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We briefly review our recent modeling of crystal nucleation and polycrystalline growth
using a phase field theory. First, we consider the applicability of phase field theory for
describing crystal nucleation in a model hard sphere fluid. It is shown that the phase
field theory accurately predicts the nucleation barrier height for this liquid when the
model parameters are fixed by independent molecular dynamics calculations. We then
address various aspects of polycrystalline solidification and associated crystal pattern
formation at relatively long timescales. This late stage growth regime, which is not
accessible by molecular dynamics, involves nucleation at the growth front to create
new crystal grains in addition to the effects of primary nucleation. Finally, we consider
the limit of extreme polycrystalline growth, where the disordering effect due to prolific
grain formation leads to isotropic growth patterns at long times, i.e., spherulite
formation. Our model of spherulite growth exhibits branching at fixed grain
misorientations, induced by the inclusion of a metastable minimum in the orientational
free energy. It is demonstrated that a broad variety of spherulitic patterns can be
recovered by changing only a few model parameters.

I. INTRODUCTION

Most of our structural materials are polycrystalline,
i.e., composed of a large number of crystallites, whose
size, shape, and composition distributions determine
their properties and failure characteristics. Polycrystal-
line patterns play an important role in classical materials
science and nanotechnology and have biological rel-
evance as well. Specifically, semi-crystalline spherulites
of amyloid fibrils are found in association with Alzhei-
mer and Creutzfeldt–Jakob diseases, type II diabetes, and
a range of systemic and neurotic disorders.1

Despite intensive research, the formation of polycrys-
talline matter (technical alloys, polymers, minerals,
etc.) is poorly understood. One of the sources of theo-
retical difficulty in modeling these materials is model-
ing the process of nucleation by which crystallites form
via fluctuations. While nucleation takes place on the
nanometer scale, its influence extends to larger size

scales. Controlled nucleation2 is an established tool for
tailoring the microstructure of matter for specific appli-
cations.

The crystallization of homogeneous undercooled liq-
uids initiates by the formation of heterophase fluctua-
tions containing a central, crystal-like atomic arrange-
ment. Fluctuations that exceed a critical size, determined
by the interplay of the interfacial and volumetric contri-
butions to the cluster free energy, reach macroscopic di-
mensions with high probability, while clusters below the
critical size decay with a high probability. Critical size
heterophase fluctuations are termed “nuclei,” and the
process in which they form via internal fluctuations of
the liquid is homogeneous nucleation (as opposed with
the heterogeneous nucleation, where particles, foreign
surfaces, or impurities help to produce the heterophase
fluctuations that drive the system towards solidification).
Even in simple liquids (such as the Lennard–Jones model
system), several local arrangements [body-centered cubic
(bcc), face-centered cubic (fcc), hexagonal close-packed
(hcp), icosahedral] compete,3,4 and often a metastable
phase nucleates.

The description of near-critical fluctuations is
problematic even in one-component systems. Critical

a)Address all correspondence to this author.
e-mail: grana@szfki.hu

This paper was selected as the Outstanding Meeting Paper for the
2004 MRS Fall Meeting Symposium JJ Proceedings, Vol. 859E.
DOI: 10.1557/JMR.2006.0011

J. Mater. Res., Vol. 21, No. 2, Feb 2006 © 2006 Materials Research Society 309



fluctuations forming on reasonable experimental time
scales contain typically tens to several hundred mol-
ecules.3–6 This situation, combined with the fact that the
crystal–liquid interface extends several molecular lay-
ers,7 suggests that critical fluctuations are fundamentally
interfacial in nature. Essentially, when the interface di-
mensions approach those of the critical fluctuation, the
consequences of interfacial diffuseness must be consid-
ered. The droplet model of classical nucleation theory,
which employs a sharp interface separating a liquid from
a crystal with bulk properties, is therefore an extreme
idealization of such diffuse interfaces, as has been dem-
onstrated by recent atomistic simulations.6

Field theoretical models that predict a diffuse inter-
face, offer a natural way to handle such difficulties,8 and
have proved successful in addressing nucleation prob-
lems, including nucleation of metastable phases.9,10

The polycrystalline morphologies observed in Nature,
the laboratory, and technological applications can be di-
vided into two main classes: (i) those formed by the
impingement of independently nucleated single crystals
(formed by primary nucleation) and (ii) the polycrystal-
line growth forms that consist of an increasing number of
crystalline grains nucleating continuously at the perim-
eter of the particle (often called secondary nucleation).
Examples of such morphologies11–16 are shown in Fig. 1.
The complexity of polycrystalline freezing is especially
obvious in the case of thin (a few tens of nanometers)
polymer layers, which show an enormous richness in
their crystallization morphologies [see e.g., Figs. 1(c),

1(e) and 1(f)]. These quasi two-dimensional structures
give important clues to the mechanisms that govern the
formation of polycrystalline patterns.

In the past decade, the phase field theory became the
method of choice when describing complex solidifica-
tion morphologies, including dendrites, eutectic, and
peritectic structures.17,18 The fact that similar polycrys-
talline patterns are observed in systems of very differ-
ent nature (metals, polymers, biopolymers) suggests that
a minimal model based on coarse-grained fields that
neglects the details of molecular interactions might be
appropriate. Such a mesoscopic model may have advan-
tages relative to previous macroscopic19,20 and micro-
scopic models.21,22 Although this field-theoretic ap-
proach disregards most of the molecular scale details of
solidification, some features such as crystal symmetries
can be incorporated via the anisotropies of the model
parameters. The rationale for developing such coarse-
grained models is the current inability of fully molecular
models21,22 to address the formation of such large scale
morphologies. It is anticipated that these coarse-grained
models will contribute to a better understanding of some
of the dominant factors required for the formation of
polycrystals.

In this paper, we briefly review recent advances made
in the application of the phase field simulations for de-
scribing both homogeneous and heterogeneous crystal
nucleation, as well as polycrystalline growth in complex
liquids. The interested reader may find further details in
Refs. 23–29.

FIG. 1. Polycrystalline microstructures: (a) polycrystalline morphology formed by impinging single crystals,11 (b) polycrystalline morphology
formed by impinging dendrites in the oxide glass (ZnO)61.4·(B2O3)38.6�(ZnO2)28,12 (c) “dizzy” dendrite formed in clay filled polymethyl
methacrylate-polyethylene oxide thin film,13 (d) spherulite formed in pure Se,14 (e) crystal sheaves in pyromellitic dianhydrite-oxydianilin
poly(imid) layer,15 and (f) arboresque growth form in polyglycine.16
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II. PHASE FIELD MODEL FOR
POLYCRYSTALLINE SOLIDIFICATION

First, we outline the general features of our model for
polycrystalline freezing,23 which builds on an earlier
model of crystallization with vector-valued phase field.30

The local thermodynamic state of matter is characterized
by the phase field � that monitors the liquid–solid phase
transition. This order parameter describes the extent of
structural change during freezing and melting. The other
basic field variables are the chemical composition c and
the normalized orientation field �, where � specifies the
orientation of crystal planes in the laboratory frame.
While a single orientation field is satisfactory in two
dimensions, generalization of the model for three dimen-
sions require minimum three orientation fields.31,32

Herein, we concentrate mainly on two-dimensional (2D)
problems, which have been studied as a reasonable ap-
proximation in previous experimental studies.

The free energy F consists of various contributions
that will be discussed below:

F =
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��
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Here �� is the coefficient of the square-gradient term for
the field �, wi is the free energy scale for the ith pure
component (i � A, B), fS and fL are the free energy
densities of the bulk solid and liquid phases, while fori is
the orientational contribution to the free energy density.
�i, �i, Ti are the interface free energy, interface thickness,
and melting point for the ith pure component. s, g, and p
are the anisotropy function, quartic double-well function,

and interpolation function, respectively. � is the inclina-
tion of the normal vector of the interface in the laboratory
frame, s0 is the amplitude of the anisotropy of the inter-
face free energy, while k is the symmetry index (k � 6
for 6-fold symmetry). H determines the free energy of the
low angle grain boundaries. Time evolution is governed
by relaxational dynamics, and Langevin noise terms are
added to model thermal fluctuations.

The time scales for the three fields are determined by
the appropriate mobilities appearing in the equations of
motion, and M�, Mc, and M� are the mobilities associated
with coarse-grained equation of motion, which in turn are
related to their microscopic counterparts. The mobility
Mc is directly proportional to the classic interdiffusion
coefficient for a binary mixture. The mobility M� dic-
tates the rate of crystallization, while M� controls the rate
at which regions reorient. The equations of motion are
described in detail elsewhere.23,27

The orientation contribution to the free energy fori rep-
resents the excess free energy due to inhomogeneities in
crystal orientation in space, in particular, the misorien-
tation due to a grain boundary, represented by spatial
variation of the orientation field �, whose local value
specifies the orientation angle that, in turn, sets the tilt of
the crystal planes in the laboratory frame. The angular
dependence of the interfacial free energy and/or the ki-
netic coefficient needed for addressing anisotropic
growth is measured relative to this orientation. Due to the
non-analytic nature of the orientational free energy den-
sity fori, the equation of motion specifies a singular dif-
fusivity problem and requires special care when handled
numerically.33 Various modifications of this approach
have been applied for describing competing growth of
anisotropic particles, including dendritic solidification in
an undercooled liquid.23,30 Applications to grain bound-
ary problems, including grain boundary wetting and
grain coarsening in polycrystalline matter via grain
boundary migration and rotation, have been described by
us in our recent work.34

Modeling of nucleation of grains at the solidification
front requires a further important element. Gránásy
et al.23 extended the orientation field � into the liquid
phase and allowed it to fluctuate in time and space. As-
signing a local crystal orientation to liquid regions, even
a fluctuating one, may seem artificial at first sight. How-
ever, due to geometrical and/or chemical constraints,
short-range order exists even in simple liquids. Micro-
scopically, we can rotate the crystalline first-neighbor
shell so that it aligns optimally with the local liquid struc-
ture, and, in this way, one may assign a local orientation
to every atom in the liquid. The orientation obtained in
this manner indeed fluctuates in time and space. The
correlation of the atomic positions/angles shows how ap-
propriate this approximation is. (In the phase field model,
the fluctuating orientation field and the phase field play
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these roles.) Approaching the solid from the liquid, the
orientation becomes more definite (the amplitude of the
orientational fluctuations decreases) and matches to that
of the solid while the correlation between the local liquid
structure and the crystal structure improves. In this
model, the orientation field and the phase field are
strongly coupled to recover this behavior.

The phase field theory can be used for calculating the
height of the nucleation barrier to initiate crystalliza-
tion.23,24,27,35 Because the equilibrium is unstable, the
critical fluctuation (the nucleus) can be found as an ex-
tremum of the free energy functional, subject to conser-
vation constraints when the phase field is coupled to
conserved fields such as solute concentration or energy.
To mathematically impose such constraints, one adds the
volume integral over the conserved field times a La-
grange multiplier to the free energy. The field distribu-
tions that extremize the free energy obey the appropriate
Euler–Lagrange equations, which, in the phase field
theory, take the form

�F

�

=

�I

�

− �

�I

��

= 0 , (2)

where �F/�
 stands for the first functional derivative of
the free energy with respect to the field 
, while I is the
total free energy density (the gradient terms are in-
cluded). Here 
 stands for all the fields used in theory.
The Euler–Lagrange equations are solved assuming that
unperturbed liquid exists in the far-field, while, for sym-
metry reasons, zero field gradients exist at the center of
the fluctuations. The same solutions can also be obtained
as the non-trivial time-independent solution of the gov-
erning equations for field evolution. Having determined
the solutions, the work of forming a nucleus (height of
the nucleation barrier) can be obtained by inserting the
solution to Eq. (2) into the free energy functional.

In large-scale phase field simulations, one is often
compelled by computational limitations to use an un-
physically broad interface. However, in the case of nu-
cleation, where the interface thickness and the size of
nuclei are comparable, one can work with the physical
interface thickness. In a few cases, all parameters of the
phase field theory can be fixed, and the calculations
can be performed without adjustable parameters. For
example, in the one-component limit of the standard bi-
nary phase field theory, the free energy functional con-
tains only two parameters, the coefficient of the square-
gradient term for phase field and the free energy scale
(height of the central hill between the double well in
the local free energy density). If the thickness and the
free energy of a crystal–liquid interface are known for
the equilibrium crystal–liquid interface, all model param-
eters can be fixed, and the properties of the critical fluc-
tuation, including the height of the nucleation barrier,

can be predicted without adjustable parameters. Such
information is available from atomistic simulations/
experiments for only a few model fluids (Lennard–Jones
fluids and water). We have found a good quantitative
agreement with the magnitude of the nucleation barriers
deduced from atomistic simulations for the Lennard–
Jones system and from experiments on ice nucleation in
undercooled water.23 Similar results have been obtained
for the hard-sphere system using a phase field model that
relies on a structural order parameter coupled to the den-
sity field.24 Again, the model parameters have been fixed
via the interface thickness and interfacial free energy
from atomistic simulations, so the calculations were per-
formed without adjustable parameters. Herein we present
an extended test of theory for the hard-sphere system.

The phase-field theory can also be used to simulate the
nucleation process itself. The proper statistical mechani-
cal treatment of the nucleation process requires the in-
troduction of uncorrelated Langevin-noise terms into the
governing equations with amplitudes that are determined
by the fluctuation-dissipation theorem.23,36,37 Such an
approach has been used for describing homogeneous nu-
cleation in a single-component37 and binary alloy sys-
tems23 and during eutectic solidification in a binary
model.36

Solidification in the presence of walls is of great prac-
tical importance. In casting, solidification usually starts
by heterogeneous crystal nucleation on the walls of the
mold. With the exception of extremely pure samples,
even nucleation in the bulk liquid happens mostly via a
heterogeneous mechanism (on the surface of suspended
foreign particles). Particulate additives are widely used
as grain refiners to reduce grain size by enhancing the
nucleation rate. Heterogeneous nucleation is probably the
least understood stage of solidification since the molecu-
lar scales of this self-organization normally precludes
direct observation of the process.

Although the phase field method has been used to
address problems that incorporate heterogeneous nuclea-
tion, this type of nucleation is usually mimicked by in-
troducing supercritical particles into the simulation win-
dow (supercritical particles exceed the minimum radius
needed to ensure the particles growth). Recently, steps
have been made toward a physical modeling of hetero-
geneous nucleation within the phase field theory.
Castro37 introduced walls (boundaries) into a single order
parameter theory by assuming a no-flux boundary con-
dition at the interface (n�� � 0, where n is the normal
vector of the wall), which results in a contact angle of 90°
at the wall-solid-liquid triple junction. Langevin noise is
then introduced to model nucleation. In this work, we
generalize this approach to the nucleation of crystallites
with different crystallographic orientation in a binary
system. Prescribing (n��) � 0 and (n�c) � 0 at the
wall perimeter, we introduced chemically inert surfaces,
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and performed simulations to address heterogeneous vol-
ume nucleation on foreign particles, on rough surfaces,
and in confined space (porous materials and regular
channels).27

III. RESULTS AND DISCUSSION

A. Homogeneous nucleation

Recent developments in atomistic modeling of small
crystalline clusters in the hard-sphere system allow for an
extension of the quantitative analysis described in Ref.
24. Cacciuto et al.38 evaluated the free energy of clusters
in the hard-sphere liquid of equilibrium density as func-
tion of size that allowed the determination of the size
dependence of the solid-liquid interface free energy. The
results extrapolate to �R→� � 0.616(3)kT/2, the cluster
average of the interfacial free energy for infinite size
( is diameter of the hard spheres). This value agrees
well with results from molecular dynamics simulations
[e.g., with �av/(kT/2) � 0.612 ± 0.02 for the average of
the values for the (111), (110), and (100) directions by
Davidchack and Laird7; and with �av/(kT/2) � 0.63 ±
0.02 by Mu et al.39]. This allows us to fix the coefficient
of the square-gradient term with a higher accuracy than
in previous work, since it was previously uncertain how
far the cluster (or orientational) average of the interfacial
free energy falls from the average for the (111), (110),
and (100) directions. A further refinement of the theory is
that the density dependence of the coefficient of the
square-gradient term, �2 � d2C(k)/dk2, and of the free
energy scale, w � 1/S(k), are taken into consideration,

FIG. 2. Height of the nucleation barrier versus the initial density of the
hard-sphere liquid as predicted by the phase field theory (PFT),40

sharp interface droplet model of the classical nucleation theory (CNT),
self-consistent classical theory (SCCT),41 and phenomenological dif-
fuse interface theory (DIT).42 These calculations contain no adjustable
parameters. For comparison, the height of the nucleation barrier from
Monte Carlo simulations is also included in the figure.6

FIG. 3. Solidification in the presence of walls/particles as predicted by
the phase field theory. (a) Heterogeneous nucleation on rough surfaces
(walls are gray). (b) Heterogeneous nucleation and crystallization in
porous matter (blue: particles of porous matter; bright yellow: crystal,
khaki: liquid). Note that nucleation happens in the notches between
particles of the porous matter. (c) Dendritic solidification in a 2D
orientation selector (pigtail) mimicking the casting of single crystal
components. Composition field is shown (blue: solidus; yellow: liq-
uidus; grey: mold).
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FIG. 4. Heterogeneous nucleation in 3D: (a) on stairs, (b) in porous
matter represented by cubes (foreign particles) positioned on a bcc
lattice, and (c) on a checkerboard-modulated surface.

FIG. 5. “Dizzy” dendrites in experiment (a) and phase field simula-
tions [(b) composition; (c) orientation].25
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where C(k) is the direct correlation function of the liquid
which is related to the structure factor of the liquid via
S(k) � 1/[1 − C(k)]. The parameter-free predictions of
the phase field theory (PFT) and the exact Monte Carlo
(MC) results are compared in Fig. 2.40 The agreement
between theory and MC simulations is highly encourag-
ing; the agreement is considerably better than the
(parameter-free) predictions of the classical nucleation
theory and the self-consistent classical theory of Girshick
and Chiu,41 and the fit also improves upon the parameter-
free prediction by the phenomenological diffuse interface
theory of Gránásy.42 The uncertainty of the input data
(interfacial free energy, equations of state, etc.) does not
influence this result perceptibly.40

This confirmation of our previous findings24 suggests
that the phase field theory is able to predict the height of
the nucleation barrier quantitatively, when the physical
interface thickness is used as input information. This suc-
cess, together with the parameter-free prediction of the
dendritic growth rate,18 suggests that a multi-scale ap-
proach to the phase field theory with model parameters
deduced from atomistic simulations is capable of quan-
titative predictions for both crystal nucleation and
growth, at least for simple liquids.

B. Heterogeneous nucleation

We have also recently addressed heterogeneous crystal
nucleation in the framework of the PFT.27 A few results,
which illustrate that various complex phenomena can be
addressed this way are shown in Fig. 3. We show noise-
induced nucleation on particles and rough surfaces, par-
ticle engulfment, solidification in porous medium, and in
a rectangular channel (orientation selector), in both two
and three dimensions. In the three-dimensional (3D) cal-
culations, a simpler model is used, which does not ac-
count for the differences in the crystallographic orienta-
tion.27 Heterogeneous noise-induced nucleation has been
investigated in 3D for various geometries including a

stairlike surface, porous medium (represented by cubes
placed on a bcc lattice), and 3D checkerboard-like modu-
lated surface (Fig. 4). Such studies may contribute to a
better understanding of processes that can be used in
micro/nano-patterning.

C. Polycrystalline growth

A spectacular class of structures appears in thin poly-
mer blend films if foreign (clay) particles are intro-
duced.13 A disordered dendritic structure termed a
“dizzy” dendrite (Fig. 5) forms by the engulfment of the
clay particles into the crystal, inducing the formation of
new grains. This phenomenon is driven by the impetus to
reduce the crystallographic misfit along the perimeter of
clay particles by creating grain boundaries within the
polymer crystal. This process changes the crystal orien-
tation at the dendrite tip, changing thus the tip trajectory
(tip deflection). To describe this phenomenon, Gránásy
et al.25 incorporated a simple model of foreign crystalline
particles into the phase field theory: they are represented
by orientation pinning centers—small areas of random,
but fixed orientation—which are assumed to be of a for-
eign material, and not the solid � � 0 phase. This picture
economically describes morphological changes deriving
from particle-dendrite interactions. Using an appropriate
density of pinning centers, comparable to the density of
clay particles, a striking similarity is obtained between
experiment and simulation (Fig. 5). This description ex-
tends to such fine details as curling of the main arms and
the appearance of extra arms. The disorder in the den-
dritic morphology reflects the underlying polycrystalline
structure that emerges as dendrite tips deflect on foreign
particles.

The mechanism described above is certainly not a gen-
eral explanation for all polycrystalline growth since
spherulites have been observed to grow in liquids with-
out particulates or detectable molecular impurities. The
question is how this can be understood. A clue to this

FIG. 6. Here the dendrite to seaweed transition is induced either by particulate additives (upper row, number of particulates increases from left
to right), or by reducing the orientational mobility (lower row: mobility decreases from left to right).26,27
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phenomenon can be found in the observations of Ma-
gill,43 who noted that spherulites only seem to appear in
highly undercooled pure fluids of sufficiently large vis-
cosity. Based on the observations summarized by Magill,
we hypothesize that the decoupling of the translational
and rotational diffusion coefficient is responsible for the
propensity for polycrystalline growth in highly under-
cooled liquids. Specifically, a reduced Drot should make
it difficult for newly forming crystal regions to reorient
with the parent crystal to lower its free energy at the
growth front that is advancing with a velocity scaling
with the translational diffusion coefficient. Thus, epitaxy
cannot keep pace with solidification, and consequently
the orientational order that freezes in is incomplete. We

term this phenomenon growth front nucleation (GFN).
This situation can be captured within the phase field
theory by reducing the orientational mobility while keep-
ing the phase field mobility constant as discussed in de-
tail by Gránásy et al.26

We recently performed a systematic study26,27 of poly-
crystalline morphologies forming via particulate induced
GFN and low orientation mobility induced GFN, and
found that the two mechanisms lead to strikingly similar
morphologies and grain structures (see Fig. 6). These
results demonstrate a duality between the morphologies
evolving due to the effects of static heterogeneities (foreign
particles) and dynamic heterogeneities (quenched-in orien-
tational defects). It is thus natural that polycrystalline

FIG. 7. Formation of polycrystalline spherulites. Upper block: Concepts for the formation of Category 1 and 2 spherulites.44 Central block:
Formation of a Category 1 spherulite in the phase field theory. Bottom block: Formation of a Category 2 spherulite in the phase field theory. In
the central and lower blocks images in the upper row show the composition field, while in the lower row the respective orientation field is
displayed. (In the orientation maps different colors correspond to different crystallographic orientations.)

L. Gránásy et al.: Phase field theory of crystal nucleation and polycrystalline growth: A review

J. Mater. Res., Vol. 21, No. 2, Feb 2006316



growth is prevalent in fluids crystallized in heteroge-
neous materials such as gels, as well as in highly super-
cooled liquids such as those commonly found during the
processing of polymeric materials.

D. Formation of spherulites

Experimental studies performed over the last century
indicate that there are two main categories of growth
forms commonly termed spherulites.43 Category 1
spherulites grow radially from the nucleation site,
branching intermittently to maintain a space filling char-
acter (Fig. 7). In contrast, Category 2 spherulites grow
initially as thread-like fibers subsequently forming new
and new branches at the growth front (Fig. 7). This
branching of the crystallization pattern ultimately leads
to a crystal “sheaf” structure that increasingly splays out
during growth. At still longer times, these sheaves develop
two “eyes” (uncrystallized regions) on each side of the
primary nucleation site. Ultimately, this type of spheru-
lite settles down into a spherical growth pattern, with eye
structures apparent in its core region. In some materials,
both categories of spherulite occur in the same material
under the same nominal thermodynamic conditions.

One of the popular ideas used to explain the formation
of spherulites envisions that these structures arise from
the regular branching of crystalline filaments having a
well-defined branching angle (see e.g., Refs. 43–45).
While the details of such a mechanism necessarily differ
on the molecular scale for the many systems that display
spherulitic solidification, we hope to capture the general
features of this process within a phase field model that
accounts for this branching process. To incorporate
branching with a fixed orientational misfit, we included a
new form of the orientational free energy. Here the ori-
entational free energy has a second (local) minimum as a
function of misorientation angle �0|��|, where �0 is the
correlation length of the orientation field. Thus, during
orientational ordering at the solid–liquid interface, a sec-
ond (metastable) free energy can be selected by the sys-
tem, corresponding to a particular preferred grain misori-
entation. Accordingly, the cells that have a larger misori-
entation, than the first (local) maximum of the fori versus
�0|��| relationship, may relax toward the local minimum,
unless the orientational noise prevents them from settling
into this minimum.

Category 1 spherulites (described above) have been
seen to form from transient single-crystal nuclei.46 Our
model captures the gradual transition from square-shaped
single crystals to circular shape under isothermal condi-
tions. As seen in simulation, square-shaped single crys-
tals nucleate after an initial incubation period. After ex-
ceeding a critical size (that depends on the ratio � of the
rotational and translational diffusion coefficients), the
growing crystal cannot establish the same crystallo-
graphic orientation along its perimeter. Thus, new grains

FIG. 8. Polycrystalline freezing in 3D as predicted by the phase field
theory.47 (a) Growth of four randomly oriented dendrites assuming
cubic crystal symmetries (400 × 400 × 400 grid). (b) Polycrystalline
spherulite formed by trapping of orientational disorder calculated with
triclinic crystal symmetry (300 × 300 × 300 grid). The growth front is
colored according to the angular difference between the z-axes of the
local and laboratory frames (see color bar). (c) A crystal sheaf formed
by branching of a needle crystal simulated with triclinic crystal sym-
metry (250 × 250 × 500 grid). The � � 0.5 surface is shown.
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form by secondary nucleation as described in the intro-
duction. This process gradually establishes a circular pe-
rimeter for mature growth forms (Fig. 7). In agreement
with experiment, analyses of simulations for Category 1
spherulites indicate a constant radial growth rate.28,29

Many studies of the early stages of spherulite growth,
especially in polymers, indicate that these structures ini-
tially grow as slender threadlike fibers.43–45 These struc-
tures successively branch to form space-filling patterns.
A large kinetic anisotropy of 2-fold symmetry is as-
sumed, as is appropriate for polymeric systems that
have a propensity to form crystalline filaments.28,29

We include a preferred misorientation angle of 30°. Ide-
ally, in a system where filament branching happens with
a 30° misfit, the polycrystalline growth form may con-
sist of only grains that have six well-defined orienta-
tions (including the one that nucleated), and which differ
in orientation by multiples of 30°. With increasing driv-
ing force, the branching frequency increases, and more
space filling patterns emerge, while the average grain
size decreases. This leads to a continuous morphological
transition that links the needle-crystals forming at low
supersaturation, to crystal sheaves (“axialites”), and to
Category 2 spherulites (with “eyes” on the two sides of
the nucleus) under far from equilibrium growth condi-
tions.28,29

The time evolution of a Category 2 spherulite is shown
in Fig. 7. First, fibrils form and then secondary fibrils
nucleate at the growth front to form crystal “sheaves.”
The diverging ends of these sheaves subsequently fan
out with time to form eyes, and finally a roughly spheri-
cal growth form emerges.28,29 This progression of
spherulitic growth is nearly universal in polymeric ma-
terials.43–45

A recent development is that the polycrystalline model
used in the simulations shown above has been extended
to three dimensions.33,34 We present illustrative calcula-
tions for various polycrystalline growth modes in Fig. 8.
This figure shows snapshots of the growth of randomly
oriented dendritic particles of cubic crystal symmetries
and the formation of a polycrystalline spherulite and a
crystal sheaf.47

IV. CONCLUDING REMARKS

We have reviewed recent advances in phase field mod-
eling of polycrystalline structures. It has been shown
that phase field models relying on orientation fields of-
fer a general approach to polycrystalline solidification
and can be used to address various processes relevant to
polycrystalline freezing such as homogeneous and
heterogeneous modes of primary and secondary nuclea-
tion. One of the major challenges we faced was the de-
scription of foreign particles. In this, we relied on two
simple models: (i) the orientation pinning centers, and

(ii) particles defined by walls of 90° contact angle. While
these simplistic approaches are indeed successful in
capturing dominant features of particle-induced disorder
in polycrystalline growth, a full model of foreign par-
ticles that takes their composition and crystallographic
properties into account remains to be developed.

Finally, we find it remarkable that a simple coarse-
grained field theory consisting of only a few model pa-
rameters is able to address the formation of a broad va-
riety of polycrystalline morphologies seen in nature and
laboratory, including disordered dendrites, spherulites,
fractal-like aggregates, and many more.
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