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Abstract 

We present numerical simulations directed at the description of smectic-B germs growing into the supercooled nematic 
phase for two different liquid crystalline substances. The simulations are done by means of a phase-field model appropriate 
to study strong anisotropy and also faceted interfaces. The most important ingredient is the angle-dependent surface en- 
ergy, but kinetic effects are also relevant. The simulations reproduce qualitatively a rich variety of morphologies observed 
in the experiments for different values of undercooling, extending from the faceted equilibrium shape to fully developed 
dendrites. 

PACS: 61.30.-v; 61.50.Cj; 81.30.Fb; 68.70.+w 

1. Introduction 

Dendritic growth is one of the most interesting 
phenomena in pattern forming instabilities. It occurs 
in a rich variety of situations not only in the con- 
text of crystal growth, but also in other interfacial 
growth phenomena such as mesophase transitions in 
liquid crystals, electrodeposition and expanding bac- 
terial colonies [1-6]. In our present understanding, 
anisotropy seems to be an essential ingredient of the 
mechanisms that lead to the formation of dendrites 

* Corresponding author. 

and the determination of their shape and growth 
velocity under given conditions [7,8]. 

An aspect which has received much attention 
recently is the case of faceted dendrites. The exper- 
imental observation [9] triggered substantial theo- 
retical work [10-13]. Also directional solidification 
of faceted interfaces has been investigated theoreti- 
cally [14-17] and experimentally, both in mesophase 
growth [17-20] and actual solidification [21-23]. 

In this paper we will focus on the case of liquid 
crystals, and in particular on the growth of a smectic- 
B phase into a supercooled nematic phase. Whereas 
nematics are fully liquid (no translational order), the 
smectic-B phase is characterized by strongly ordered 
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layers with h~xagonal order within the layers I. ~ i s  
situation has been extensively studied experimentally 
during the last years and presents a rich variety of mor- 
phologies, ranging from strongly anisotropic equilib- 
rium shapes wi~  long facets, to apparently the usual 
non.faceted type of denotes  [26,28]. This is there- 
fore ~ appropriate system to study the interplay be- 
tween equilibrium anisotropy and dynamic effects in 
the growth morphology. 

We have considered two different liquid crystals. 
One of the substances has been previously studied 
experimentally in [27,28] showing the different mor- 
phologies referred to above. Some new experimental 
results are also reported here. Experiments are done in 
very thin samples, which give a quasi-two-dimensional 
geometry in which the interface can be described by a 
line. The sample is initially set above the phase tran- 
sition temperature Tns, and is suddenly undercooled 
below this temperature in such a way that small germs 
of smectic-B nucleate and start to grow. 

The growth of liquid crystal interfaces is in many 
aspects analogous to that of solidification interfaces. 
The basic description is expected to be the same, the 
main differences are in the parameter ranges, which 
often make the liquid crystal case particularly suitable 
from an experimental point of view, From a theoretical 
point of view, a significant parameter difference with 
respect to the solidification case is the one associated 
to the diffusion coefficients which are of the same 
order of magnitude in the two liquid cry. stal phases. 

R e  s t a n d ~  macroscopic solidification model re- 
lies on the heat diffusion equation for the temper- 
ature field supplemented with boundary conditions 
(heat conservation and the Gibbs-Thomson local equi- 
librium relation) at the interface, which is assumed 
to be sharp. In rapid growing conditions the Gibbs- 
Thomson equation should have a kinetic term added, 
which accounts for deviations from the local equilib- 
rium. This defines a free boundary problem that can be 
recast into integrodifferential equation, which was 
the starting point for considerable numerical and ana- 

! We are dealing with what is now usually called the "crystal 
B'" phase, which has a weak 3D ordering, rather than the less 
common "hexatic B" p~ase, see, e.g. [24,25]. 
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lytical work. However, in the last years the so-called 
phase-field models, in which boundary conditions at 
the interface are avoided by defining an auxiliary field 
that mimics an order parameter, have received in- 
creased attention. We will show that this procedure is 
also suitable and competitive in cases with faceted in- 
terfaces, corresponding to cusps in the surface tension 

• function or(0). 
This approach has been successfully applied to 

ordinary dendritic crystal growth [29-35], but nei- 
ther to situations with strong anisotropy nor to cases 
in which the equilibrium interface presents facets in 
some preferr~a directions. In such cases, the inter- 
facial free energy, which can be extracted from the 
equilibrium shape through the Wulff construction, has 
non-analiticities (cusps) in its angular dependence, 
associated to such preferred directions. The phase- 
field approach will also allow for an anisotropy of the 
kinetic effects, which can be chosen independently of 
the equilibrium anisotropy. The competition between 
the two anisotropies may also induce morphological 
changes as a function of undercooling [36]. For sim- 
plicity and as a first step, in this paper we will restrict 
ourselves mainly to the case of isotropic kinetic ef- 
fects [10]. We will show that even with this choice 
the phase-field model can qualitatively reproduce the 
patterns observed in the experiments. 

Experimental results for these substances are pre- 
sented in Section 2. In Section 3 we describe the 
model, in Section 4 the simulation procedure is pre- 
sented together with the corresponding numerical re- 
sults. Finally, the conclusions are drawn in Section 5. 

2. Experimental system 

We have §tudied the growth of two liquid crystalline 
substances, both presenting a nematic to smectic-B 
first-order phase transition. The first substance, 4-n- 
propyl-4'-cyano-trans 1, l-bicyclohexane, which will 
be called substance I, has a transition temperature 
Tns - 56.3°C. Substance I has already been experi- 
mentally studied in [27,28]. For the second substance, 
4-n-butyl-4'-cyano-trans l,l-bicylohexane, which will 
be called substance II, the transition temperature is 
Tns -- 53.1°C. We have focused on the study of the 
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morphologies obtained in very thin samples, when the 
smectic and nematic directors are oriented parallel to 
the glass plates on both sides of the interface, the 
P(in P) case. In this situation, substance II shows a 
more elongated equilibrium shape than substance I. 
The long, faceted sides of the germs are parallel with 
the smectic layers (perpendicular to the director). The 
anisotropy of the surface tension or (0)/or ½ (Tr) is equal 
to the length-to-width ratio of these equilibrium shapes 
and it was found to be ~ 4.8 for substance I and ~, 
18 for substance II. (0 - 0 corresponds to the direc- 
tion normal to the middle of the shorter, rough side.) 
The full angular dependence can be obtained from the 
Wulff construction (see [27,28] and is described by 
the function I/(0) - or (0 ) /or (O) . We here take 2 

r/i(9) = 1.000 - 0.35302 + 0.00894, 

r/[l(9) = l.O00 - 0.44592 + 0.02694 (2.1) 

in the range 191 < ½~r, while 1/(0) = r/(~r - 9 ) .  Clearly 
17(0) has cusps at 0 = -I-½7t. 

When the sample is suddenly undercooled with a 
temperature A T below the transition temperature Tns, 
some smectic-B germs appear and grow, giving rise 
to different growing shapes or morphologies. For sub- 
stance I, four different morphologies have been de- 
scribed for different undercooling conditions [27]. For 
small undercooling the experiment shows a very slow 
growth of the germ, which in the observed times main- 

tains a rectangle-like shape very similar to the equi- 
librium one with two parallel facets and two rough 
convex sides (Fig. l(a), where/ i  = c p A T / L  is the di- 
mensionless undercooling). For slightly larger under- 
cooling, the short sides undergo a first instability from 
convex to concave (Fig. l(b)). For larger values of un- 
dercooling the faceted sides start to bend adopting a 
slightly concave curvature and (macroscopic) facets 
disappear with the four comers opened up, forming a 
butterfly-like shape (Fig. 1 (c)). It is remarkable that the 
direction of the propagation velocity of the four tips 
in this morphology defines an angle with the smectic 
director which is not singled out in the equilibrium 

2 Note that in [27] there are typographical errors in the formula 
for the quantity corresponding to r/i(0) given in Fig. 2: a zero 
is missing in the last term and its sign is reversed. 
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Fig. !. Substance I. One quarter of the experimental microscopic 
images of the nematic-smectic-B interface demonstrated by 
plotting the contours of the patterns taken at subsequent times 
on top of each other: (a) ,4 - 0.006, t - I 1.7s: I min 23.7s; 
6min 54.7s; 10min 8.1 s (b) A - 0.007, t - 32.8s; imin 53s; 
4min 13.3s; 7min 58.4s; (c) A - 0.009, t - 8.3s; 17.1s; 
23.4 s; 28. ! s; (d) A - 0.07, t - 0.2 s; 0.4 s: 0.6 s. 

anisotropy of the substance, and thus is presumably 
dynamically selected. For large undercooling the four 
main dendrites are obtained at angles close to 45 ° 
with the smectic layers (angle between the branches 
ce ~, 90 °), giving rise to an apparent fourfold symme- 
try which is absent in the equilibrium properties of the 

substance (Fig. 1 (d)). 
With regard to dynamics, in the quasi-equilibrium 

regime (A -- 0.007) growth velocities vary like t -v ,  
with experimental values of y in the range of 0.7 4-0.2, 
more or less compatible with diffusive slowing down 
(y - 0.5). In the intermediate (0.007 < A < 0.015) 
and fast (A > 0.015) regimes, growth velocities tend 

to be asymptotically constant. 
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Fig. 2. Substance il. Experimental observation of the rapidly 
growing nematic-smectic-B interface, demonstrated in the same 
way as in Fig. 1. A = 0.086, t = 0.5 s; 0.9 s; 1.3 s; 1.8 s. 

As mentioned before, substance II shows a stronger 
anisotropy compared to that of substance I, with longer 
faceted sides compared to the rough ones in the equi- 
librium shapes. For small undercoolings a smectic-B 
germ of this material does not show non-equilibrium 
growth, e.g. it remains in a regime demonstrated in 
Fig. l(a) and (b). In the large undercooling regime, 
this substance also displays a shape with four main 
dendrites arising from the comers of the equilibrium 
shape, but with smaller angles with the smectic layers. 
In contrast to substance i the angle ½oe showed a large 
variability ranging from 7 ° to 32 ° depending on the 
nucleation point (Fig. 2). Like for substance 1, such 
angles do not appear as preferred in the equilibrium 
shape and presumably have a dynamical origin. Also, 
for substance !I, the angle between the orientation of 
the germ, fixed by the smectic director, and the direc- 
tor of the surrounding nematic, showed'considerable 
variability, again in contrast to substance I, where the 
angle between the two directors was always smaller 
than about 3 °. A more detailed experimental study of 
these variabilities will be published elsewhere [37]. 

3. Phase.field model 

The standard (sharp interface) model for free solid- 
ification of an anisotropic substance is defined by the 
heat diffusion equation and the boundary conditions 
at the interface: 

0T 
0"7 "= D V 2 T '  (3.1) 

where D is the thermal diffusion constant which we as- 
sume to be the same in both phases (symmetric model), 
L is the latent heat per unit volume, Cp is the specific 
het.t per unit volume, Vn is the normal derivative at 
the interface~ Vn is the normal velocity and x is the 
local curvature of the interface, #(0) is an anisotropic 
kinetic coefficient and 0 i~ the angle between the nor- 
mal to the nematic-smectic-B interface and the x-axis 
chosen parallel to the smectic layers. The surface free 
energy a(0) also depends on the local interface ori- 
entation. Primes denote derivatives with respect to 0. 

Clearly, the (generalized) Gibbs-Thomson relation 
(3.3) can pose a problem in the faceted case, since 
o"(0) then becomes singular. Regularization proce- 
dures have been presented and analysed for freely 
growing needle crystals in the case of weak faceting 
[10-12]. The subtleties encountered there in the limit 
of low surface tension on the rough parts ate presum- 
ably not relevant in our context. Also, some simula- 
tions with faceted needle crystals have been performed 
[13]. 

In our simulations we have employed a phase-field 
model where the heat diffusion equation couples 
through a source term to an equation for an order 
parameter, which changes continuously across the in- 
terface. By the nature of such models, a new parame- 
ter appears, the interfacial thickness, that controls the 
convergence to the sharp interface limit. In the integra- 
tion of the equations there is no distinction between 
bulk and interface. Also, the (relaxative) dynamics of 
the order p~rameter naturally leads to kinetic effects, 
analogous to that in the last term of Eq. (3.3), whose 
magnitude can be controlled by the relaxation time. 
Anisotropy in the (equilibrium) surface free energy 
and in the kinetic term can be straighforwardly imple- 
mented in the formulation proposed by Wheeler et al. 
[30-33], which is thermodynamically consistent and 
converges to Eqs. (3.1)-(3.3) in the sharp interface 
limit [31,38]. This model is defined by the following 
equations, which we present directly in dimensionless 
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form" 

ot 2 + 30~flAu~(l - ~ )  

-- E2 0-~ (1/(0)r/'(0) ~--~) 

E2 ~ OX + 

+ EZv(qZ(0)V~), (3.4) 

½ -07 -t- (30~ 2 -  60~ 3 + 30~4) ~-~ -~-~ = V2u. (3.5) 
Ot 

Here 4~ is the order parameter or phase field (4~ = 0 
corresponds to the smectic-B phase, while 4~ = 1 to 
the nematic phase) and u = (7" - Tns)/AT is the di- 
mensionless temperature, where A 7" is the undercool- 
ing. The local interface orientation is calculated from 
the relation tan(0) = Oy~/OxO. Lengths have been 
scaled in some arbitrary reference length to (see be- 
low), whereas time is measured in units of o) 2/D. The 
dimensionless parameters that characterize the model 
(besides q(0)) are defined as 

A = cpAT/L,  

~/2toL:~ ~ t o  (3.6) 
fl = 12Cpe (0) Tns 12o'o 

= <Vto. 

r(O) = LD rl(O) = cpD q(O) (3.7) 
o'(0)Tns/x(0) Ldo #(0) '  

where do is the capillary length, 8 the interface thick- 
ness (we remind that 1/(0) = ,r(0)/~r(0)). 

4. Numerical method and results 

The phase-field model equations (3.4) and (3.5) 
have been solved numerically in a rectangular lattice 
with scaled dimensions XL and YL in the x and y co- 
ordinate directions, respectively. Both equations have 
been discretized spatially using first-order finite dif- 
ferences on a uniform grid with mesh spacing Ax. We 
have employed an explicit time-differencing scheme 
for the equation for the phase-field variable 4~, so the 
time step At has been adjusted in each case in order 
to avoid numerical instability. For the heat equation an 

explicit scheme would have imposed much stronger 
restrictions on At, therefore it has been solved us- 
ing the alternating-direction implicit method (ADD, 
which is unconditionally stable [30]. We have always 
simulated one quarter of the full experimental system 
by locating the initial smectic-B seed (4} = 0, u = 0) 
in the lower left corner. We set ~ = ~, u = - l  ini- 
tially in the rest of the system. Symmetric (reflecting) 
boundary conditions for ~ and u have been imposed. 
on the four sides of the system. 

We have taken in our simulations r(0) = mq(O), 
with constant m, which implies that the kinetic term re- 
mains isotropic (function # (0) constant, see Eq. (3.7)). 
1/(0) is taken from Eq. (2.1) for substances I and II. 
Since q"(O) is singular in the faceting direction 0 = 
90 ° the question of regularization of the relevant terms 
in Eq, (3.4) arises. The spatial discretization of the 
phase field equations provides a natural regularization 
procedure. If derivatives are performed numerically as 
they are written in Eq. (3.4), no special care is re- 
quired to obtain robust results. If the derivatives are 
developed before numerical discretization, a term with 
a coefficient proportional to 8(0 - ½~r) will appear, 
which will require special attention. The prescription 
equivalent to the former procedure would be to assign 
a weight 8(0) --, l /Ax whenever the argument of the 
delta function changes sign. 

The parameters/~ and E (and finally also m, see be- 
low) of the model have had to be adjusted after some 
test running. One can give the following guide lines: • 
It is convenient to choose to as large as the longest rel- 
evant spatial scale, which is due to thermal diffusion. 
One would normally choose the size of the system 
somewhat larger than to, so we took typically XL = YL 
of the order of 1.5. Then, clearly, fl has to be chosen 
very large (do is a microscopic quantity). E should be 
chosen for the interface thickness to be smaller than 
the evolving dendritic structure (smallest radius of cur- 
vature of the germ) in order to approximate the sharp- 
interface limit. The numerical accuracy is satisfactory 
when Ax is chosen close to E. In some cases we have 
checked that decreasing Ax u,d not affect the results 
substantially. Note that selecting the parameters/~ and 
E within these ranges should lead (and indeed lead) to 
results that are independent of the precise choice. 
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The parameter values employed for substance I are 

Ax = 0.005, fl = 350, ~ = 0.005, m = 20, except in 

the case of large undercooling, where we have used 

fl = 450, E = 0.003, m = 14. (Note that, as a conse- 

quence of the arbitrariness of the length scale to, the 

discrefized system is invariant under the transforma- 

tion fl ---> zfl, ~ - *  E/z ,  A x  --, A x / z ,  keeping the 

other parameters, including the number of  grid points, 

fixed.) For substance I the time step At  varied from 

10 -4  tO 9 x l0  -6  when going from the smallest to 

the largest undercooling values. The parameter values 

employed for substance II are fl = 350, ~ = 0.005, 

m = 20 and Ax = 0.003 for small undercooling and 

Ax = 0.005 for large undercooling. Time step At var- 

ied from 1.2 x l0 - s  to 5 x l0  -6.  Numerical  simula- 

tions for substance II require smaller time steps than" 

those of substance I because of the deeper cusp present 

in the function r/(0). 

Employing the simulation parameters previously 

mentioned, the four main morphologies of  substance 

I have been computationally reproduced in a square 

domain of typically 300 x 300 grid points, except in 

the case of large A, where a 500 x 500 grid points 

domain has been used. In order to avoid prohibitively 

long computation times, we have employed dimen- 

sionless undercoolings approximately one order of 

magnitude larger than those used in the experiments. 
The quasi-equilibrium shape has been simulated us- 

ing a dimensionless undercooling A = 0.05 and a 
time step At = 10 -4 (Fig, 3(a)). The width-to-length 
ratio is 1 ' 5, which is very similar to the experimental 
value. Second and third (the butterfly) morphologies 
(Figs. 3(b) and (c)) of substance I are reproduced using 
A --- 0.09 and A = 0.2, respectively. Facets tend to 
vanish and the branch continuously opens up. The be- 
ginning of a side branching activity emerging from the 
lower (rough) side of the main dendrite is observed. 

When the undercooling is increased to a value of 0.5 
or larger, our simulation is in the equivalent stage to 
that leading to the dendritic morphology in the exper- 
imental description. Here the large value of A forced 
us to use a smaller time step (At = 9 × 10-6). A fast 
moving dendrite grows forming a well-defined angle 
a between its main branches (angle ½¢z between the 
x-axis and the branch seen in Fig. 3(d)), Side branches 

appear on both sides of the main branch, tending to 

orient themselves at an angle - ½ a ,  i.e. parallel to the 

other main branch. Some tertiary side arm activity has 

a. 
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b l  
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d l  

0 2.5 

Fig. 3. Substance I. Nematic-smectic-B interface obtained from 
simulation at subsequent times: (a) A = 0.05, t = 0.14, 
0.42, 0.70, 0.98; (b) A = 0.09, t = 0.08, 0.32, 0.56, 0.80; 
(c) A = 0.Z t = 0.06, 0.12, 0.18, 0.24; (d) ,4 = 0.7, 
t = 0.033, 0.066, 0.099; (a), (b) and (c): 300 x 300 grid points, 

= Ax = 0.005, fl = 350, m = 20, At = 10-4; (d): 500 x 500 
grid points, ~ = 0.003, Ax = 0.005, fl = 450, rn = 14, 
At = 9 x 10 -6. 
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Fig. 4. Substance I. Square root of the area occupied by the 
smectic-B phase versus time computed from simulation in the 
quasi-equilibrium regime. Parameters are as in Fig. 3(a). 

also been observed, but a large amount of computa- 
tion time is usually required for such processes. ~ is 

noticably smaller than 90 °, which is the angle found 

for substance I. 
In the quasi-equilibrium regime (A = 0.05) a spa- 

tially averaged growth velocity v has been determined 

by considering L = V~" (A = area of the germ, i.e. 

area with ~ = 0) versus time, see Fig. 4, and setting 
v = dV'A/dt .  A dependence v -'~ t - r  is observed, 

where a value of y obtained from our simulations was 
0.46. For long times the velocity tended to become 

constant. Then finite-size effects cannot be ruled out. 

For substance II we have computationally repro- 

duced the morphologies corresponding to quasi- 
equilibrium and to large undercooling, where one has 

dendritic-like growth. The computational domains 
were 300 x 300 and 500 x 500 grid points, respec- 

tively. The quasi-equilibrium shape of substance II 
has been obtained with a dimensionless undercooling 

zl = 0.075 and time step At = 1.2 x 10 -5 (Fig. 5(a)). 

This shows a more elongated shape than substance I, 

in agreement with the experiment. 

a. 

0 0.5 

bit 
0 2.5 

Fig. 5. Substance II. Nematic-smectic-B interface obtained from 
simulation at subsequent times (a) A = 0.075, t = 0.03, 0.09, 
0.15, 0.21; (b) A = 0.5, t = 0.104, 0.182, 0.260; (a): 300 x 300 
grid points, 6 = 0.005, Ax = 0.003, /~ = 350, m = 20, 
At = 1.2 x 10-5; (b): 500 x 500 ~rid points, ~ = Ax = 0.005, 

=350, m=20,  A t = 5 x  10-% 

In order to reproduce the dendritic shape at A = 

0.5 we were forced to decrease the time step to At = 
5 × 10 -6. The morphology obtained (Fig. 5(b)) corre- • 

sponds to one observed experimentally, see Fig. 2. (We 
remind that the experiments in substance II exhibit 
some variability.) Again there is a single angle oe that 
characterizes the direction of the main side branches. 

5. Concluding remarks 

In this work we were able to reproduce the basic 
growth morphologies of smectic-B germs into the 

supercooled nematic phase of two liquid crystals, by 
means of.phase-field simulations. There are two main 

conclusions to be drawn. The first, on a methodolog- 
ical level, is that in the phase-field approach one can 
handle strongly anisotropic interfaces and particularly 
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facefing in a r'o.ther simple way, rendering such 
situations computationally feasible. Without refine- 
ments, and in particular with our resources (mainly a 
medium-powe~ ~sc  workstation), one is at present 
res~cted to fairly small systems, which is a result of 
the very different space scales entering the problem 
in the phase-field approach. This disparity increases 
with decreasing undercooling, which is illustrated e.g. 
by the behaviour of the P~clet number p ~ A2/~r, 
which gives the ratio between the tip radius p of an 
Ivantsov needle crystal moving at velocity v and the 
thermal diffusion length I = 2 D / v ,  at low undercool- 
ing A (see e.g. [39]). Therefore, one has to resort 
to undercoolings larger than those employed in the 
experiments in order to see qualitatively the same ef- 
fects. As a consequence, one cannot at this point make 
a quantitative comparison, which would also require 
a better knowledge of the relevant material parame- 
ters, in particular the kinetic coefficient (including its 
anisotropy). In order to get to smaller undercooling 
one would have to use more sophisticated numerical 
techniques where the long-range temperature field 
outside the germ is treated separately. 

The second conclusion, which we can draw (in spite 
of the present limitations ot the method) is that the 
anisotropy provided by the surface tension is the most 
important factor in determining the morphologies in 
the complex growth processes observed in the exper- 
iments. This is actually rather surprising in view of 
the sophisticated ordering process taking place in the 
nematic smectic-B transition. However, details of the 
shapes at larger undercooling depend on the kinetic 
term, whose magnitude m was chosen such that its in- 
fluence became noticeable at the velocities involved 
when the fourth morphology appeared. The isotropic 
kinetic term used here has the effect of opening up the 
branches, compared to a situation where r is chosen 
independent of angle. Preliminary tests with the pa- 
rameters of Fig. 3(d), but with isotropic r, display a 
much smaller opening angle and no side branching, so 
the morphology reacts sensitively to the angular de- 
pendence of the kinetic term. A direct measurement of 
the kinetic coefficient would be desirable, but it would 
involve measuring the growth velocity at much larger 
undercooling than was reachable experimentally. The 

kinetic coefficient, including its anisotropy, has been 
measured for impurity controlled growth of a hexag- 
onal columnar mesophase [40]. 

The main remaining discrepancy is that for sub- 
stance I the apparent fourfold symmetry (c~ close to 
90°), which is found in the experiments in the fourth 
morphology, see Fig. l(d), is not reproduced very 
convincingly in the simulations. In the experiments 
the dendrite tips become manifestly parabolic, which 
is also not seen very clearly in the simulations (see 
Fig. 3(d)). There is hope that tailoring the anisotropy 
of the kinetic term appropriately will improve the sit- 
uation. We will check this in future work. 

Another concern about the way kinetic effects are 
incorporated in the model relates to the fact that, when 
facets are present, the dependence of the kinetic term 
in the Gibbs-Thomson relation may not be strictly 
linear in the normal velocity. Other forms have been 
discussed in the literature (see Chapter 2; [2,17]). In 
contrast to the anisotropy of the kinetic effects, a non- 
linear dependence on the velocity cannot be handled 
by the phase-field model in its present form, and more 
drastic modifications should be introduced to properly 
incorporate such effects. However, in view of the qual- 
itative agreement with the experiments, these effects 
do not seem to affect the basic features. 

There may also be other reasons for the discrep- 
ancy, which could lend support to another interesting, 
and as yet not understood observation. It was found 
in previous experiments [28] that the rapidly grown 
smectic-B phase of substance I, i.e. that grown via the 
fourth morphology, had somewhat different properties 
than the ones grown slower. Upon increase of the tem- 
perature the melting temperature of the rapidly grown 
phase was found to be noticably decreased and more- 
over the shal;e of the nematic germs inside the smectic- 
B ("negative germs") was totally different from that 
of the positive germs. They had an oval shape (no 
faceting) with an anisotropy opposite to that of the 
positive germs. Thus the smectic-B phase of substance 
I might be of a different nature (presumably less or- 
dered) when grown rapidly than when grown slower. 
Possibly this is of relevance for the growth of den- 
drites in the fourth morphology of substance I. How- 
ever, the rapid growth cannot be described by simply 
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replacing the cusped function ~l(0) of Eq. (2.1) by 
one appropriate for the oval negative germs, because 
that function does not exhibit the appropriate symme- 
try either. In substance If, which does not exhibit the 
symmetric dendrites, the negative germs were mostly 
found to have also an oval shape with some excep- 
tions, when a partial faceting of the interface could 
be detected. More detailed experimental investigations 
are in progress. 

In our description we have only included the effect 
of heat diffusion neglecting the influence of impurity 
diffusion. We believe that this is justified. First of all, 
the materials used are known to be chemically very 
pure and stable, at least in the room-temperature crys- 
talline phase. Moreover in the normal course of the 
experiments no considerable coexistence range of the 
two liquid crystalline phases could be observed. This 
changed when substance I was kept in a liquid crys- 
talline state for a time exceeding about a normal work- 
ing day. Then, on a slow time scale, the behaviour 
changed: The nematic smectic-B transition tempera- 
ture decreased, the equilibrium shapes of smectic-B 
germs changed in the direction of less anisotropy (the 
faceted side became shorter), a range of coexistence 
developed (up to about 2°C), and the growth dynam- 
ics slowed down drastically (details will be presented 
elsewhere). The effects could be reversed, at least par- 
tially, by crystallizing the substance and going repeat- 
edly through the crystal nematic phase transition. This 
then indicates that in the liquid crystalline state the 
substance experiences a (reversible) chemical trans- 
formation, most likely an isomerization. Presumably 
the isomer is expelled from the smectic phase. Since 
these effects are quite well under control we are par- 
ticularly confident that impurities play a minor role in 
the experiments discussed here. 

In future work we hope to obtain a better analytic 
understanding of the morphologies observed experi- 
mentally and numerically, and to enter into a more 
quantitative stage. This may elucidate to what extent 
three-dimensional effects, wetting, etc. affect the ex- 
perimental results. A particularly challenging selec- 
tion problem is posed by the opening angle a of the 
branches of the dendrite, which appears to characterize 
the morphology rather completely under rapid-growth 

conditions. There is some evidence from experiments 
as well as simulations that this angle is not deter- 
mined by initial conditions, but is an intrinsic dynam. 
ical property of the growth process. Eventually it may 
also become important to consider the fact that in the 
experimental system heat is not removed through the 
distant lateral boundaries, but rather through the up- 
per and lower glass plates of the layer. This provides 
a spatial cut-off for the otherwise long-ranged thermal- 
diffusion field and leads to the" existence of (unstable) 
planar front solutions moving with constant velocity 
at any undercooling. 

Acknowledgements 

We acknowledge European Commision (TMR Pro- 
gramme, project ERB-406 I-PL-95-1377) for support. 
RGC, LRP, JC and AHM thank the Direcci6n General 
de Investigaci6n Cientffica y Trcnica (Spain) (Projects 
PB93-0769-C02-02 and PBR93-0054-C02-01) for 
support. JC and AHM acknowledge NATO (Collab- 
orative Research Grant No. 931018) for support. We 
also acknowledge the Centre de Supercomputaci6 
de Catalunya (CESCA) for computing support. AB 
and LK are indebted to the University of Barcelona 
for its kind hospitality and assistance and thank the 
Voikswagen-Stiftung for support. AB ack~lowledges 
support by OTKA T014957. LK is grateful for sup- 
port through an Alexander yon Humboldt-J.C. Mutis " 
Award for the Scientific Cooperation between Spain 
and Germany. 

References 

[ll P. Pelcr, ed., Dynamics of Curved Fronts, Perspectives in 
Physics (Academic Press, New York, 1988). 

12] C. Godr~che, ed., Solids far from Equilibrium (Cambridge 
University Press, Cambridge, 1992). 

13] D.T.J. Hurle, ed., Handbook of Crystal Growth, Vol. IB 
(North-Holland, Amsterdam, 1993). 

[41 P.E. Cladis and P. Palffy-Muhoray, eds., Spatio-'l~.mporal 
Patterns, Santa Fe Institute Studies in the Science of 
Complexity, Vol. XXI (Addison-Wesley, Reading, MA, 
1994). 

[5l P.P. Trigueros, J. Claret, E Mas and E Sagurs, J. 
Electroanal. Chem. 312 ( 1991 ) 219. 



368 R. Gonzdlez.Cinca et aL /Physica D 99 (1996) 359-368 

[6] E. Ben-Jacob and P. Garik, Nature 343 (1990) 523. 
[7] D. Kessler, J. Koplik and H. Levine, Adv. in Phys. 37 

(1988) 255. 
[8] E.A. Brener and V.I. Melnikov, Adv. in Phys. 40 (1991) 

53. 
[9] J. Mauler, P. Bauisson, B. Perrin and P. Tabeling, Europhys. 

~t t .  8 (1989)67. 
[10] M. Ben Amar and Y. Pomeau, Europhys. Lett. 6 (1988) 

609. 
[I 1] J.E. Taylor, Act. Metall. Mater. 40 (1992) 1475. 
[12] M. Adda Bedia and V. Hakim, J. de Phys. (France) 4 

(I 994) 383. 
[ 13] M. Adda Bedia and M. Ben Amar, Faceting in the Free 

Dendritic Growth, in: Th~se de Doctorat, author M. Adda 
Bedia, Paris 1994, Phys. Rev. E 51 (1995) 1268. 

[ 14] R. Bowley, B. Caroli, C. Caroli, E Graner, P. Nozi~res and 
B. Roulet, J. de Phys. (France) 50 (1989) 1377. 

[15] B. Caroli, C. Caroli and B. Roulet, J. de Phys. (France) 
50 (! 989) 3075. 

[16] M. Adda Bedia and M. Ben Amar, Phys. Rev. A 10 (1991) • 
5702. 

[17] P. Oswald and E Melo, J. Phys. II (France) 2 (1992) 1345. 
[18] J. Bechoefer, P. Oswald, A. Libchaber and C. Germain, 

Phys. Rev. A 37 (1988) 1691. 
[19] F. Melo and P. Oswald, Phys. Rev. Lett 64 (1990) 1381. 
[20] F. Melo and P. Oswald, J. Phys. II (France) 2 (1991) 353. 
[21] D.K, Shangguan and J.D. Hunt, Metail. Trans. A 22 A 

(1991) 941. 
[22] LM, Fabietti and R. Trivedi, Metall. Trans. A 22 A (1991) 

1249. 
[23] N. Dey and J.A. Sekhar, Act. Metall. Mater. 41 (1993)409. 
[24] G.W. Gray and J.W.G. Goodby, Smectic Liquid crystals. 

(Leonard Hill, Glasgow, 1984) Chapter 10. 

[251 

[26] 
[27] 

I281 

[291 
[30] 

[31] 

[321 

[33] 

[34] 

[35] 

[36] 
[371 

[38] 

[39] 

[40l 

G. Vertogen and W.H, de Jeu, Thermotropic Liquid 
Crystals, Fundamentals (Springer, Berlin, 1988) Chapter 3. 
,A. Buka and N. l~ber, Europhys. Lett. 21 (1993) 477. 
,A. Buka, T. T6th Katona and L. Kramer, Phys. Rev. E 51 
(1995) 57 !. 
,3,. Buka, T. T6th Katona and L. Kramer, Phys. Rev. E. 49 
(1994) 5271. 
R. Kobayashi, Physica D 63 (1993) 410. 
A.A. Wheeler, B.T. Murray and R.J. Schaefer, Physica D 
66 0993) 243. 
G.B. McFadden, A.A. Wheeler, R.J. Braun, S.R. Corieli 
and R.E Sekerka, Phys. Rev. E 48 (1993) 2016. 
S.-L. Wang, R.F. Sekerka, A.A. Wheeler, B.T. Murray, 
S.R. Coriell, R.J. Braun and G.B. McFadden, Physica D 
69 (1993) 189. 
R.J. Braun, G.B. McFadden and S.R. Coriell, Phys. Rev. 
E 49 (I 994) 4336. 
R. Kupferman, O. Shochet and E. Ben-Jacob, Phys. Rev. 
E 50 (1994) 1005. 
A. Bosch, H. Muller-Krumbhaar and O. Shochet, Z. Phys. 
B 97 (1995) 367. 
E Liu and M. Goldenfeld, Phys. Rev. A 42 (1990) 5052. 
T. T6th Katona, T. B6rzs6nyi, Z. Varadi, J. Szabon, 
A. Buka, R. Gonz61ez-Cinca, L. Ramfrez-Piscina, J. 
Casademunt and A. Hem~dez-Machado, to be published. 
G. Caginalp, Arch. Rational Mech. Anal. 92 (1986) 205 
Phys. Rev. A 38 (1989) 5887. 
J.S. Langer, in: Chance and Matter, eds. J. Souletie, J. 
Vannimenus and R. Stora, Les Houches, Session XLVI 
(North-Holland, Amsterdam, 1987) Chapter 10. 
J.C. Geminard, P. Oswald, D. Temkin and ~I. Malthete, 
Europhys. Lett. 22 (I) (1993) 69. 


