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Dendrites Regularized by Spatially Homogeneous Time-Periodic Forcing
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The effect of spatially homogeneous time-periodic external forcing on dendritic solidification has
been studied by phase-field modeling and experiments on liquid crystal. It is shown that the frequency
of dendritic sidebranching can be tuned by oscillating pressure or heating. The main parameters that
influence this phenomenon are identified.

PACS numbers: 81.10.Aj, 64.70.Dv, 64.70.Md, 68.70.+w
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One of the most spectacular and practically importa
growth modes observed in nature is dendritic solidifica
tion [1]. A dominant part of the present knowledge o
dendrites originates from studies on transparent orga
model systems [1,2]. The nonlinearity of the problem im
plies that periodic external perturbations may lead to sp
cific resonance patterns that could be used for regulat
the growth morphology. The understanding of dynam
response to such perturbations could open a novel route
materials of application tailored properties.

A spatially inhomogeneous controlling of dendritic
sidebranching has already been achieved by periodic lo
heating of the dendrite tip by laser beam [3], or by oscilla
tory flow field [4]. In this work we explore the possibility
of controlling dendritic growth homogeneously through
out the sample via pressure oscillations that influen
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the melting point, and uniform periodic heating in th
volume. We use the phase-field model, an approach
is able to handle all stages of morphology evolution i
cluding dendritic growth [1,5,6], to identify the most im
portant process parameters and resonance condition
two dimensions (2D). The predictions are tested by e
periments on quasi-2D liquid crystal layers, known
suitable model materials [7].

The phase-field model represents a dynamic extens
of the Cahn-Hilliard theory of first-order phase transfo
mations that couples the evolution of the order-parame
distribution [f�r, t� � phase field] to thermal transpor
[1,5,6]. The respective equations that incorporate
anisotropy of both the interfacial free energy�s�u� �
sos̃�u�� and kinetic coefficient�b�u� � bob̃�u�� read as
follows [8]:
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where u�r, t� � �T 2 Tr���Tr 2 T`� is the dimension-
less temperature,̃s0 � ds̃�du, and the relevant physical
properties are combined to form dimensionless par
meters D � cp�Tr 2 T`��L,a �

p
2 vSmL��12cpso�,

to � SmDbo�so , ande � d�v, with Sm, L, Tm, cp , D,
and d standing for the melting entropy, enthalpy, an
temperature, the specific heat, the thermal diffusion coe
ficient, and the interface thickness. Lengths and time a
scaled by a reference lengthv (comparable to the size of
the well developed germ) andv2�D, respectively. Other
details of the numerical method are given in Ref. [7(b)
Contrary to the usual definition of the dimensionles
temperature in terms of the melting point,u is related here
to a reference temperatureTr . This is needed to avoid
difficulties when introducing an oscillatory melting point
The problem is invariant to the choice ofTr , provided that
A � um � �Tm 2 Tr���Tr 2 T`� is inserted into Eq. (1).
(With Tr � Tm the usual form of the phase-field model is
recovered.)
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The external perturbations appear in the govern
equations as follows.

(A) Pressure modulations [A�t� � um�t� � a0f�t� and
B�t� � 0].—The dominant effect is the variation of th
melting point (and thus the undercooling) with pressu
according to the Clausius-Clapeyron relationshipTm �
Tm�p0� 1 �p 2 p0�DV�Sm, where DV is the volume
change upon solidification. This effect receives consid
able attention currently [9] owing to its capacity to chan
the undercooling instantaneously and uniformly in lar
volumes [10].

(B) Periodic heating in the volume [A�t� � 0 and
B�t� � b0f�t�].—It is represented by the source ter
B�t� in the heat transport equation Eq. (2).

The phase-field equations have been solved num
cally on a rectangularN 3 N lattice (N � 1000) for the
free growth of a crystallite just nucleated at the cen
(x, y � 0) of a square liquid region (see Fig. 1). Fo
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FIG. 1. (a)–(f ): The effect of square-wave pressure perturba-
tion on the solidification morphology. a0 � 0.2 and j � 0.3;
n � 0 (no pressure oscillation), 3.2, 32, 60, 80, and 100, re-
spectively; t � 0.24; D � 0.55; s4 � 0.12; b4 � 0.24; a �
350; t0 � 20; ´ � 0.005; system size: 1000 3 1000 pixels
(that corresponds to 5 3 5 in dimensionless units); time-step:
0.0001 [13].

the comparison with the experimental system a fourfold
symmetry has been assumed for the angular dependen-
cies s̃ � 1 1 s4 cos�4u��2 and b̃ � 1 1 b4 cos�4u��2,
where s4 and b4 are the anisotropy parameters. In each
time step a spatially uncorrelated noise with the amplitude
of 0.01 was added to u. The regularity of the growth pat-
terns is characterized by the quantities a and b:

a �

PN�2
i,j�2N�2 �fi,j 2 f2i,j�2

M
, (3)

b �

P0
i,j�2N�2 �fi,j 2 fj,i�2

K
, (4)

where M and K are the numbers of pixels in which
0.4 , f , 0.6 for the whole system and for the lower
left quarter, respectively. As for a the summation runs for
all pixels, a $ 0 measures the axisymmetry of the whole
domain relative to the y axis, while b $ 0 measures the
axisymmetry of one main branch. Both parameters are
zero for symmetric patterns.

To identify the range of conditions under which periodic
external perturbations dominate the pattern formation, we
investigated the parameter space defined by the amplitude
2854
and the frequency of the modulation, the undercooling, and
the anisotropy.

First, we address the consequences of pressure os-
cillations that translate into an oscillatory melting
point via the Clausius-Clapeyron law. Sinusoidal,
f�t� � �sin�2pnt� 1 1��2, and square-wave (with filling
coefficient j � ton�t0, where t0 is the period of oscil-
lations and ton stands for the pulse length) modulations
were studied.

The response to a square-wave modulation with a0 �
0.2 and j � 0.3 is presented in Fig. 1 as a function of the
dimensionless modulation frequency n. Using s4 � 0.12,
b4 � 0.24, and D � 0.55 (the latter follows from the
known limitations of phase-field modeling [1,11]), the un-
modulated state displays irregular sidebranching due to the
effect of the noise [Fig. 1(a)]. At low frequencies (where
the switching transient is negligible), the pressure modula-
tion leads to alternating steady-state growth regimes cor-
responding to a lower and a higher undercooling, the latter
characterized by enhanced sidebranching [Fig. 1(b)].

A regular morphology is observed in the dimension-
less frequency range 15 , n , 90, which is slightly
below the frequencies of the noise induced (early stage)
sidebranches of the dendrites (n � 70–210 at the lo-
cation of 10–1 tip radii behind the tip) emerging from
the microscopic solvability theory [12]. In this regime,
the formation of sidebranches [Figs. 1(c)–1(e)] and
the tip velocity (Fig. 2) show a strict correlation with
pressure (undercooling) pulses. The increasing regularity
of growth patterns is manifested in a minimum of the
symmetry parameters around n � 30 (Fig. 3). As the
frequency increases further, the front is unable to follow
the external perturbation, and the uncorrelated weak ther-
mal sidebranching reappears [Fig. 1(f)]. Similar results
have been obtained for sinusoidal oscillations.

Increasing the undercooling the tendency for sponta-
neous sidebranching becomes more pronounced; the ex-
ternal perturbations need only to regulate them. At small
undercoolings, however, the large anisotropy hinders
spontaneous sidebranching, and external perturbations
are needed to trigger them, reflected in less developed
sidebranches.

The calculations performed at various degrees of
anisotropy show that regular morphology may form only
if the anisotropy is high enough. Without well defined
orientational preferences the external perturbations are
unable to drive the amoebaelike growth forms into a
regular pattern.

Computations for alternating heating and cooling lead to
essentially the same type of resonance patterns as pressure
oscillations, provided that the average heat production for a
period was negligible. However, in the case of oscillatory
heating, the introduction of a local off-plane thermal
transport was necessary to prevent the melting of the
crystallite for heating amplitudes needed to generate regu-
lar patterns. The off-plane heat transport has been taken
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FIG. 2. The tip’ s velocity in time (solid line) and the
melting point um � A�t� (dotted line) for n � 60 [Fig. 1(d)]
in dimensionless units.

into account via a dimensionless heat transfer coefficient h
leading to B�t� � b0f�t� 1 h�u�r, t� 2 u`�.

These investigations imply that under well defined con-
ditions both types of oscillatory perturbations can be used
to control dendritic solidification.

To test the predictions, experiments have been per-
formed on thin liquid crystal layers. The nematic-smectic
B�N 2 SB� phase transition of liquid crystals is recognized
as an appropriate model of crystallization in liquids with
high anisotropy of s�u� [7]. Ready-made cells of E. H. C.
Co. (Japan) KSRP-10 (of thickness 10 mm) and KSRP-
02 (2 mm) have been filled with CCH3 (Merck, Darm-
stadt). The surface treatment of the bounding glass plates
assured the planar alignment of both N and SB phases [the
directors n�N� and n�SB� are in the plane of the cell] and
the conducting layers on the bounding plates were used as
electrodes.

For pressure modulation the liquid crystal cell was
placed into a brass box surrounded by a temperature con-
trolled hot stage of accuracy 63 mK. The gas pressure in
the brass box has been regulated by a computer controlled
valve system that switches on and off an excess pressure pe
preset between 0 to 2 bars with an accuracy of 60.03 bar.
We measured the pressure coefficient of the phase transi-
tion temperature and found it about 0.035 K�bar.

The modulated heat release in the bulk has been realized
by periodically transmitting a high frequency (600 kHz)
electric current through the LC layer, which leads to a heat
evolution in the bulk. The local off-plane heat transport

FIG. 3. The frequency dependence of the symmetry parame-
ters a ��� and b ���. (Other parameters are as for Fig. 1.)
(the precondition of regulation with oscillatory heating) is
ensured by sample geometry through the bounding plates.

Square-wave oscillations of both pressure and heating
power have been applied in the experiments. The best cor-
relation between sidebranching and external perturbations
has been observed for large modulation amplitudes (2 bars
or 3 3 1024 W�cm2). These amplitudes have compa-
rable effects on undercooling (�0.1 K), as estimated on
the basis of the pressure coefficient of the melting point
and other relevant properties.

In accord with the simulations, there is an upper limit for
the period-averaged heating power (P � 1024 W�cm2)
above which even the off-plane thermal transport does not
prevent the melting of the dendrites. The most regular
resonance patterns were observed for short pressure (or
current) pulses in the range of j � 0.1 0.3.

The experimental results are summarized in Fig. 4.
Without perturbation, the sidebranching is essentially ran-
dom [Figs. 4(a) and 4(d)]. Under oscillatory pressure or
electric field “ resonance patterns” of fairly regular side-
branches appear [see Figs. 4(b), 4(c), 4(e), and 4(f)]. As
predicted by the phase-field calculations, the sidebranch
formation correlates with the external perturbations in a
wide frequency range. This correlation is demonstrated in
Fig. 4(f), where the black lines denote the position of the

FIG. 4. Effect of the oscillatory pressure [(a)–(c)] and elec-
tric current [(d)–(f)] on the smectic-B dendrite growing in
undercooled nematic phase (DT � 1.0 ±C). (a) No oscilla-
tions; (b) t0 � 0.61 s, j � 0.2, pe � 2 bars; (c) t0 � 1.1 s,
j � 0.2, pe � 2 bars; (d) no oscillations; (e) t0 � 2.15 s,
j � 0.16, P � 6 3 1025 W�cm2; (f ) t0 � 5.12 s, j � 0.14,
P � 6 3 1025 W�cm2.
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tip at the centers of the heating pulses. A remarkable fea-
ture is the shift in the position of the sidebranches on the
two sides of the main tip. This might be attributed to the
asymmetry of the dendrite tip. In line with our theoretical
predictions (Fig. 2), oscillations have been detected in the
tip velocity, however, of an amplitude that is just above
the resolution of the present experimental setup.

Finally, one should note that the electric heating in liquid
crystals may have side effects that are not incorporated
into our phase-field model. For example, switching on
the electric field the nematic director n�N� changes from
planar to homeotropic (perpendicular to the bounding
plate) that affects s and its anisotropy, and induces a
local flow in the sample. For this class of materials
these phenomena should also be included in a quantitative
description of the problem.

To summarize, our computer simulations and experi-
ments demonstrated that dendritic sidebranching can be
regulated by spatially homogenous (nonlocalized) periodic
variation of the melting point (induced by oscillatory exter-
nal pressure) or by periodic heating (generated by a dissi-
pative electric current). Both effects influence the growth
velocity of the moving dendritic tip, and lead to the for-
mation of a regular set of sidearms, a phenomenon that di-
minishes with decreasing interfacial/kinetic anisotropy. A
detailed understanding of the dynamic response of crystal-
lizing systems to such perturbations might open new routes
in designing materials.

This work was supported by research Grants
No. OTKA T014957, No. T025139, and No. F022771.
The computations were performed on computers donated
by the Alexander von Humboldt Foundation.

[1] Handbook of Crystal Growth, edited by D. T. J. Hurle
(North-Holland, Amsterdam, 1993), Vol. 1B.

[2] S. C. Huang and M. E. Glicksman, Acta Metall. 29, 701
(1981); M. E. Glicksman and N. B. Singh, J. Cryst. Growth
98, 277 (1989); E. R. Rubinstein and M. E. Glicksman,
2856
J. Cryst. Growth 112, 84 (1991); 112, 97 (1991); M. E.
Glicksman and S. P. Marsh, in Ref. [1], p. 1077.

[3] X. Qian and H. Z. Cummins, Phys. Rev. Lett. 64, 3038
(1990); L. Williams, M. Muschol, X. Qian, W. Losert,
and H. Z. Cummins, Phys. Rev. E 48, 489 (1993); B. T.
Murray, A. A. Wheeler, and M. E. Glicksman, J. Cryst.
Growth 154, 386 (1995).

[4] Ph. Bouissou, A. Chiffaudel, B. Perrin, and P. Tabeling,
Europhys. Lett. 13, 89 (1990).

[5] A. Karma and W. J. Rappel, Phys. Rev. Lett. 77, 4050
(1996); Phys. Rev. E 57, 4323 (1998).

[6] O. Penrose and P. C. Fife, Physica (Amsterdam) 43D, 44
(1990); S.-L. Wang, R. F. Sekerka, A. A. Wheeler, B. T.
Murray, S. R. Coriell, R. J. Braun, and G. B. McFadden,
Physica (Amsterdam) 69D, 189 (1993).

[7] (a) Á. Buka, T. Tóth-Katona, and L. Kramer, Phys. Rev. E
51, 571 (1995); T. Tóth-Katona, T. Börzsönyi, Z. Váradi,
J. Szabon, Á. Buka, R. González-Cinca, L. Ramirez-
Piscina, J. Casademunt, and A. Hernández-Machado,
Phys. Rev. E 54, 1574 (1996); (b) T. Börzsönyi, Á. Buka,
and L. Kramer, Phys. Rev. E 58, 6236 (1998).

[8] G. B. McFadden, A. A. Wheeler, R. J. Braun, and S. R.
Coriell, Phys. Rev. E 48, 2016 (1993).

[9] J. C. La Combe, M. B. Koss, L. A. Tennenhouse, E. A.
Winsa, and M. E. Glicksman, J. Cryst. Growth 194, 143
(1998); M. B. Koss et al., Transient Dendritic Solidifi-
cation Experiment, Proposal No. 96-HEDS-02-216, sub-
mitted in response to NASA Research Announcement,
Microgravity Materials Science: Research and Flight Ex-
periment Opportunities, NRA-96-HEDS-02.

[10] The regulation of dendritic growth via pressure changes
has been proposed by G. Szabó (Research Institute of
Materials Science, Budapest) as early as 1982.

[11] Y.-T. Kim, N. Provatas, N. Goldenfeld, and J. Dantzig,
Phys. Rev. E 59, R2546 (1999).

[12] J. S. Langer, Phys. Rev. A 36, 3350 (1987); M. Ben
Amar and Y. Pomeau, Europhys. Lett. 2, 307 (1986);
D. C. Hong and J. S. Langer, Phys. Rev. A 36, 2325
(1987).

[13] Computer animations based on our simulations are dis-
played at http://www.kfki.hu/�btamas/phase/perturb.html


