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Regular dendritic patterns induced by nonlocal time-periodic forcing
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The dynamic response of dendritic solidification to spatially homogeneous time-periodic forcing has been
studied. Phase-field calculations performed in two dimensions~2D! and experiments on thin~quasi-2D! liquid-
crystal layers show that the frequency of dendritic side branching can be tuned by oscillatory pressure or
heating. The sensitivity of this phenomenon to the relevant parameters, the frequency and amplitude of the
modulation, the initial undercooling and the anisotropies of the interfacial free energy, and molecule attach-
ment kinetics, has been explored. It has been demonstrated that in addition the side-branching mode synchro-
nous with external forcing as emerging from the linear Wentzel-Kramers-Brillouin analysis, modes that oscil-
late with higher harmonic frequencies are also present with perceptible amplitudes.

PACS number~s!: 05.45.Xt, 81.10.Aj, 64.70.Dv, 68.70.1w
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I. INTRODUCTION

Complex patterns observed in nature have attracted
siderable interest recently@1–3#. The complicated spatiotem
poral behavior that leads to the formation of such pattern
usually associated with the instabilities of systems transfo
ing under nonequilibrium conditions. A spectacular exam
of practical importance is dendritic growth that appears
anisotropic systems where the propagation of the transfor
tion front is coupled with the diffusion of a conserved qua
tity. The respective diffusional instabilities lead to the form
tion of a traveling quasisteady-state tip that emits surf
undulations which evolve into side arms in directions det
mined by the anisotropy of the system@4#. Many of the tech-
nologically important materials form by dendritic solidifica
tion @4#. Analogous phenomena have been reported
biological systems@5#, anisotropic Hele-Shaw cells@6#, and
in cosmology-particle physics@7,8#. Although experiments
on the freezing of transparent liquids@9–14# clarified many
of the essential features of dendrite formation, import
questions remained open. For example, the role played
thermal fluctuations in side branching is the subject of c
tinuing investigations@4,13,15–18#. It is anticipated that a
selective amplification of thermal noise is responsible for
side branching and for the observed irregularity of dendr
patterns@10–12,19#.

While the steady-state behavior of dendritic growth is u
derstood fairly well in the framework of recent theories~mi-
croscopic solvability @4,20–22# and phase-field theorie
@4,23–28#!, less is known of the dynamic response of t
dendritic morphology to time-dependent external pertur
tions. The nonlinear systems often develop regular patte
under periodic forcing@3#. Considering the inherent nonlin
earity of the equations describing dendritic growth, it is re
sonable to expect that such periodic perturbations lead
resonance patterns that might be used to influence the gr
morphology. Besides its scientific interest, a detailed und
standing of such phenomena could open novel routes
designing materials for specific applications.

Time-periodic forcing of dendritic side branching has
ready been realized via local heating of the dendrite tip
PRE 621063-651X/2000/62~6!/7817~11!/$15.00
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laser beam@29–31# ~which has the advantage of being we
controllable but cannot be applied homogeneously in la
volumes!, or by exposing it to an oscillatory flow field@32#
~which is global, but spatially homogeneous forcing cann
be easily achieved!. Both methods lead to the formation o
fairly regular morphologies in a suitable frequency rang
However, these methods cannot be easily used for spat
homogeneous controlling of growth morphologies in lar
volumes. To circumvent this problem, we demonstrated@33#
the possibility for tuning the dendritic morphology by sp
tially homogeneous time periodic forcing via modulat
pressure@34,35# and heating, that change the undercooli
instantaneously and homogeneously in large volumes.

In this paper we present a detailed analysis of the dyna
response of dendritic solidification to oscillating pressure a
heating. In identifying the resonance conditions and the m
important process parameters, we rely on phase-field mo
ing, one of the most potent methods for describing morph
ogy evolution. The theoretical predictions will be confront
with experiments on quasi-two-dimensional~2D! liquid crys-
tal layers, known as suitable model materials@14,36–38#.
The rest of this paper is structured as follows. In Sec. II
briefly summarize the phase-field equations that incorpo
external forcing, and introduce quantities for characteriz
growth morphology. Section III is devoted to the experime
tal setup and the details of the measurement technique
Sec. IV, we present the phase-field predictions and comp
them with the experimental results. In Sec. V, our findin
are discussed in the light of theory and experiment on
localized forcing. Finally, a few concluding remarks will b
made in Sec. VI.

II. PHASE-FIELD THEORY WITH EXTERNAL FORCING

We investigate the growth of the crystalline phase into
undercooled single component liquid at a temperature
tween the melting point and the hypercooling limit~‘‘unit
undercooling’’! @39#. In this temperature range, the therm
diffusion controls the growth process, as opposed to
~molecule attachment! kinetics controlled mechanism takin
7817 ©2000 The American Physical Society
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place below the hypercooling temperature@40#. Owing to the
heat release during solidification, the crystalline phase h
up to its melting point, while the rest of the latent heat
transported into the cold liquid. Under such conditions,
planar front is inherently unstable against thermal pertur
tions despite the stabilizing effect of the interfacial free e
ergy @41#.

The phase-field theory is a powerful tool with which
study moving boundary problems. It represents a dyna
extension of the Cahn-Hilliard theory of first-order pha
transformations, in which the evolution of a nonconserv
order parameter is coupled to thermal or chemical diffus
@4,23–28#. Here we use a thermodynamically consistent v
sion @23# ~model I of Ref.@25#! which ensures locally posi
tive entropy production and was modified to incorpora
anisotropies of the interfacial free energy and the kinetic
efficient @42#. The local state of the matter is represented
the phase fieldf(r ,t) @43#.

To incorporate external forcing, the equations@25,42# that
describe the evolution of the phase field and the tempera
field T(r ,t) in 2D

t~u!
]f

]t
5Q~T!p8~f!2G8~f!2

d

dfH 1

2
@k~u!#2u¹fu2J ,

~2.1!

$cp1@p~f!21#L8~T!%
]T

]t
1L~T!p8~f!

]f

]t
5k¹2T,

~2.2!

have to be modified. Heret is an empirical relaxation coef
ficient, whose inverse is an intrinsic interfacial mobility, a
d/df stands for variation with respect tof. Other notations
are as follows:p(f)5f3(10215f16f2), k2/2 the coeffi-
cient of the square-gradient term in the entropy function
that depends on the orientation represented by the angu
~defined as tan(u)5]yf/]xf), G(f)5f2(12f)2/4e, e is
a constant that determines the height of the intermed
maximum of the double well potential Q(T)
5*Tm

T @L(h)/h2#dh52DG(T)/T, DG(T) the Gibbs free

energy difference between the liquid and solid, whilecp ,
L(T), andk are the specific heat of the liquid, the enthal
difference between the liquid and the solid, and the ther
conductivity, respectively. The primed quantities denote
rivatives with respect to the arguments. Note thatf andp are
dimensionless. The units ofk and k2 are W m21 K21 and
J m21 K21, respectively; whileQ, G, cp , and 1/e are mea-
sured in J m23 K21.

The dominant effect of the pressure modulationp(t)
5p01Dp(t) is a variation of the melting point described b
the Clausius-Clapeyron lawTm(p)5Tm(p0)1DpDV/Sm ,
whereDV is the volume change upon solidification andSm is
the entropy of fusion. This enters into Eq.~1! via the Gibbs
free energy difference which may be approximated
DG(T,p)'Sm@Tm(p)2T# at small undercoolings (Tm2T
!Tm). The other relevant quantities@specific heat, heat o
fusion, and entropy of fusionL8(T)] are far less sensitive to
the variation of pressure. For example, integrating
Clausius-Clapeyron relationship one obtainsDL5DpDV@1
1Dcp /Sm1T(a lVl2asVs)/DV#, whereDcp5cp,l2cp,s is
ts
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the variation of the specific heat upon melting,a l ,s are the
thermal expansion coefficients, while subscriptsl ands refer
to the liquid and the solid respectively. Under typical con
tions of our experiments@pressure amplitude;2 bar, under-
cooling of 1 K, and physical properties of CCH3~Appen-
dix!#, the undercooling varies by;6%, while the relative
change ofL ~and Sm) is only ;1023. We found that such
pressure effects onL and Sm do not influence the result
perceptibly; i.e., pressure modulation needs to be taken
account only viaQ(T) in Eq. ~1!. Modulated heating, in turn
appears as a time dependent source term in Eq.~2!.

At this stage it is advantageous to introduce dimensi
less variables. This is done by using a characteristic len
scalev ~comparable to the size of a well developed cryst
lite! and the thermal diffusion timev2/D where D is the
thermal diffusion coefficient. To avoid complications emer
ing from an oscillating melting point, the reduced tempe
ture has been redefined in terms of a constant reference
peratureTr as u(r ,t)5(T2Tr)/(Tr2T`), whereT` is the
initial temperature of the undercooled liquid. The mathema
cal problem is invariant to the choice ofTr so far asA
5um5(Tm2Tr)/(Tr2T`) is inserted as in Eq.~3!. ~With
Tr5Tm , the usual form of the phase-field model is reco
ered.!

The relevant physical properties are combined into
mensionless parametersD5cp(Tr2T`)/L, a5A2vSmL/
(12cps0), t05SmDb0 /s0, ande5d/v, s̃85ds̃/du, where
d is the interface thickness. The anisotropies of the interfa
free energys and the kinetic coefficientb are represented by
the dimensionless functionss̃511sn cos(nu)/2 and b̃51
1bn cos(nu)/2 of n-fold symmetry, that are related to th
dimensional quantities via relationshipss(u)5s0s̃(u) and
b(u)5b0b̃(u). Heresn and bn are the anisotropy param
eters. Lengths and time are scaled byv and v2/D, respec-
tively. The coefficientk and the constante are related tod
and the interfacial free energy@25#.

With these notations Eqs.~1! and ~2! transform to

e2t0b̃s̃
]f

]t
5f~12f!H f2

1

2
130eaD@u2A~ t !#f

3~12f!J 2e2
]

]x F s̃s̃8
]f

]y G1e2
]

]y

3F s̃s̃8
]f

]x G1e2¹@s̃2¹f#, ~2.3!

]u

]t
1

1

D
30f2~12f!2

]f

]t
5¹2u1B~ t !, ~2.4!

where the modulated pressure and heating are incorpor
via termsA(t) andB(t), respectively.

In this work Eqs.~2.3!,~2.4! have been solved numericall
on anN3N rectangular grid,N51000, that corresponds t
an areal 3 l of dimensionless linear sizel 55 and a grid
spacingDx50.005. An explicit finite difference scheme ha
been employed in the case of Eq.~2.3!, while Eq. ~2.4! has
been handled by the alternating-direction implicit meth
which is unconditionally stable@42#. At t50 a crystalline
nucleus (f50) is placed at the center of the model ar
filled by uniformly undercooled liquid~f51, u521). The
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PRE 62 7819REGULAR DENDRITIC PATTERNS INDUCED BY . . .
reduced temperature and the phase field were kept con
(u521 andf51! at the boundaries of the model space.
save CPU time, we used a primitive adaptive mesh te
nique: far from the solidification front Eq.~2.4! has been
solved on a rough grid~of spacing 103Dx). To model the
effect of thermal fluctuations and to suppress undesirable
tice effects that favor specific growth directions, a spatia
and temporally uncorrelated noise of amplitude 0.01 a
zero mean value has been added to the dimensionless
peratureu in every time step. If not stated otherwise, we u
the dimensionless parameters:a5350, t0520, e50.005,
Dx50.005, and time stepDt51024. Owing to the known
limitations of phase-field modeling@4,44#, we performed our
calculations at relatively large undercoolings,D50.4020.68.

To characterize the spatiotemporal behavior of the evo
ing dendritic morphology the following quantities were d
termined.

~1! We measured the widthw of the dendrite behind the
tip at a distance ofz50.75 ~150 pixels!. To investigate this
feature for longer times, we performed separate simulati
on a 12003600 grid, oriented so that the larger dimension
parallel with the direction of growth~here we usedDt58
31025). The amplitudeAn in the Fourier transformW( f ) of
w(t) characterizes the response synchronous with exte
forcing.

~2! The symmetry of the growth patterns was charac
ized by the quantitiesa andb:

a5
( i , j 52N/2

N/2 ~f i , j2f2 i , j !
2

M
, ~2.5!

b5
( i , j 52N/2

0 ~f i , j2f j ,i !
2

K
, ~2.6!

whereM and K are the numbers of pixels in which 0.4,f
,0.6 for the whole system and for the lower left quart
respectively. Accordingly,a>0 measures the symmetry o
the whole domain with respect to they axis, while b>0
quantifies the axisymmetry of a main branch. Both para
eters are zero for symmetric patterns.

III. EXPERIMENTAL SETUP AND CONDITIONS

The nematic–smectic-B (N2SB) phase transition of liq-
uid crystals is recognized as an appropriate model of crys
lization in liquids @36–38#. A specialty of this phase trans
formation is a large anisotropy of the interfacial free ene
@37#, a property expected to be advantageous for the regu
ization of dendritic morphology on theoretical grounds~see
Sec. IV A and Ref.@33#!.

To test the predictions, experiments have been perform
on thin CCH3 liquid crystal layers. Ready-made cells
E.H.C. Co. ~Japan! KSRP-10 ~of thickness 10mm) and
KSRP-02 ~2 mm) have been filled with CCH3~Merck,
Darmstadt!. To investigate whether modulated pressure
duces flow in the experiments, we tracked the positi
motion of tracer particles. With the exception when bubb
were trapped in the liquid crystal, we were unable to det
fluid flow in our 2mm cells. All experiments were performe
ant
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on bubble free cells. The surface treatment of the bound
glass plates assured the planar alignment of bothN and SB
phases@the directorsn(N) andn(SB) that describe the aver
age orientation of the elongated molecules are in the plan
the cell#, and the conducting layers on the bounding pla
were used as electrodes.

For pressure modulation the liquid crystal cell was plac
into a brass box~see Fig. 1! surrounded by a temperatur
controlled hot stage of accuracy63 mK. The gas pressure in
the brass box has been regulated by a computer contro
solenoid valve system that switches on and off an exc
pressurepe preset between 0 to 2 bar with an accuracy
60.03 bar. This allows square wavelike pressure modu
tions in the frequency range up toñ;2 Hz.

The modulated heat release in the bulk has been real
by periodically transmitting a high frequency~600 kHz!
electric current through the liquid crystal layer produced
gating the signal of a function generator withñ;1 Hz. The
local off-plane heat transport~a precondition of regulation
with oscillatory heating, see Sec. IV A and Ref.@33#! is en-
sured by the quasi-2D sample geometry and by the h
transport through the bounding glass plates.

The growth patterns were monitored in transmitting mo
via a polarizing microscope equipped with a CCD camera
method relying on the different optical properties of the ne
atic and smectic B phases. The images were stored and
cessed by a PC. The spatial and time resolutions of

FIG. 1. Experimental setup.
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system were 5123512 pixels and 0.04 s, respectively. Th
calibration procedure with 6.33 objective and 3.23 projec-
tor combination gave scale factors of 1.3560.01mm/pixel in
the x direction and 0.9560.01mm/pixel in they direction.

The same setup has been used to measure the pre
coefficient of the temperature of transformation between
smectic-B and nematic phases~see the Appendix!.

IV. RESULTS

A. Theoretical predictions

To find resonance patterns we investigated the param
space defined by the frequency and amplitude of the mo
lation, the undercooling and the anisotropies of the inte
cial free energy and the kinetic coefficient. The calculatio
were performed with fourfold and sixfold anisotropiesn
54 and 6 in expressions fors̃ andb̃!. Before presenting ou
results on nonlocal periodic forcing we characterize the
modulatedreferencestate.

1. Free dendritic growth

Independently of the symmetry of the system, a we
uncorrelated~noise-induced! side-branching occurs in th
unmodulated reference state shown in Fig. 2~a!. The width
w(t) of a main dendrite arm measured at a dimension

FIG. 2. Dendritic patterns of fourfold symmetry predicted by t
phase-field theory forD50.6, s4520.12, b450.24, andt50.22.
~a! Under constant pressure yieldingA5um50.048 and~b!–~f! in
the presence of square-wave pressure modulations of ampl
a050.16 and filling coefficientj50.3. The gray level in the liquid
phase indicates the temperature field. The white line marks the
sition, where the width of the dendrite arm was measured. Sys
size: 100031000 pixels.
ure
e

ter
u-
-
s

-

k

s

distance ofz50.75 behind the tip@Fig. 3~a!# indicates sur-
face undulations that can be decomposed into a spectru
oscillations which covers the dimensionless frequency ra
of ;30 to ;170, centered around a characteristic frequen
of f 0;100 @see inset in Fig. 3~b!#. This behavior accords
with that seen in the phase-field simulations of Karma a
Rappel@18#, and with experimental results@16,30#. In agree-
ment with Ref.@18#, we find that far from the tip the char
acteristic wave lengthl05v/ f 0 depends much more weakl
on the distance from the tip than predicted by the mic
scopic solvability theory@22,45#, a behavior interpreted in
terms of the ‘‘stretching’’ of the perturbations@18# that travel
along the curved perimeter of the dendrite.

Considering that the applied uncorrelated noise probes
dynamic response of the system to a broad variety of
quencies, it is reasonable to seek ‘‘resonance’’ in the vicin
of the characteristic frequencyf 0 of spontaneous side
branching.

2. Pressure modulations

According to the Clausius-Clapeyron law, the modulat
pressure translates into a time dependent melting point,
is represented by insertingA(t)5um(t)5a0g(t) and B(t)
50 into Eqs.~3! and ~4!. Since our experimental setup a
lows only square-wave modulations~characterized by the
filling coefficient j5ton/t0, wheret0 is the period of oscil-
lations andton the pulse length!, the simulations have bee
performed for this wave form~unless stated otherwise!.

~a! The effect of forcing frequency.The frequency depen
dence of the growth patterns is shown in Figs. 2~b!–2~f!. At
low forcing frequencies~n,15!, the system alternates be
tween two steady-state growth modes yielding uncorrela
side branching that correspond to the actual undercoolin
is, however, remarkable that the switching transient betw
the constant pressure stages initiates more pronounced
arms than formed during the constant pressure perio

de

o-
m

FIG. 3. ~a! Width of the dendritew(t) at a distance ofz50.75
behind the dendrite tip without periodic perturbation@heavy solid
line; Fig. 2~a!#, in the presence of sinusoidal~light solid line! and
square-wave@dotted line; Fig. 2~d!#. ~b! The respective Fourier
spectraW( f ).
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Regular growth morphologies@Fig. 2~b!–~e!# are observed in
the lower half of the dimensionless frequency range of sp
taneous thermal side branching shown in the inset of F
3~b!. At frequencies larger than these, the formation of s
branches cannot follow the external forcing, and the unc
related thermal side branching reappears@Fig. 2~f!#.

In agreement with our earlier results@33#, when regular
morphologies are formed, the side branching and the tip
locity correlate with the pressure modulation. The para
etersw(t), a, and b reflect the formation of regular mor
phologies. For example, a periodic variation of the wid
w(t) of the dendrite is seen@Fig. 3~a!#, which correlates with
the external sinusoidal forcing and leads to the formation
regular side branches. Note that in addition to the forc
frequency@that appears with a far larger amplitude inW( f )
than the spontaneous undulations#, its second and third har
monics~2n,3n! are also present albeit with an amplitude th
diminishes for higher order harmonics@Fig. 3~b!#.

Apparently, periodic forcing with fixed frequency excite
several surface modulations; one synchronous with the f
ing frequency~n! and others oscillating with the higher ha
monic frequencies~2n,3n, . . . !, which indicates a dynamic
coupling among these modes associated with the nonline
of the governing equations.

The relative amplitudes of higher harmonics vary with t
wave form of the pressure modulation yielding differe
growth patterns~see Fig. 4!. Fairly similar patterns@see Figs.
4 ~a! and 4~b!# are observed for sinusoidal and square-wa
modulations, provided that for the latterj50.5 @i.e., frequen-
cies (2n11)n, n51,2, . . . , arepresent in the forcing spec
trum#. When the filling coefficientj deviates from 0.5, the
frequency/phase content of forcing varies~e.g., the second
harmonic 2n appears! leading to such effects as the form
tion of side branches of twice the number corresponding
the base frequency@see Figs. 4~a!–4~c!#. To understand this
behavior we analyze the frequency dependence of the
namic response of the system to ‘‘asymmetric’’ forcing~j
50.3!.

The Fourier amplitudesAn and A2n ~corresponding to
modes that oscillate with the forcing frequency and
double, respectively! and the symmetry parametersa and b
are presented in Fig. 5 as a function of the forcing freque
n. An and A2n show maxima whenn or 2n is close tof exc
;70 @Fig. 5~a!#, where f exc is the frequency where the syn
chronous response has the maximum amplitude. Note
f exc is somewhat below the characteristic frequencyf 0
;100 of the unperturbed dendritic growth. A possible exp

FIG. 4. Comparison of growth patterns corresponding to~a!
sinusoidal, ~b! symmetric ~j50.5!, and ~c! asymmetric~j50.3!
square-wave forcing of equal period lengths~n530!, and period
averaged amplitudes forD50.55. Note the side-branch ‘‘doubling’
in panel~c!. ~Other relevant parameters are as for Fig. 2.! System
size: 100031000 pixels.
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nation of this deviation might be a different ‘‘stretching’’ o
perturbations, related to differences seen between shap
dendrite tips formed in free growth and under external fo
ing. It is also remarkable, that at low forcing frequencies
amplitudeA2n of the second harmonic becomes larger th
An . This inversion of the relative magnitudes ofAn andA2n
is responsible for the side-branch ‘‘doubling’’ shown in Fi
4. A similar phenomenon is seen in Fig. 2~b!, where the
second harmonic is the dominant mode as indicated by
striking similarity of patterns corresponding ton520 and 40
@see Figs. 2~b! and 2~c!#.

We find that the amplitudeAn increases approximatel
exponentially with the distancez from the tip of the dendrite,
while A2n saturates as a function ofz ~Fig. 6!. Remarkably,
the symmetry parametersa and b display minima at lower
forcing frequencies@aroundn;20; see Fig. 5~b!# than the
maximum of the Fourier amplitudeAn . This difference in
the positions of the extrema is a manifestation of the fact t
axial symmetry and frequency content are different const
ents of regularity. It appears thatAn gives a closer represen
tation of the regularity recognized by the human eye than
symmetry parameters. The overall frequency dependenc

FIG. 5. Amplitude of Fourier peaksAn and A2n measured at
z50.75 behind the tip, and the symmetry parametersa andb as a
function of the driving frequencyn. Other relevant parameters ar
D50.55,j50.3,s4520.12, andb450.24, whilea050.14~a! and
a050.2 ~b!.

FIG. 6. Fourier amplitudesAn ~circles! andA2n ~triangles! as a
function of the distancez from the dendrite tip at two undercooling
D50.55 ~full symbols! and 0.6~empty symbols!. Note the roughly
exponential behavior ofAn and the saturation inA2n . Other rel-
evant parameters aren560, j50.3, a050.16, s4520.12, andb4

50.24.



la
le
o

w

n
tu

n-

s
d
th
m

as
g
er
i-

s
e
,
o

n is
ni-

ally
a-
e to
rn.
al

ity
ing

ing

cial
or
nt
at

ion

s
om-

e

e
s
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the pattern formation supports our anticipation that regu
ization via periodic forcing with fixed frequencies is possib
when the latter fall in the characteristic frequency range
noise-induced side branching.

~b! The effect of the amplitude of forcing.The Fourier
amplitudesAn and A2n and the symmetry parameters sho
that with increasing forcing amplitudea0 the regularity of
the growth patterns increases~Fig. 7!. This is manifested in
monotonously increasingAn and A2n that saturate for large
a0. At the same time,a andb decrease witha0, reflecting the
increasing symmetry of the patterns.

~c! The effect of undercooling.The response to a give
pressure modulation correlates with the tendency for ‘‘na
ral’’ side branching~Fig. 8!. While at large undercoolings
~e.g.,D50.65!, the formation of side branches is rather i
tense, leading to well developed side-arms~both with or
without forcing!, at D50.5 or below free growth produce
essentially no side branches, and external forcing is nee
to trigger them, also reflected in their smaller size. Note
difference in spatial periodicity, that originates from the te
perature dependence of the tip velocity.

The variation of the Fourier amplitudesAn andA2n with
undercooling~D! is shown in Fig. 9. The maximum ofAn

might be understood as follows. We found that with incre
ing undercoolingf exc increases. Accordingly, a fixed forcin
frequencyn produces the maximum amplitude at the und
cooling for which f exc;n. For the same reason, the max
mum amplitude for the second harmonic 2n appears at a
larger undercooling.

~d! The effect of anisotropy.Theoretical consideration
and numerical simulations show that anisotropy plays a c
tral role in the formation of dendritic morphology. It is
therefore, reasonable to expect that it has a similar imp

FIG. 7. Amplitude of the Fourier peaksAn and A2n , and the
symmetry parametersa andb as a function of the forcing amplitud
a0 for the system shown in Fig. 2~d!.

FIG. 8. The effect of undercooling on pattern formation und
periodic forcing.~a! D50.65 and~b! D50.5. Other parameters a
for Fig. 2~d! except thatt50.2 andt50.283 for panels~a! and~b!,
respectively. System size: 100031000 pixels.
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tance in the formation of regular patterns. This expectatio
verified by the dependence of growth forms on the mag
tude of anisotropies in the system~Fig. 10!. The growth pat-
terns and variations of the Fourier amplitudesAn and A2n ,
and of the symmetry parameters~Fig. 11! indicate that the
regularizing effect of external forcing decreases dramatic
with vanishing anisotropy, i.e., without well defined orient
tional preferences the external perturbations are unabl
drive the amoebalike growth forms into a regular patte
This is in accordance with numerical results for direction
solidification where the role of the anisotropy in the stabil
of singlet and doublet cellular patterns was pointed out us
a perturbation technique@46#. Note that the tip velocity de-
creases with decreasing anisotropies~note the difference of
simulation times the snapshots correspond to!, the excitation
with n560 generates periodic side arms with increas
spacing.

In these calculations we assumed that both the interfa
free energy and the kinetic coefficient are anisotropic. F
the sake of simplicity, their ratio was usually kept consta
b4 /s4522. Our further investigations show, however, th
resonance patterns form ifany of these anisotropies~that of
s or b! is sufficiently large.

FIG. 10. Pattern formation under periodic forcing as a funct
of anisotropy:s4520.08 ~a!, s4520.04 ~b!, s4520.02 ~c!, and
s4520.01 ~d!. Other relevant parameters areD50.55, n560,
j50.3, a050.16, andb4522s4. The average growth rate varie
with anisotropy, therefore, different times are needed to reach c
parable sizes:t50.24 ~a!, t50.3 ~b!, t50.38 ~c!, and t50.44 ~d!.
System size: 100031000 pixels.

r

FIG. 9. Amplitude of the Fourier peaksAn , A2n as a function of
undercoolingD. Other relevant parameters aren560, j50.3, a0

50.16, s4520.12, andb450.24.
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3. Modulated heating

~a! Alternating heating and cooling.They lead to essen
tially the same type of resonance patterns as pressure o
lations, provided that the net heat production in a period
negligible. A remarkable difference is, however, that wh
the average tip velocityv0 is essentially independent of th
amplitude of pressure modulations, it decreases with the
plitude of heat production/extraction~Fig. 12!; a phenom-
enon that might be associated with different efficiencies
heating and cooling.

~b! Oscillatory heating.The introduction of a local off-
plane thermal transport described byB(t)5b0g(t)
1h@u(r ,t)2u`# was necessary to prevent the melting of t
crystal for the heating amplitudes needed to generate reg
patterns. Hereh,0 is a dimensionless heat transfer coe
cient that imitates heat transfer perpendicular to the plan
the liquid crystal layer towards the surrounding of reduc
temperatureu` . Since this term serves as a local heat si
the in-plane thermal diffusion becomes less restrictive. T
results in the formation of more compact objects~see Fig.
13! with thick main arms and less developed side branch
While with an increasing amplitude of the heat pulses
side arms become more regular, they become smaller du
the dissipated heat.

Very similar to pressure modulations, oscillatory heati
leads to an oscillating tip velocity. Owing to a decreasi
average undercooling accompanied with increasing hea
amplitudeb0, the period averaged velocityv0 of the tip de-

FIG. 11. Amplitude of the Fourier peaksAn , A2n , and symme-
try parametersa andb as a function of anisotropy parameterus4u of
the interfacial free energy. The kinetic anisotropy has been va
proportionally (b4522s4). Other relevant parameters a
D50.55,n560, j50.3, anda050.16.

FIG. 12. Average velocity of the tip under periodic heating a
cooling ~open circles; relevant parameters areD50.6, n560,
j50.5,s4520.12 andb450.24, and for oscillatory pressure@open
triangles; calculated witĥp&50, j50.5, other parameters as fo
Fig. 2~d!#.
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creases roughly linearly withb0 ~Fig. 14!. At the same time,
the amplitude of the oscillatory part of the velocityvn in-
creases about linearly. In summary, our investigations im
that under well defined conditions both types of nonlo
forcing can be used to control dendritic growth.

B. Experimental results

In defining the experimental conditions, we utilized th
results of computer simulations. For CCH3, the time a
spatial resolution of our experimental setup is optimal at
undercooling of;1 K. Comparable variations of the unde
cooling ~;0.1–0.2 K! are achievable by applying modula
tion amplitudes as high as 2 bar or 331024 W/cm2, as es-
timated on the basis of the pressure coefficient of
equilibrium temperature for the nematic–smectic-B phases
~see the Appendix! and other relevant properties.

The appropriate frequency range of forcing has been
termined by Fourier analysis of the widthw(t) of a freely
growing dendrite measured at 66.5mm behind the tip. With-
out perturbation, the side branching is essentially rand
@Figs. 15~a! and 16~a!#. The characteristic frequency, ident
fied as the peak of the broad spectrum in the inset of Fig.
is roughly 1.8 Hz. Accordingly, our experimental setup w
designed to cover the frequency range of 0–2 Hz.

1. Pressure modulations

The experimental results for pattern formation in the
mm thick liquid crystal cell are summarized in Fig. 15. Res
nance patterns of fairly regular side-branches are obse
@Figs. 15~b!–15~d!# at forcing frequencies comparable wit
the characteristic frequency of the unperturbed stateñ;1.8
Hz. The figure shows germs that nucleated heterogeneo

d

FIG. 13. Pattern contours formed under periodic heat pulse
amplitudes increasing from left to right (b055.7, b0528.6, and
b0551.4). Other relevant parameters areD50.61, n550, j50.15,
s4520.16,b450.32,h5214.3,t0516, andDt5731025. Sys-
tem size: 100031000 pixels.

FIG. 14. Average velocityv0 ~open triangles! and amplitude of
velocity oscillationvn ~full circles! as a function of heating ampli
tudeb0 for simulations presented in Fig. 13.
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at the same site with essentially the same orientation sev
times, yielding reproducible patterns. Although the resp
tive dimensionless undercooling~D50.06! is considerably
smaller than in the simulations~D50.420.68!, the observed
behavior follows closely the predictions of the phase-fi
theory. This similarity is especially striking when patter
formed at similar reduced frequencies (ñ/ f 0) are compared
@see Figs. 2~c! and 15~b! of ñ/ f 050.40 and 0.42 or Figs. 2~d!

and 15~c! of ñ/ f 050.6 and 0.65#. An interesting observation
is that far from the dendrite tip irregularities develop in t
lengths of the side branches, despite the even distanc
their trunks. We observed an analogous phenomenon dr
by the interaction with neighboring side arms via therm
diffusion fields in long-time phase-field simulations@47#.

Concerning the effect of the forcing amplitude, we fou
that pressure oscillations of amplitude of 1 bar regularize
side-branch formation efficiently. With increasing amplitu

FIG. 15. Snapshots demonstrating the effect of oscillatory p
sure on the smectic-B dendrite growing into undercooled nemat
phase (DT51.0 °C).~a! Without pressure oscillations and~b!–~d!
with square wave pressure modulation of parameterspe52 bar,
j50.2, ñ50.75, 1.18, and 1.96 Hz, respectively.

FIG. 16. Snapshots demonstrating the effect of oscillatory h
ing on the smectic-B dendrite growing into the undercooled nema

phase (DT51.0 °C). ~a! No oscillatory heating;~b! ñ50.2 Hz, P̄

5631025 W/cm2, j50.14; ~c! ñ50.46 Hz,P̄5631025 W/cm2,

j50.16; ~d! ñ50.81 Hz, P̄51.131024 W/cm2, j50.61. The two
lines in panels~a! and~c! mark the positions, where the widthw of
the dendrite has been measured as a function of time~for the Fou-
rier transforms see Fig. 17!. Black lines in panel~b! denote the
position of the tip at the centers of the heating pulses.
ral
-

of
en
l

e

the phenomenon becomes more pronounced as predicte
the phase-field calculations. At the largest pressure am
tudes ~2 bars! even the secondary side branches corre
with the pressure oscillations.

2. Modulated heating

In analogy to pressure modulations, the periodic heat
experiments on the 10mm thick liquid crystal cell also re-
veal regular side branching@see Figs. 16~a!–16~c!#. The for-
mation of side branches correlates with the external forc
as illustrated in Fig. 16~b!, where the black lines denote th
position of the tip at the centers of the heating pulses. T
correlation is also evident from the power spectrum of
width of the dendrite measured 66.5mm behind the tip~Fig.
17!. In full accord with the phase-field simulations for asym
metric square waves@Fig. 3~b!#, the power spectrum indi-
cates the presence of modes that are either synchronous
the forcing frequencyñ50.46 Hz, or oscillate with doubled
frequency~2ñ!. Even a peak corresponding to the third ha
monic ~3ñ! may be identified, although with an amplitud
that is close to the experimental uncertainty.

Remarkably, in the response to ‘‘symmetric’’ forcin
j50.5, the 2ñ mode is also present~see the Fourier-spectrum
and the short side-arms of doubled frequency in Fig. 1!,
although this frequency is absent from the forcing spectru
This finding confirms the nonlinear behavior revealed
phase-field simulations, that higher harmonics missing fr
the forcing spectrum are also excited@seeW( f ) for sinu-
soidal forcing in Fig. 3#.

Increasing the heating amplitude orj so that the period-
averaged heating power reachesP̄'1024 W/cm2, the forma-
tion of the side branches is suppressed@see Fig. 16~d!#, a
phenomenon resembling that seen in the numerical sim
tions ~Fig. 13!. Further increase of the heating amplitud
~and power! melts the dendrites back.

In line with our theoretical predictions~see Fig. 2 of Ref.
@33#!, a weak oscillation of the tip velocity has been o
served that correlates with the forcing. However, its amp
tude is just above the resolution of the present experime
setup.

s-

t-

FIG. 17. Fourier spectrumW( f ) of the half-width of the den-
drite measured 66.5mm behind the tip as shown in Fig. 16~c!. For
comparison, the respective spectrum for free dendritic growth@Fig.
16~a!# is also presented~see inset!.
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A remarkable feature of the ‘‘regularized’’ dendrites, n
seen in the simulations, is a shift in the position of the s
branches on the two sides of the main tip@see, e.g., Figs
16~b! and 16~c!#. As a result, one cannot use the symme
parametersa andb @defined by Eqs.~3! and~4!# for charac-
terization of the pattern’s regularity. For the same reason,
Fourier spectra shown in Figs. 17 and 18 have been ev
ated from the half-width of the dendrite. Despite the shift
the side branches, the power spectra on the two sides
fairly similar.

The shift in the position of the side branches might
attributed to the asymmetry of the dendrite tip~due to the
angular dependences~u! @35#!, observed at higher resolutio
of the tip region—one side of the tip was faceted. The fi
observable surface undulation that evolves later into a s
arm appears on the rounded side. In contrast, the faceted
remains smooth up to the same distance behind the tip.

Finally, one should mention that the electric heating
liquid crystals may have side effects that are not incorpora
into our phase-field model. Switching the electric field o
the orientation of the nematic directorn(N) changes from
planar to homeotropic~perpendicular to the boundin
plates!, an effect that influences the magnitude and anis
ropy of the interfacial free energy, and may induce local fl
in the sample. However, these side effects are of minor
portance, since they are present in full strength much be
the electric field needed for regularization.

V. DISCUSSION

In this section we compare our results with those on
dynamic response of dendritic growth to local forcing w
fixed frequency as emerging from the microscopic solva
ity theory ~MST! and experiment. It is appropriate to me
tion that some features of the MST derivation preven

FIG. 18. Side branch formation close to the tip under ‘‘symm
ric’’ ~j50.5! square-wave heating as displayed by a smectic-B den-
drite growing into the undercooled nematic phase. The growth
tern ~insert! and the Fourier spectrumW( f ) ~main frame! are
shown. Black lines in the inset denote the forcing frequencyñ. The
white line marks the position~53.2 mm behind the tip! where the
width w of the dendrite has been measured as a function of ti
Note the presence of the mode oscillating with twice the base
quency of forcing; a mode missing from the forcing spectrum. T

relevant parameters areñ50.35 Hz andP̄5931025 W/cm2.
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quantitative comparison. For example, the MST calculatio
were performed for a 2D symmetric dendrite, while the a
isotropy, the stability coefficient, and the Pe´clet number were
assumed to be small; conditions that are not met in our si
lations and experiments. Therefore, a qualitative compari
is only meaningful. An important further difference betwe
previous work and ours is that we used nonlocal forcing,
opposed with the tip-localized forcing assumed in the MS

Let us first recall some of the MST predictions on noi
amplification ~based on the Wentzel-Kramers-Brillouin a
proximation! that have been tested by comparison with n
merical simulations@45,48# and experiments@30# for fixed
frequency perturbations localized at the tip.

~i! Periodic forcing by a fixed frequencyn leads to sur-
face oscillations of amplitude that increases exponenti
with the distance from the dendrite tip up to a critical d
tancezc proportional with 1/n4. For larger distances the am
plitude decreases and eventually dies away. If, in turn,
distance from the tip is fixed andn is varied, a peak is ob-
served in the amplitude.

~ii ! The localized wave packets behave differently; th
grow exponentially as they move to arbitrarily large d
tances from the tip, while the respective characteristic w
length increases. Our simulations are in line with the pre
ous MST and numerical predictions for tip-localized forcin
in the following respects.

~a! In the vicinity of the dendrite tip, the amplitude of th
mode synchronous with forcing increases roughly expon
tially with the distancez from the tip. Owing to the excessiv
computation time and memory needed, we were unable
study the decay of this mode in detail. Nevertheless, as
pected from the MST, at large frequencies@Fig. 2~f!# the
synchronous mode can only be recognized in the vicinity
the dendrite tip. Another sign, that accords with the prese
of a critical distancezc beyond which the excited mode de
cays, is a maximum observed in the amplitudeA2n of the
second harmonic~Fig. 6! in simulations where the forcing
spectrum contains 2n with a significant amplitude.

~b! The amplitudeAn measured at a fixed distance behi
the dendrite tip shows a maximum as a function of the fo
ing frequency@Fig. 5~a!#.

An interesting feature, revealed by our phase-field sim
lations, is that besides the synchronous mode, the Fou
spectrum of the dendrite width contains the second and t
harmonics with perceptible amplitudes. This finding is co
firmed by our experiments. We believe that this is the fi
direct demonstration of such nonlinear effects in connect
with diffusional instability induced dendrite formation du
ing a first-order phase transformation. It appears, that
non-linear behavior is not a peculiarity of spatially homog
neous forcing. Although not mentioned in the original work
traces of higher harmonics seem to be present in the res
tive power spectra for local forcing as well@32,30#. It is
worth mentioning, furthermore, that a similar behavior h
been observed in the case of anomalous Saffman-Taylor
gering @35#, suggesting that the appearance of higher h
monic modes in response to periodic external forcing i
common feature of dendrite formation whether driven
diffusional or mechanical instabilities. It is remarkable th
the appearance of higher harmonics has been reported d
the time evolution of spatially perturbed planar interface
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directional solidification@46#. Further work is needed, how
ever, to clarify whether the two phenomena have a comm
origin. Summarizing, in the present state of affairs it see
that the only specific feature of pattern formation under n
local forcing is a simultaneous triggering of side branches~of
first, second, and higher orders! on independent crystallite
throughout the sample.

VI. SUMMARY

Our computer simulations and experiments demonstra
that the dendritic morphology can be regularized by nonlo
time-periodic forcing realized by modulated pressure a
Joule heating. These conditions lead to an oscillatory ve
ity of the dendrite tip, and yield side branches at regu
distances, provided that the frequency of the modulation
close to the ‘‘natural’’ frequency of free side-branch form
tion. The dynamic response of the system to such nonlo
forcing can be understood in general on the basis of prev
theoretical and experimental results on tip-localized forci
However, the nonlinear effects, such as the appearanc
higher harmonic modes, warrant further theoretical work
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APPENDIX: PRESSURE DEPENDENCE OF THE PHASE
TRANSITION TEMPERATURE

The pressure dependence of theN–SB phase transition
temperature has been measured by a procedure similar to
described in Ref.@37#. For differentpe a singleSB monodo-
main has been kept at constant size by controlling the t
perature for several hours~until the thermodynamic equilib
rium state of the system has approached!. Figure 19 shows
z

z

.

n
s
-

d
l

d
c-
r
is

al
us
.
of

s,

A
,
s
n

hat

-

the change of the phase transition temperature dependin
the pressure. Linear fit on the data gives a slopedTm /dp
5(0.03260.003) K/bar for the Clapeyron coefficient.

The Clapeyron coefficient can be also calculated from
relation

dTm

dp
5

Tm
0 DVN→SB

DH
, ~A1!

whereTm
0 , DVN→SB and DH are the phase transition tem

perature at atmospheric pressure, the molar volume cha
on transition, and the molar latent heat of fusion, resp
tively. From the relevant material parameters of CCH
namely, Tm

0 5329.45 K @37#, m5233 ~molar mass!, r
5895.4 kg/m3 ~density at 80.6°C@49#!, DH56247 J/mol,
DVN→SB/V522.6%, andaN52531024 1/K ~volumetric
expansion coefficient in the nematic phase@50#! one obtains
dTm /dp50.033 K/bar in excellent agreement with the e
perimental value.

Although this value is much larger than for metals, it
not unusual for liquid crystals. For example,;0.03 K/bar
has been reported for the nematic-crystal transition in PA
and ;0.1 K/bar for the nematic smectic transition
p-methoxybenzoic acid@51#. Comparable, or even larger co
efficients have been measured on other organic substa
such as camphene 0.214 K/atm, pivalic acid 0.0674 K/a
and succinonitrile 0.0245 K/atm@52#.

FIG. 19. Pressure dependence of the temperature of the nem
smectic-B phase transition.
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