency range.
of practical importance is dendritic growth that appears inHowever, these methods cannot be easily used for spatially
anisotropic systems where the propagation of the transformdiomogeneous controlling of growth morphologies in large
tion front is coupled with the diffusion of a conserved quan-Vvolumes. To circumvent this problem, we demonstra&sj
tity. The respective diffusional instabilities lead to the forma-the possibility for tuning the dendritic morphology by spa-
tion of a traveling quasisteady-state tip that emits surfacdially homogeneous time periodic forcing via modulated
undulations which evolve into side arms in directions deterPressure(34,35 and heating, that change the undercooling
mined by the anisotropy of the systéri. Many of the tech-  instantaneously and homogeneously in large volumes.
nologically important materials form by dendritic solidifica- N this paper we present a detailed analysis of the dynamic
tion [4]. Analogous phenomena have been reported iffésponse of dendritic solidification to oscillating pressure and
biological systemg$5], anisotropic Hele-Shaw cel[§], and _heatlng. In identifying the resonance conditions an_d the most
in cosmology-particle physick7,8]. Although experiments important process parameters, we rely on phase-field model-
on the freezing of transparent liquifi@—14] clarified many ing, one of the most potent methods for describing morphol-
of the essential features of dendrite formation, importanf9y evolution. The theoretical predictions will be confronted
questions remained open. For example, the role played b¥ith experiments on quasi-two-dimensioriaD) liquid crys-
thermal fluctuations in side branching is the subject of confal layers, known as suitable model materifist,36—-3§.
tinuing investigationd4,13,15—18 It is anticipated that a The rest of this paper is structured as follows. In Sec. Il we
selective amplification of thermal noise is responsible for thedriefly summarize the phase-field equations that incorporate
side branching and for the observed irregularity of dendritic€xternal forcing, and introduce quantities for characterizing
patterng10-12,19. growth morphology. Section Il is devoted to the experimen-

While the steady-state behavior of dendritic growth is un-tal setup and the details of the measurement techniques. In
derstood fairly well in the framework of recent theoriesi- ~ Sec. IV, we present the phase-field predictions and compare
croscopic  solvability [4,20-29 and phase-field theories them with the experimental results. In Sec. V, our findings
[4,23_28), less is known of the dynamic response of thedre discussed in the ||ght of theory and eXperiment on tlp-
dendritic morphology to time-dependent external perturbalocalized forcing. Finally, a few concluding remarks will be
tions. The nonlinear systems often develop regular pattern®ade in Sec. V1.
under periodic forcing3]. Considering the inherent nonlin-
earity of the equations describing_dendritic growyh, it is rea- Il. PHASE-FIELD THEORY WITH EXTERNAL EORCING
sonable to expect that such periodic perturbations lead to
resonance patterns that might be used to influence the growth We investigate the growth of the crystalline phase into an
morphology. Besides its scientific interest, a detailed underundercooled single component liquid at a temperature be-
standing of such phenomena could open novel routes faween the melting point and the hypercooling linffunit
designing materials for specific applications. undercooling’ [39]. In this temperature range, the thermal

Time-periodic forcing of dendritic side branching has al- diffusion controls the growth process, as opposed to the
ready been realized via local heating of the dendrite tip by(molecule attachmepkinetics controlled mechanism taking
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place below the hypercooling temperat{46]. Owing to the  the variation of the specific heat upon melting,s are the
heat release during solidification, the crystalline phase heathermal expansion coefficients, while subscriptds refer
up to its melting point, while the rest of the latent heat isto the liquid and the solid respectively. Under typical condi-
transported into the cold liquid. Under such conditions, thetions of our experimentpressure amplitude-2 bar, under-
planar front is inherently unstable against thermal perturbacooling of 1 K, and physical properties of CCHBppen-
tions despite the stabilizing effect of the interfacial free en-dix)], the undercooling varies bybﬁ% while the relative
ergy [41]. change ofL (andS,) is only ~10 3. We found that such
The phase-field theory is a powerful tool with which to pressure effects oh and S,, do not influence the results
study moving boundary problems. It represents a dynamigerceptibly; i.e., pressure modulation needs to be taken into
extension of the Cahn-Hilliard theory of first-order phaseaccount only vieQ(T) in Eq.(1). Modulated heating, in turn,
transformations, in which the evolution of a nonconservedappears as a time dependent source term in(Bgq.
order parameter is coupled to thermal or chemical diffusion At this stage it is advantageous to introduce dimension-
[4,23—-28. Here we use a thermodynamically consistent verdess variables. This is done by using a characteristic length
sion[23] (model | of Ref.[25]) which ensures locally posi- scalew (comparable to the size of a well developed crystal-
tive entropy production and was modified to incorporatelite) and the thermal diffusion tim@?/D whereD is the
anisotropies of the interfacial free energy and the kinetic cothermal diffusion coefficient. To avoid complications emerg-
efficient[42]. The local state of the matter is represented bying from an oscillating melting point, the reduced tempera-
the phase fields(r,t) [43]. ture has been redefined in terms of a constant reference tem-
To incorporate external forcing, the equati¢@s,42 that  peratureT, asu(r,t)=(T—T,)/(T,—T.), whereT,, is the
describe the evolution of the phase field and the temperatuigitial temperature of the undercooled liquid. The mathemati-
field T(r,t) in 2D cal problem is invariant to the choice df, so far asA
=Un=(T,—T)/(T,—T.) is inserted as in Eq(3). (With
) T,=Tp,, the usual form of the phase-field model is recov-
d’ [K(ﬂ)] 2|V ered)

The relevant physical properties are combined into di-

d¢
7(0) - =Q(Mp(#)~C'(d)~ 5

2.1
@ mensionless parametess=c,(T,—T.)/L, a= V2wS, L/
JT 9 (12c,00), 70=SnDBo/ 0o, ande= 8l w, o’ =do/d6, where
1cptp(e)—1]L’ (T)}—t +L(T)p' () i kV2T, dis the interface thickness. The anisotropies of the interfacial
J J 2.2 free energyr and the kinetic coefficiens are represented by

the dimensionless functions=1+ o, cosf)/2 and B=1
have to be modified. Here is an empirical relaxation coef- +/8nC0s00)/2 of n-fold symmetry, that are related to the
ficient, whose inverse is an intrinsic interfacial mobility, and dimensional quantities via relationshipg ) = oo () and
d5¢ stands for variation with respect . Other notations  B(6) = B,B3(6). Here o, and 3, are the anisotropy param-
are as followsp(¢) = $3(10— 154+ 64?), /2 the coeffi-  eters. Lengths and time are scaled dyand w%/D, respec-
cient of the square-gradient term in the entropy functionaltively. The coefficientx and the constarg are related tos
that depends on the orientation represented by the ahgleand the interfacial free enerd25].

(defined as tard) = d, ¢/ dy ), G(¢) = d*(1— ¢)?lde, eis With these notations Eg$l) and(2) transform to
a constant that determlnes the height of the intermediate b 1

maximum of the double well potential Q(T) 7P p(1— { = +30eaATu—A(t
=T [L(n)/n*1dn=—AG(T)/T, AG(T) the Gibbs free E10Bo e = d(1= )| b= 5+ 30cal[u-AD]S
energy difference between the liquid and solid, whilg, 0

L(T), andk are the specific heat of the liquid, the enthalpy X(1— ¢)] — € (9— oo’ W + €2 W

difference between the liquid and the solid, and the thermal

conductivity, respectively. The primed quantities denote de- 9 _

rivatives with respect to the arguments. Note t.iz)aindp are X|oa'— |+ V[’V ¢], 2.3
dimensionless. The units d&f and > are Wm 1K1 and

Jm ikt respectwely whileQ, G, ¢,, and 1¢ are mea- au b

sured in Jm3K L, =V2u+B(t), 2.4
The dominant effect of the pressure modulatip(t)
=po+Ap(t) is a variation of the melting point described by where the modulated pressure and heating are incorporated
the Clausius-Clapeyron law (p)=Ty(po) + ApAV/S,,  via termsA(t) andB(t), respectively.
whereAV is the volume change upon solidification a®glis In this work Eqs(2.3),(2.4) have been solved numerically
the entropy of fusion. This enters into EJ) via the Gibbs on anNXN rectangular gridN= 1000, that corresponds to
free energy difference which may be approximated asn areal x| of dimensionless linear size=5 and a grid
AG(T,p)=Sy[Tm(p)—T] at small undercoolingsTi,,— T  spacingAx=0.005. An explicit finite difference scheme has
<Tp). The other relevant quantitigspecific heat, heat of been employed in the case of Eg.3), while Eq. (2.4 has
fusion, and entropy of fusioh’(T)] are far less sensitive to been handled by the alternating-direction implicit method
the variation of pressure. For example, integrating thewhich is unconditionally stabl@42]. At t=0 a crystalline
Clausius-Clapeyron relationship one obtais=ApAV[1  nucleus ¢p=0) is placed at the center of the model area
+AC, /Syt T(aV,— asVg)/AV], whereAc,=c, —Cpsis  filled by uniformly undercooled liquid¢=1, u=—1). The
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reduced temperature and the phase field were kept consta
(u=—1 and¢=1) at the boundaries of the model space. To digital
save CPU time, we used a primitive adaptive mesh tech-
nique: far from the solidification front Eq.2.4) has been

solved on a rough gridof spacing 1& Ax). To model the

effect of thermal fluctuations and to suppress undesirable lat
tice effects that favor specific growth directions, a spatially
and temporally uncorrelated noise of amplitude 0.01 and| yideo recorder
zero mean value has been added to the dimensionless te

analysis

\_‘

peratureu in every time step. If not stated otherwise, we use
the dimensionless parametere=350, 7,=20, ¢=0.005, temp. and
Ax=0.005, and time stept=10"%. Owing to the known pressure
limitations of phase-field modelingt,44], we performed our control
calculations at relatively large undercoolingss0.40-0.68. CcCD P

To characterize the spatiotemporal behavior of the evolv- camera PC
ing dendritic morphology the following quantities were de- 3 — —
termined. polarizing

(1) We measured the widtiv of the dendrite behind the microscope

tip at a distance of=0.75 (150 pixels. To investigate this
feature for longer times, we performed separate simulations
on a 1200600 grid, oriented so that the larger dimension be
parallel with the direction of growttihere we used\t=38
% 107%). The amplitudeA, in the Fourier transformv(f) of
w(t) characterizes the response synchronous with externg
forcing.

(2) The symmetry of the growth patterns was character-
ized by the quantitiea andb:

3-path solenoid

valves
Ei’\,',-/ri_N/z( bij—b_i))?
a= M : (2.9 P, <P <P, +2bar

>0 (¢ & )2 FIG. 1. Experimental setup.
_ =ij=-NR\Pi T P

b K )

(2.6

on bubble free cells. The surface treatment of the bounding
whereM andK are the numbers of pixels in which 84  glass plates assured the planar alignment of ibo#nd Sg
<0.6 for the whole system and for the lower left quarter,phasegthe directorm(N) andn(Sg) that describe the aver-
respectively. Accordinglya=0 measures the symmetry of age orientation of the elongated molecules are in the plane of
the whole domain with respect to theaxis, whileb=0  the cell, and the conducting layers on the bounding plates

quantifies the axisymmetry of a main branch. Both paramWere used as electrodes. o
eters are zero for symmetric patterns. For pressure modulation the liquid crystal cell was placed

into a brass boxXsee Fig. 1 surrounded by a temperature
controlled hot stage of accuracy3 mK. The gas pressure in
Ill. EXPERIMENTAL SETUP AND CONDITIONS the brass box has been regulated by a computer controlled
) ) . . solenoid valve system that switches on and off an excess
~ The nematic—smectiB-(N—Sg) phase transition of lid-  pressurep, preset between 0 to 2 bar with an accuracy of
uid crystals is recognized as an appropriate model of crystals- 03 par. This allows square wavelike pressure modula-
lization in liquids[36—38. A specialty of this phase trans- tions in the frequency range up To-2 Hz.
formation is a large anisotropy of the interfacial free energy  The modulated heat release in the bulk has been realized
[37], a property expected to be advantageous for the regulapy periodically transmitting a high frequend00 kH2
ization of dendritic morphology on theoretical grouridee  electric current through the liquid crystal layer produced by
Sec. IV A and Ref[33]). gating the signal of a function generator with-1 Hz. The
To test the predictions, experiments have been performeldcal off-plane heat transpora precondition of regulation
on thin CCH3 liquid crystal layers. Ready-made cells ofwith oscillatory heating, see Sec. IV A and RE33]) is en-
E.H.C. Co. (Japan KSRP-10 (of thickness 10um) and sured by the quasi-2D sample geometry and by the heat
KSRP-02 (2 wm) have been filled with CCH3Merck, transport through the bounding glass plates.
Darmstadt To investigate whether modulated pressure in- The growth patterns were monitored in transmitting mode
duces flow in the experiments, we tracked the positionkia a polarizing microscope equipped with a CCD camera, a
motion of tracer particles. With the exception when bubblesmethod relying on the different optical properties of the nem-
were trapped in the liquid crystal, we were unable to detechtic and smectic B phases. The images were stored and pro-
fluid flow in our 2 um cells. All experiments were performed cessed by a PC. The spatial and time resolutions of the
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FIG. 3. (a) Width of the dendritewn(t) at a distance of=0.75
behind the dendrite tip without periodic perturbatidreavy solid
line; Fig. 2a)], in the presence of sinusoiddight solid line) and
square-wave dotted line; Fig. 2d)]. (b) The respective Fourier
spectraw(f).

distance of¢=0.75 behind the tigFig. 3(a)] indicates sur-
face undulations that can be decomposed into a spectrum of
oscillations which covers the dimensionless frequency range

phase-field theory foA=0.6, 04,=—0.12, 3,=0.24, andt=0.22. g
o i . of ~30 to ~170, centered around a characteristic frequency
(a) Under constant pressure yieldidg=u,,= 0.048 and(b)—(f) in f fo~100 [see inset in Fig. ®)]. This behavior accords

the presence of square-wave pressure modulations of amplitua%. . . . .
a,=0.16 and filling coefficient=0.3. The gray level in the liquid with that seen in the phase-field simulations of Karma and

phase indicates the temperature field. The white line marks the p(BappeI[18], and with experimental resulf26,30. In agree-

sition, where the width of the dendrite arm was measured. Syster'€Nnt With Ref.[18], we find that far from the tip the char-
size: 10001000 pixels. acteristic wave length,=uv/f, depends much more weakly

on the distance from the tip than predicted by the micro-
scopic solvability theonf22,45, a behavior interpreted in
terms of the “stretching” of the perturbatiof48] that travel

FIG. 2. Dendritic patterns of fourfold symmetry predicted by the

system were 512512 pixels and 0.04 s, respectively. The

calibration procedure with 628 objective and 3.& projec- ) )

tor combination gave scale factors of 1:3%.01 um/pixel in along th_e cgrved perimeter .Of the dendrite. .

the x direction and 0.9%0.01 um/pixel in they direction. Con_slderlng that the applied uncorrelated noise probes the
The same setup has been used to measure the pressgh@@mic response of the system to a broad variety of fre-

coefficient of the temperature of transformation between thdUENCies, itis reasonable to seek “resonance” in the vicinity
smectic-B and nematic phasésee the Appendix of the characteristic frequency, of spontaneous side
branching.

IV. RESULTS 2. Pressure modulations

A. Theoretical predictions According to the Clausius-Clapeyron law, the modulated

_ ) ) ressure translates into a time dependent melting point, and
To find resonance patterns we investigated the paramet represented by inserting(t)=u,(t)=a,g(t) and B(t)

space defined by the frequency and amplitude of the modu- 4 it Eqgs.(3) and (4). Since our experimental setup al-
lation, the undercooling and the anisotropies of the interfa;,,.s only square-wave modulatiorisharacterized by the
cial free energy anq the kinetic coeffi_cient. Th_e caICL_JIationsﬁ"ing coefficient £=t,,/t,, wheret, is the period of oscil-
were performed with fourfold and sixfold anisotropies (- |5ions ant,, the pulse length the simulations have been
=4 and 6 in expressions far and§). Before presenting our 1o formed for this wave fornfunless stated otherwise
results on nonlocal periodic forcing we characterize the un- (a) The effect of forcing frequencY¥he frequency depen-
modulatedreferencestate. dence of the growth patterns is shown in Figt)22(f). At
low forcing frequencieqr<15), the system alternates be-
tween two steady-state growth modes yielding uncorrelated
Independently of the symmetry of the system, a weakside branching that correspond to the actual undercooling. It
uncorrelated(noise-inducey side-branching occurs in the is, however, remarkable that the switching transient between
unmodulated reference state shown in Figa)2The width  the constant pressure stages initiates more pronounced side
w(t) of a main dendrite arm measured at a dimensionlesarms than formed during the constant pressure periods.

1. Free dendritic growth
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FIG. 4. Comparison of growth patterns corresponding(ép
sinusoidal, (b) symmetric (¢=0.5), and (c) asymmetric(£=0.3) b ' ' ' ' '
square-wave forcing of equal period lengths=30), and period 3¢ ¢ .
averaged amplitudes fax=0.55. Note the side-branch “doubling” An &
in panel(c). (Other relevant parameters are as for Fig.2ystem Lol 4 a _
size: 1001000 pixels. «® o o N 4 o ©
A
1t A
Regular growth morphologid&ig. 2(b)—(e)] are observed in o % é F
the lower half of the dimensionless frequency range of spon- 0 = . . \ N
taneous thermal side branching shown in the inset of Fig. 0 20 40 60 80 100 120
3(b). At frequencies larger than these, the formation of side Vv

branches cannot follow the external forcing, and the uncor-
related thermal side branching reappeidiig. 2(f)). £=0.75 behind the tip, and the symmetry parameteendb as a

In agree_ment with our earlle.r resu[tSS],. when regulgr function of the driving frequency. Other relevant parameters are
morphologies are formed, the side branching and the tip Vex—(.55,£=0.3, 04 = — 0.12, andB,= 0.24, whilea,=0.14(a) and

locity correlate with the pressure modulation. The param- 4=0.2 (b).

etersw(t), a, andb reflect the formation of regular mor-

phologies. For example, a periodic variation of the widthnation of this deviation might be a different "stretching” of
w(t) of the dendrite is se€lFig. 3(@)], which correlates with ~ perturbations, related to differences seen between shapes of
the external sinusoidal forcing and leads to the formation oflendrite tips formed in free growth and under external forc-
regular side branches. Note that in addition to the forcingnd- It is also remarkable, that at low forcing frequencies the
frequency[that appears with a far larger amplitude Wy f) amphtu_de_AzV of the second h_armomc _becomes larger than
than the spontaneous undulatigyrits second and third har- A»- This inversion of the relative magnitudesAf andA,,

monics(2y,3v) are also present albeit with an amplitude that'S resppn_sible for the side-b_ranch “dpubl_ing” shown in Fig.
diminishes for higher order harmonigBig. 3(b)]. 4. A similar phenomenon is seen in Fig(bp where the

Apparently, periodic forcing with fixed frequency excites second harmonic is the dominant mode as indicated by the

several surface modulations; one synchronous with the for(f’;glém& gsslmélj?rgx do;pc))aﬁtterns corresponding te-20 and 40

ing frequency(v) and others oscillating with the higher har- We find that the amplitude\, increases approximately

monic frequencies2y,3, . ...), which indicates a dynamic g, hentially with the distancgfrom the tip of the dendrite,
coupling among these modes associated with the nonlinearityijo A,, saturates as a function ¢f(Fig. 6). Remarkably,

of the governing equations. , _ the symmetry parametessand b display minima at lower
The relative amplitudes of higher harmonics vary with thegocing frequenciegaround »~20; see Fig. )] than the
wave form of the pressure modulation yielding different maximum of the Fourier amplituda,. This difference in
growth patterngsee Fig. 4. Fairly similar patterngsee Figs.  the positions of the extrema is a manifestation of the fact that
4 () and 4b)] are observed for sinusoidal and square-waveaxial symmetry and frequency content are different constitu-
modulations, provided that for the latté+0.5[i.e., frequen-  ents of regularity. It appears that, gives a closer represen-
cies (h+1)v, n=1,2,..., argresent in the forcing spec- tation of the regularity recognized by the human eye than the
trum]. When the filling coefficien¢ deviates from 0.5, the symmetry parameters. The overall frequency dependence of
frequency/phase content of forcing vari@gsg., the second
harmonic 2 appears leading to such effects as the forma-
tion of side branches of twice the number corresponding to  0.10 ° o
the base frequendysee Figs. &)—4(c)]. To understand this & o ™
behavior we analyze the frequency dependence of the dy<1
namic response of the system to “asymmetric” forcitg 0.01 o ©
=0.3. A A .
The Fourier amplitudes\, and A,, (corresponding to 0.0 0.2 0.4 0.6 0.8 1.0
modes that oscillate with the forcing frequency and its {
double, respective)yand the symmetry parametesisand b
are presented in Fig. 5 as a function of the forcing frequency g 6. Fourier amplitudes, (circles andA,, (triangles as a
v. A, andA,, show maxima whenv or 2v is close tofex;  function of the distancé from the dendrite tip at two undercoolings

~70[Fig. 5], wheref,, is the frequency where the syn- A=0.55 (full symbols and 0.6(empty symbols Note the roughly
chronous response has the maximum amplitude. Note thakponential behavior oA, and the saturation im,,. Other rel-

fexc IS somewhat below the characteristic frequerigy  evant parameters ane=60, £=0.3,a,=0.16, o,= —0.12, andg8,
~100 of the unperturbed dendritic growth. A possible expla-=0.24.

FIG. 5. Amplitude of Fourier peaké, and A,, measured at

[ SN )
>
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FIG. 7. Amplitude of the Fourier peak&, and A,,, and the
symmetry parametessandb as a function of the forcing amplitude ~ FIG. 9. Amplitude of the Fourier peaks, , A, as a function of
a, for the system shown in Fig.(@. undercoolingA. Other relevant parameters are=60, £=0.3, a,
~0.16, o= —0.12, andB,=0.24.

the pattern formation supports our anticipation that regulartance in the formation of regular patterns. This expectation is
ization via periodic forcing with fixed frequencies is possible verified by the dependence of growth forms on the magni-
when the latter fall in the characteristic frequency range ofude of anisotropies in the systeiffig. 10. The growth pat-
noise-induced side branching. terns and variations of the Fourier amplitud®s and A, ,

(b) The effect of the amplitude of forcinghe Fourier and of the symmetry paramete(iSig. 11 indicate that the
amplitudesA, and A,, and the symmetry parameters show regularizing effect of external forcing decreases dramatically
that with increasing forcing amplituda, the regularity of ~ Wwith vanishing anisotropy, i.e., without well defined orienta-
the growth patterns increaségig. 7). This is manifested in tio_nal preferences_the external pertqrbations are unable to
monotonously increasing, andA,, that saturate for large drive the amoebalike growth forms into a regular pattern.

a,. At the same timea andb decrease witla, reflecting the This is in accordance with numerical results for directional
increasing symmetry of the patterns. ’ solidification where the role of the anisotropy in the stability

: : f singlet and doublet cellular patterns was pointed out using
(c) The effect of undercoolingfhe response to a given 0 . i ) .
pressure modulation correlates with the tendency for “natu? perturbation techn|quEa46]. Note that the tip velocity de-
ral” side branching(Fig. 8. While at large undercoolings creases with decreasing anisotropfeste the difference of

- X X ) -~ simulation times the snapshots correspondttee excitation
t(gﬁ%éAI_e%dGi?é t?: \]:\(/)élrln?jtcle?/r(]alg;;:jdiig:aa-gfgh:ir:svcﬁah%rrm- with v=60 generates periodic side arms with increasing

: . . spacing.
without forcing, at A=0.5 or below free growth produces | these calculations we assumed that both the interfacial

essentially no side branches, and external forcing is needgthe energy and the kinetic coefficient are anisotropic. For
to trigger them, also reflected in their smaller size. Note thgnhe sake of simplicity, their ratio was usually kept constant
difference in spatial periodicity, that originates from the tem-B4/U4: —2. Our further investigations show, however, that

perature dependence of the tip velocity. _ resonance patterns formahy of these anisotropieghat of
The variation of the Fourier amplitudés, andA,, with ;- or g) is sufficiently large.

undercooling(A) is shown in Fig. 9. The maximum o4,
might be understood as follows. We found that with increas-
ing undercoolingf ., increases. Accordingly, a fixed forcing
frequencyr produces the maximum amplitude at the under-
cooling for which fq.~v. For the same reason, the maxi-
mum amplitude for the second harmonio appears at a
larger undercooling.

(d) The effect of anisotropyTheoretical considerations
and numerical simulations show that anisotropy plays a cen-
tral role in the formation of dendritic morphology. It is,
therefore, reasonable to expect that it has a similar impor-

FIG. 10. Pattern formation under periodic forcing as a function
of anisotropy:o,= —0.08(a), o,= —0.04(b), 0,=—0.02(c), and
o,=—0.01 (d). Other relevant parameters are=0.55, v=60,

FIG. 8. The effect of undercooling on pattern formation under¢=0.3, a;=0.16, andB,= —20,. The average growth rate varies
periodic forcing.(@) A=0.65 and(b) A=0.5. Other parameters as with anisotropy, therefore, different times are needed to reach com-
for Fig. 2(d) except that=0.2 andt=0.283 for panelga) and(b), parable sizest=0.24(a), t=0.3 (b), t=0.38(c), andt=0.44 (d).
respectively. System size: 1082000 pixels. System size: 10001000 pixels.




PRE 62 REGULAR DENDRITIC PATTERNS INDUCED BY ... 7823

T T
t=0315

0.12 : : : 20
(] AV Oa
0.10 1t -
AA, Ab 15
go.oa - o * . e 1t L
<006 | & . * e {10% 1 i
<004t 4 o
a IO 18 1 I
0.02 - ® A A b, = 514
é A a ! 1 1 1 ! 1 1 1
0'0% 00 ‘obsA 0.10 0.1 02(?
) ’ I&I ’ : FIG. 13. Pattern contours formed under periodic heat pulses of
4

amplitudes increasing from left to righb§=5.7, by=28.6, and
FIG. 11. Amplitude of the Fourier peals,, A,,, and symme- b0i51'4)' Othfr rele\;]aft parametirs me%gl’_FSo’ §5=0'15’

try parameters andb as a function of anisotropy parameter,| of Ta=" 0'_16' B4=0.32, o I_ 14.3,79=16, andAt=7x10"". Sys-

the interfacial free energy. The kinetic anisotropy has been varielfm size: 10061000 pixels.

proportionally (8,=—20,). Other relevant parameters are

A=0.55,v=60, £&=0.3, anda,=0.16. creases roughly linearly with, (Fig. 14). At the same time,
the amplitude of the oscillatory part of the velocity, in-
3. Modulated heating creases about linearly. In summary, our investigations imply

. . . that under well defined conditions both types of nonlocal
_ (a) Alternating heating and coolingThey lead to essen- forcing can be used to control dendritic growth.
tially the same type of resonance patterns as pressure oscil-

lations, provided that the net heat production in a period is
negligible. A remarkable difference is, however, that while B. Experimental results
the average tip velocity, is essentially independent of the
amplitude of pressure modulations, it decreases with the a
plitude of heat production/extractiofrig. 12; a phenom-
enon that might be associated with different efficiencies o
heating and cooling.

(b) Oscillatory heating.The introduction of a local off-
plane thermal transport described bB(t)=byg(t)
+h[u(r,t) —u,] was necessary to prevent the melting of the

crystal for the heating amplitudes needed to generate regul:()!gee the Appendjxand other relevant properties.

patterns. Heren<<0 is a dimensionless heat transfer coeffi- 1,4 appropriate frequency range of forcing has been de-
cient that imitates heat transfer perpendicular to the plane qf;mined by Fourier analysis of the width(t) of a freely

the liquid crystal .Iayer tqwards the surrounding of redu,cedgrowing dendrite measured at 66.8n behind the tip. With-
temperatural.. . Since this term serves as a local heat sink, ¢ perturbation, the side branching is essentially random
the in-plane thermal diffusion becomes less restrictive. Th'TFigs. 15a) and 16a)]. The characteristic frequency, identi-
results in the formation of more compact objetsee Fig.  fioq a5 the peak of the broad spectrum in the inset of Fig. 17,

13) with thick main arms and less developed side branchesg roughly 1.8 Hz. Accordingly, our experimental setup was
While with an increasing amplitude of the heat pulses thedesigned to cover the frequency range of 0-2 Hz.
side arms become more regular, they become smaller due to

the dissipated heat. _ . . 1. Pressure modulations
Very similar to pressure modulations, oscillatory heating _ .
leads to an oscillating tip velocity. Owing to a decreasing | N€ experimental results for pattern formation in the 2
average undercooling accompanied with increasing heating™ thick liquid crystal cell are summarized in Fig. 15. Reso-
amplitudeby, the period averaged velocity, of the tip de-  nance patterns of fairly r_egular S|de-pranches are obse_rved
igs. - at forcing frequencies comparable wi
[Figs. 18b)—15d)] at f g freq parabl th

the characteristic frequency of the unperturbed siaté¢.8

In defining the experimental conditions, we utilized the
Mesults of computer simulations. For CCHS3, the time and
patial resolution of our experimental setup is optimal at an
ndercooling of~1 K. Comparable variations of the under-
cooling (~0.1-0.2 K are achievable by applying modula-

tion amplitudes as high as 2 bar ox3a0 * W/cn?, as es-
timated on the basis of the pressure coefficient of the
equilibrium temperature for the nematic—sme®&ighases

b

0 10 20 30 ° 40 50 60 70 Hz. The figure shows germs that nucleated heterogeneously
135 5 . 1 125
130 o 120 18 T . . T o 4
B O S X 161 A
o125 1 T . & ob I A {11550 14} = o |°
o J12F A S
120 | 1110 > [ i
o 10 . A
, , . . ° 8 r 14
15 105 .
0.00 0.05 0.10 0.15 0.20 0.25 6 A
ao 4 d 1 1 1 1 1 0
0 10 20 30 40 50
FIG. 12. Average velocity of the tip under periodic heating and b,
cooling (open circles; relevant parameters ate=0.6, v=60,
£=0.5,0,=—0.12 andB,=0.24, and for oscillatory pressurepen FIG. 14. Average velocity, (open trianglesand amplitude of

triangles; calculated witfp)=0, £=0.5, other parameters as for velocity oscillationv, (full circles) as a function of heating ampli-
Fig. 2(d)]. tude b, for simulations presented in Fig. 13.
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FIG. 15. Snapshots demonstrating the effect of oscillatory pres- frequency (Hz)
sure on the smectiB-dendrite growing into undercooled nematic
phase AT:lo °C)(a) Without pressure oscillations amu)_(d) FIG. 17. FOUI’IeI’ Spectl’urKN(f) Of the half'W|dth Of the den'
with square wave pressure modulation of paramefers2 bar,  drite measured 66.aAm behind the tip as shown in Fig. @. For
£=0.2,7=0.75, 1.18, and 1.96 Hz, respectively. comparison, the respective spectrum for free dendritic gr¢fitn
16(a)] is also presentetsee inset

W(f) (arb. units)

at the same site with essentially the same orientation several )

times, yielding reproducible patterns. Although the respectheé phenomenon becomes more pronounced as predicted by

tive dimensionless undercoolingh=0.06 is considerably the phase-field calculations. At the largest pressure ampli-

smaller than in the simulatior@=0.4-0.68), the observed tudes(2 barg even the secondary side branches correlate

behavior follows closely the predictions of the phase-fieldWith the pressure oscillations.

theory. This similarity is especially striking when patterns

formed at similar reduced frequencies/{,) are compared 2. Modulated heating

[see Figs. &) and 15b) of »/f,=0.40 and 0.42 or Figs.(@) In analogy to pressure modulations, the periodic heating

and 15c) of 7/f,=0.6 and 0.6% An interesting observation €xperiments on the 1@m thick liquid crystal cell also re-

is that far from the dendrite tip irregularities develop in the veal regular side branchirigee Figs. 1G&)-16(c)]. The for-

lengths of the side branches, despite the even distance Btation of side branches correlates with the external forcing

their trunks. We observed an analogous phenomenon driveds illustrated in Fig. 1@®), where the black lines denote the

by the interaction with neighboring side arms via thermalPosition of the tip at the centers of the heating pulses. The

diffusion fields in long-time phase-field simulatiofs7]. correlation is also evident from the power spectrum of the
Concerning the effect of the forcing amplitude, we foundwidth of the dendrite measured 66.3n behind the tip(Fig.

that pressure oscillations of amplitude of 1 bar regularize thd 7). In full accord with the phase-field simulations for asym-

side-branch formation efficiently. With increasing amplitude Metric square wavefFig. 3(b)], the power spectrum indi-
cates the presence of modes that are either synchronous with

the forcing frequency=0.46 Hz, or oscillate with doubled
frequency(2v). Even a peak corresponding to the third har-
monic (3v) may be identified, although with an amplitude
that is close to the experimental uncertainty.

Remarkably, in the response to “symmetric” forcing
£=0.5, the 2 mode is also preselisee the Fourier-spectrum
and the short side-arms of doubled frequency in Fig, 18
although this frequency is absent from the forcing spectrum.
This finding confirms the nonlinear behavior revealed by
phase-field simulations, that higher harmonics missing from
the forcing spectrum are also excitgsee W(f) for sinu-
soidal forcing in Fig. 3.

Increasing the heating amplitude érso that the period-
averaged heating power reacties 10”4 W/cn?, the forma-

FIG. 16. Snapshots demonstrating the effect of oscillatory heattion of the side branches is suppresgede Fig. 16d)], a
ing on the smecti® dendrite growing into the undercooled nematic phenomenon resembling that seen in the numerical simula-
phase AT=1.0 °C).(a) No oscillatory heating(b) 7=0.2 Hz,P  tions (Fig. 13. Further increase of the heating amplitude
=6x10"5 W/cn®, é=0.14;(c) 7=0.46 Hz,P=6x10"5 W/cn?,  (and powey melts the dendrites back.
£=0.16: (d) 7=0.81 Hz,P=1.1x10"% W/cr?, £=0.61. The two In line with our theoretical predictionsee Fig. 2 of Ref.
lines in panelga) and(c) mark the positions, where the widinof ~ [33]), @ weak oscillation of the tip velocity has been ob-
the dendrite has been measured as a function of tiorehe Fou- ~ Served that correlates with the forcing. However, its ampli-
rier transforms see Fig. 17Black lines in panelb) denote the tude is just above the resolution of the present experimental

position of the tip at the centers of the heating pulses. setup.
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quantitative comparison. For example, the MST calculations

1o}t
o9l were performed for a 2D symmetric dendrite, while the an-
aall isotropy, the stability coefficient, and thédhet number were
= gl asgumed to be srr_1a||; conditions that are nqt rr_1et in our simu—
= - lations and experiments. Therefore, a qualitative comparison
= ™ is only meaningful. An important further difference between
g 05 previous work and ours is that we used nonlocal forcing, as
= L opposed with the tip-localized forcing assumed in the MST.
‘; 031 Let us first recall some of the MST predictions on noise

0z amplification (based on the Wentzel-Kramers-Brillouin ap-
0.1 proximation that have been tested by comparison with nu-
0.0 P S TV N . merical simulationg45,48 and experiment$30] for fixed
00 s 10 15 20 25 frequency perturbations localized at the tip.
frequency (Hz) (i) Periodic forcing by a fixed frequency leads to sur-

. ) . . face oscillations of amplitude that increases exponentially
_FIG. 18. Side branch formation close to the tip under "symmet-yi the distance from the dendrite tip up to a critical dis-
ric” (£=0.9 square-wave heating as displayed by a smd8tien-  5cer  proportional with 144, For larger distances the am-
drite growing into the unde'rcooled nematic phasg. The growth patblitude decreases and eventually dies away. If, in turn, the
tern (insery and the Fourier spectruritV(f) (main fram¢ are distance from the tip is fixed andis varied, a peak is ob-
shown. Black lines in the inset denote the forcing frequencyhe served in the amplitude ’

white line marks the positio53.2 um behind the tip where the . . . .
width w of the dendrite has been measured as a function of time. (ii) The localized wave packets behave differently; they

Note the presence of the mode oscillating with twice the base fre9row exponentlal_ly as _they move to_ arbitrarily Ia_rg_e dis-
quency of forcing; a mode missing from the forcing spectrum. Thet@nces _from the tip, Wh'!e the.respectlvle (?harag:terlstlc wave
relevant parameters aie=0.35 Hz andP=9x 105 Wicr? length increases. Our simulations are in line with the previ-

ous MST and numerical predictions for tip-localized forcing
B — ) in the following respects.

A remarkable feature of the “regularized” dendrites, not (5 |y the vicinity of the dendrite tip, the amplitude of the
seen in the simulations, is a shift in the position of the side,qqe synchronous with forcing increases roughly exponen-

branches on the two sides of the main [gee, e.9., Figs. ia|ly with the distance from the tip. Owing to the excessive
16(b) and 16c)]. As a result, one cannot use the symmetry.omptation time and memory needed, we were unable to

parameters andb [defined by Eqs(3) and(4)] for charac- g4y the decay of this mode in detail. Nevertheless, as ex-
terization of the pattern’s regulanty. For the same reason, thBected from the MST, at large frequencig&g. 2f)] the
Fourier spectra shown in Figs. 17 and 18 have been evaluynchronous mode can only be recognized in the vicinity of
ated from the half-width of the dendrite. Despite the shift ofipe gendrite tip. Another sign, that accords with the presence
the side branches, the power spectra on the two sides agg 5 critical distance;, beyond which the excited mode de-
fairly similar. cays, is a maximum observed in the amplitulg, of the

The shift in the position of the side branches might beggcong harmoni¢Fig. 6 in simulations where the forcing
attributed to the asymmetry of the dendrite {glue to the spectrum contains:2with a significant amplitude.

angular dependenas(¢) [35]), observed at higher resolution ) The amplitudeA, measured at a fixed distance behind

of the tip region—one side of the tip was faceted. The firSty, jonqrite tip shows a maximum as a function of the forc-
observable surface undulation that evolves later into a sides g frequency[Fig. 5a)].

arm appears on the rounded side. In contrast, the faceted side p interesting feature, revealed by our phase-field simu-

remains smooth up to the same distance beh”?d the tip. lations, is that besides the synchronous mode, the Fourier
_ Finally, one should mention that the electric heating inchectrym of the dendrite width contains the second and third
liquid crystals may have side effects that are not incorporategl; -monics with perceptible amplitudes. This finding is con-
into our phase-field model. Switching the electric field on,gymeq by our experiments. We believe that this is the first
the orientation of the nematic directo(N) changes from  yirect gemonstration of such nonlinear effects in connection

planar to homeotropic(perpendicular to the bounding it giffusional instability induced dendrite formation dur-
plateg, an effect that influences the magnitude and anisotj,g 5 first-order phase transformation. It appears, that this

ropy of the interfacial free energy, and may induce local flow, o jinear behavior is not a peculiarity of spatially homoge-

in the sample. However, these side effects are of minor impq 45 forcing. Although not mentioned in the original works,

portance, since they are present in full strength much belo,ces of higher harmonics seem to be present in the respec-
the electric field needed for regularization. tive power spectra for local forcing as wdlB2,30. It is
worth mentioning, furthermore, that a similar behavior has
been observed in the case of anomalous Saffman-Taylor fin-
gering [35], suggesting that the appearance of higher har-
In this section we compare our results with those on thenonic modes in response to periodic external forcing is a
dynamic response of dendritic growth to local forcing with common feature of dendrite formation whether driven by
fixed frequency as emerging from the microscopic solvabil-diffusional or mechanical instabilities. It is remarkable that
ity theory (MST) and experiment. It is appropriate to men- the appearance of higher harmonics has been reported during
tion that some features of the MST derivation prevent ahe time evolution of spatially perturbed planar interface in

V. DISCUSSION
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directional solidificatio{46]. Further work is needed, how- N L A A B
ever, to clarify whether the two phenomena have a commor o8} slope: (0.03210.003)K/bar .
origin. Summarizing, in the present state of affairs it seems +
that the only specific feature of pattern formation under non-
local forcing is a simultaneous triggering of side brancioés 0.06 - LI
first, second, and higher ordérsn independent crystallites g + bt
throughout the sample. A
B 004 -
o
VI. SUMMARY HE +
Our computer simulations and experiments demonstratec  0.02 | 8
that the dendritic morphology can be regularized by nonlocal
time-periodic forcing realized by modulated pressure and
Joule heating. These conditions lead to an oscillatory veloc- == T 15 T
ity of the dendrite tip, and yield side branches at regular p, (bar)

distances, provided that the frequency of the modulation is
close to the “natural” frequency of free side-branch forma-  FiG. 19. Pressure dependence of the temperature of the nematic-
tion. The dynamic response of the system to such nonloc@mecticB phase transition.

forcing can be understood in general on the basis of previous - )
theoretical and experimental results on tip-localized forcingthe change of the phase transition temperature depending on
However, the nonlinear effects, such as the appearance 8i€ Pressure. Linear fit on the data gives a slddg/dp

higher harmonic modes, warrant further theoretical work. = (0-032£0.003) Ki/bar for the Clapeyron coefficient.
The Clapeyron coefficient can be also calculated from the
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Humboldt Foundation. expansion coefficient in the nematic ph&56]) one obtains

dT,,/dp=0.033 K/bar in excellent agreement with the ex-
APPENDIX: PRESSURE DEPENDENCE OF THE PHASE perimental value. , o
TRANSITION TEMPERATURE Although this value is much larger than for metals, it is
not unusual for liquid crystals. For example,0.03 K/bar
The pressure dependence of tNeSz phase transition has been reported for the nematic-crystal transition in PAA,
temperature has been measured by a procedure similar to theatd ~0.1 K/bar for the nematic smectic transition in
described in Refl37]. For differentp, a singleSg monodo-  p-methoxybenzoic acif61]. Comparable, or even larger co-
main has been kept at constant size by controlling the temefficients have been measured on other organic substances
perature for several houtsintil the thermodynamic equilib- such as camphene 0.214 K/atm, pivalic acid 0.0674 K/atm,
rium state of the system has approaghédgure 19 shows and succinonitrile 0.0245 K/atfb2)].
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