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Two Scenarios for Avalanche Dynamics in Inclined Granular Layers
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We report experimental measurements of avalanche behavior of thin granular layers on an inclined
plane for low volume flow rate. The dynamical properties of avalanches were quantitatively and
qualitatively different for smooth glass beads compared to irregular granular materials such as sand.
Two scenarios for granular avalanches on an incline are identified, and a theoretical explanation for these
different scenarios is developed based on a depth-averaged approach that takes into account the differing
rheologies of the granular materials.
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Avalanche behavior of granular material has many natu-
ral realizations from snow avalanches to massive rock-
slides. Physics-oriented avalanche investigations focusing
on sand-pile kinematics [1] have given way to more recent
work, which has probed granular interactions and the ap-
propriate balance between continuum and discrete ap-
proaches [2]. Often avalanche dynamics have been studied
with a bulk granular substrate, either in a rotating drum
[1,3–7] where the critical angle �c, i.e., the angle where
grains start to flow, is reached by the slow rotation of the
drum or on a pile [1,8]. Alternatively, one can investigate
flow on an inclined plane where an underlying solid surface
constrains the flow. In inclined layer granular flow at high
volume flow rates a uniformly thick layer forms, whereas
for lower flow rates waves in the form of thickness varia-
tions appear [9–14]. For both the freely flowing and wave
modulated cases, continuum descriptions of the flows
based on flow rheology describe the experiments well
[15–17].

In this Letter we focus not on steady or modulated flows
but rather on flows exhibiting distinct, well-resolved ava-
lanches. We have explored these flows on an inclined plane
and have discovered two distinct scenarios for the dynamic
avalanche behavior, depending on the character of the
grains. For rough nonspherical grains (RNSG), avalanches
are faster, bigger, and overturning. Individual grains have
down-slope speeds that exceed the front speed. By con-
trast, avalanches of spherical glass beads (SGB) are quan-
titatively slower and smaller, and the particles always
travel slower than the front speed. We show that this
difference in behavior arises from the differing rheologies
of the different particle types in steady-state flow, and is
linked to the stability of such flows. A theory based on the
nonlinear properties of the depth-averaged equations makes
quantitative predictions that agree with the experimental
results and suggests that our different avalanche structures
are related to the difference between roll waves and flood
waves in hydrodynamic contexts [18]. In particular, the
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propagation of the RNSG avalanches involves a shock,
while the SGB avalanches have a continuous structure.

Two key lessons emerge from this study. The first is that
our understanding of the rheology of dense granular flows
is now sufficiently robust to allow successful modeling of
quite detailed dynamical phenomena such as avalanche
profiles. The second is that the quantitative differences
between the rheology of the most commonly studied
spherical particles and the more realistic rough particles
result in qualitative, indeed, dramatic differences in their
dynamical behavior.

A thin layer of granular material inclined at an angle � is
stable for a wide range of � and thickness h. The onset of
flow is expected only above a critical layer thickness
[19,20] hc, and the flow subsides at hs < hc. The values
of hs��� and hc��� decrease rapidly with increasing �.
Thus, the layer can become unstable by increasing � by a
small amount �� [9,21] or by increasing h by adding new
grains to the layer at a low flow rate, as we do here. In the
former case, where the whole layer becomes metastable
[9,21], the shape and propagation of the avalanches de-
pend critically on �� such that either strictly downward
or simultaneous downward and upward expanding ava-
lanches can occur depending on the magnitude of ��. In
our case a homogeneous static layer is prepared that is
stable to small perturbations. New grains are added only at
the top region (5%) of the plane in the form of a very low
incoming flux (shower) perpendicular to the plane.
Because of the low incoming flux the height slowly in-
creases locally, and, when the little pile formed in this
manner becomes unstable, an avalanche is created, which
travels down the rest of the plane on top of the stable static
layer.

The experiments reported here used an inclined plane
2.2 m long and 0.4 m wide with a rough surface of particles
glued to a glass substrate or sandpaper with different grit
sizes. The grains were of two types: RNSG of sand or salt
with several mean diameters d (sand: 0:4� 0:1 mm; sand:
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0:2� 0:1 mm; salt: 0:4� 0:1 mm) and SGB with d �
0:5� 0:1 mm. The mass flow rate per unit width of the
channel Q was adjusted so that individual well-resolved
avalanches formed and was 0:17 g=s cm for RNSG and
0:05 g=s cm for SGB. Varying the incoming flux or the
kinetic energy of the incoming particles gives rise to a
change in the size distribution and frequency of ava-
lanches, which is not the subject of the present study.
The angle � was varied between 32� and 41� for RNSG
and between 22� and 26� for SGB. The differences in Q
and � for the different materials reflect the material varia-
tions in the critical angle �c and the angle of repose �r
where flow stops. The experimental methods for obtaining
the data presented below include visualization of grain
motion with high speed (1000 fps) video imaging, deter-
mination of the lateral sizes of avalanches by image differ-
encing, reconstruction of the 2D height profiles of
avalanches using a laser sheet, and determination of parti-
cle and front velocities by the analysis of single particle
trajectories on space-time plots.

Figure 1 shows the reconstructed 2D height profiles for
sand and glass bead avalanches for operating conditions
(� � 36:8�and 24.3�, and Q � 0:17 and 0:05 g=s cm for
RNSG and SGB, respectively) that produce roughly the
same number of spatially localized avalanches in an in-
stantaneous image. For gravity-driven flows on an incline
[22] the characteristic length scale is the height of the layer
hs and the corresponding velocity scale is

������������������
ghs cos�

p
. This

normalization collapses data for different sized RNSG as
shown in Fig. 2 where the spread is about 25% around the
mean of the three data sets. For the SGB the velocities of
avalanches with the same dimensionless areas are smaller
by roughly a factor of 4. Further, the maximum dimension-
less area of SGB avalanches is less than for RNSG ava-
lanches, again by about a factor of 4. The corresponding
dimensionless avalanche velocity as a function of ava-
a.
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FIG. 1 (color online). Height profiles of (a) RNSG avalanche
for � � 36:8�. Image size 7:2 cm� 56 cm (vertical size re-
scaled 25 times); maximum height, hm � 0:34 cm; static layer
thickness, hs�0:12 cm; (b) SGB avalanche for ��24:3�. Image
size 12:2 cm� 46:8 cm (vertical size rescaled 25 times); maxi-
mum height, hm�0:29 cm; static layer thickness, hs�0:18 cm.
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lanche height, normalized by hs, is shown in Fig. 2(b).
The data support the hypothesis that there are two classes
of avalanches: SGB avalanches have maximum height hm
that is always less than 2hs, whereas the height of RNSG
avalanches is always greater than 2hs. Our measurement of
the height of avalanches relative to hs for SGB hm=hs �
1:45� 0:1 is very similar to previous measurements for
granular waves [9] for which hm=hs � 1:55� 0:1,
whereas the RNSG heights reported here are considerably
higher: hm=hs � 2:5� 0:2.

The origin of this dramatic difference is revealed in
detailed measurements of the velocity distribution of sur-
face particles for the two types of avalanches. The ava-
lanche front speed uf and the surface mean particle speed
up right behind the front can be determined by measuring
the image intensity along the center line of an avalanche.
Plotting the intensity in a space-time plot (see Fig. 3)
reveals streaks associated with particles and a well-
differentiated front for each avalanche type. For RNSG
avalanches [Fig. 3(a)] the streaks within the avalanche are
less steep than the front line, indicating up > uf, whereas
the opposite is true [Fig. 3(b)] for the SGB avalanches. In
Fig. 4, the plot of up versus uf shows that for SGB up <
uf, with a ratio up=uf � 0:7, whereas for RNSG ava-
lanches up > uf with up=uf � 1:4. Another feature of
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FIG. 2 (color online). Dimensionless avalanche front velocity
vs (a) dimensionless area A and (b) dimensionless maxi-
mum height hm=hs for sand (x), glass beads (	), salt (*), and
fine sand (4).
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FIG. 3 (color online). Space-time plots taken along the sym-
metry axis of the avalanches (a) sand for � � 36:8� with scaled
velocities (Froude numbers) Frf � 2:12, Frp � 2:55, and
(b) glass beads � � 23:3� with Frf � 0:55, Frp � 0:33.
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the avalanches seen in Fig. 3 is the continuous form of SGB
avalanches as evidenced by the curved paths just ahead of
the front (representing the acceleration of particles in this
region) as compared with particles being thrown out of the
main body of the avalanche for the RNSG type. High speed
imaging demonstrates [23] that an RNSG avalanche con-
sists of a fast moving packet of grains that overtakes the
front, like a breaking wave in a fluid, which entrains
granular material from the underlying layer as it passes
over. SGB avalanches, on the other hand, are continuous in
that the static stresses that hold grains in place in front of
the granular packet change and the previously stable pack-
ing collapses.
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FIG. 4 (color online). Ratio of particle and front velocities
up=uf for glass beads (	) and sand (�). The inset shows up
vs uf for � � 36:8� (sand) and � � 25:2� (glass beads).
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These two distinct types of avalanches can be under-
stood as consequences of the underlying rheology of the
RNSG and SGB systems and of the structure of the dy-
namical equations for a propagating front. Let us first
consider the rheology. For steady-state flows, both sand
and glass beads have depth-averaged velocities u given by
the Pouliquen form [19,22,24]

u������
gh

p � F�h=hs����; F�y� � �y� �; (1)

where hs��� is the minimum height of a flowing pile for an
angle �. (Note that the depth-averaged quantities of the
continuum model are different from the surface velocities
measured in the experiments.) For sand [10], the coeffi-
cients in the function F�y� are � � � � 0:7, whereas for
glass beads, � � 0:14 and � � 0 [10,19,24]. We now
apply these results to our RNSG and SGB systems,
respectively.

The simplest dynamical picture of granular flows down
an incline is achieved using the Saint-Venant shallow flow
equations, adapted for granular media by Savage and
Hutter [25]. For a flow of height h and mean velocity u,
these describe flow down a plane, with the plane parallel to
the x direction, by the averaged equations
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@�hu�
@t

� �
@�hu2�
@x

�

�
tan����u; h� � K
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Here � is determined by the profile of the flow, � � 1 for
plug flow (as in Ref. [25]), � � 4=3 for a linear flow
profile, or 5=4 for a convex Bagnold profile [16]. The
parameter K is determined by the ratio of the normal
stresses in the flow: the stress parallel to the bed, �xx,
and that perpendicular to the bed, �zz. Numerical results
show that K  �xx=�zz � 1 for steady-state flows [24].
The friction coefficient ��u; h� is determined by the re-
quirement that the steady flow obeys the rheology shown in
Eq. (1), and will thus vary with the particle type.

Since the dimensionless velocity, typically given as the
Froude number Fr � u=

����������������
gh cos�

p
, is small near the critical

angle or angle of repose for both the sand and the glass
bead flows, it is natural to take the limit Fr ! 0 in Eqs. (2)
and (3), which suppresses the left-hand side (LHS) of
Eq. (3). We thereby obtain with some work an approximate
equation for h:
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where the ‘‘viscosity’’ ! can be computed as !� d
������
gh

p

[26]. This equation has solutions similar to those of the
Burgers’ equation, with a Burgers’ shock smoothed by the
influence of the viscosity term. Thus, there is a solution
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consisting of a single hump propagating down the slope
with velocity a�h�, with a smooth structure determined by
the competition between this nonlinear velocity term on
the LHS of Eq. (4) and the viscosity term.

Turning to the full system of Eqs. (2) and (3), however,
we observe a potential flaw in this approach [18]. This full
system is hyperbolic with characteristic velocities

c� � u
�
��

���������������������������������
���� 1� �

K

Fr2

s �
: (5)

If the velocity appearing in Eq. (4) does not obey a < c�,
then Eq. (4) predicts a structure that moves faster than the
maximum rate at which information can be propagated in
the full system of equations, which is clearly impossible. In
these circumstances, the Burgers’ type solution transforms
itself into a truly discontinuous solution traveling at veloc-
ity c� [18], which is described by the full system Eqs. (2)
and (3) rather than by Eq. (4).

Using the rheology determined by Eq. (1), one can see
that for SGB, taking a value of � � 4=3, this discontinuous
solution will develop only for heights above h=hs � 6,
whereas for RNSG, it will develop as soon as the avalanche
has a height h=hs � 1:3 (the precise threshold depending
on the value of �). This quantitative height condition is
consistent with the data in Fig. 2(b) where hm=hs < 6 for
SGB and hm=hs > 1:3 for RNSG. Further, calculation of
the experimental ratio a=c� using the rheology of Eq. (1)
yields a=c� < 0:75 for SGB and a=c� > 1:1 for RNSG,
which is also consistent with this picture. Thus, we con-
clude that the glass bead avalanches reflect smooth solu-
tions of Eq. (4), with a < c�, whereas the sand avalanches
represent discontinuous solutions of the full system, trav-
eling at velocity c�. The latter avalanches propagate into a
quiescent bed because they are traveling at the character-
istic velocity for the medium. The glass bead avalanches
are analogous to ‘‘flood waves’’ in river flows, whereas the
sand avalanches are analogous to ‘‘roll waves’’ in these
flows [18,27]. Note that ahead of the flowing avalanche, the
moving material propagates into a material at rest, which is
presumably in a state close to the critical Mohr-Coulomb
state [28]. Unlike the flowing state, for which�xx � �zz, in
this critical state �xx > �zz. Thus the transition region, in
which the flow accelerates from rest into a pseudo steady
state described by the continuum theory, can be viewed as a
region of passive Rankine failure, through which the com-
pressive stress parallel to the bed, �xx, is decreasing with
time. The mechanics of this region is complex, and cannot
be described by the Saint-Venant equations alone.

Finally, we point out that in the linear theory of the
instability of steady flows, developed by Forterre and
Pouliquen, the criterion a < c� corresponds to the stable
regime of these flows with respect to wave disturbances
[10]. Thus, our observation of discontinuous avalanches
for sand and smooth avalanches for glass beads dovetails
nicely with their observation that steady flows of sand are
20800
far more unstable to such disturbances than are steady
flows of glass beads.
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