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Abstract

This contribution deals with three types of orientational phenomena generated by oscillatory #ow in
nematic liquid crystals: (1) Uniform orientational instabilities in the geometry where the director is initially
oriented within the #ow plane. The instability occurs under rectilinear Poiseuille #ow and not under Couette
#ow. (2) The "rst instability under rectilinear Couette #ow is a bifurcation to a stationary roll pattern with
the roll axis perpendicular to the #ow direction. The threshold amplitude has been measured for homeotropic
alignment and calculated by linear stability analysis. (3) An interesting slow director precession and nonlinear
waves which arise in homeotropically aligned nematics exposed to an elliptical shear #ow in the bend
FreH edericksz distorted state. The experimental data are compared with a theoretical analysis. The precession
can also be generated by oscillatory compression. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In nematic liquid crystals (NLCs) the coupling between the preferred molecular orientation
(director n( ) and the velocity "eld * leads to interesting #ow phenomena. For a steady #ow along the
x-axis with a velocity "eld v

x
(z), v

y
"v

z
"0 (rectilinear shear #ow, typically of the Couette or

Poiseuille type) the director will, in the absence of other torques, align in the #ow plane (x}z plane)
at the angle h

&-
"$arctan(Ja

3
/a

2
) (Leslie angle) with the x-axis if a

3
/a

2
'0 (the $ sign
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corresponds to positive/negative shear rate Rv
x
/Rz) [1,2]. Here a

3
, a

2
are Leslie viscosity

coe$cients. In typical low-molecular-weight materials with rod-like molecules a
3
/a

2
is small but

positive (+0.01), however, in some materials (in particular near a nematic}smectic transition) one
has a

3
/a

2
(0 and instead of #ow alignment there is a more complicated tumbling motion [3}5]. In

the usual sample geometry the director is anchored at the boundaries and then one may have
interesting instabilities and transitions that have been studied in the past, see e.g., [6}9].

When the velocity "eld oscillates periodically and symmetrically around zero (time average
Sv

x
(z, t)T"0) the situation becomes richer. There are two quite di!erent cases depending on

whether the initial alignment of the director is perpendicular to the #ow plane, i.e., in the
y direction, or within the #ow plane. The "rst case has been clari"ed in classical experiments by
Pieranski and Guyon [10,11] and theoretical works of Dubois-Violette and Manneville (for an
overview see [6]). For nematics with a

3
(0 one "nds a transition to rolls oriented along the #ow

direction which transforms into a homogeneous distortion when a stabilising magnetic "eld is
applied [11]. In the second case when the director is prealigned within the #ow plane the dynamical
behaviour under oscillatory #ow can be quite complex. Some properties of this system which we
have investigated in the last few years will be summarised here.

In Sections 2 and 3 we review brie#y the experimental methods and the theoretical framework.
Then, in Section 4, we present the equations for #ow that is homogeneous in the plane of NLC layer
and give solutions for the basic state under rectilinear oscillatory #ow where the director oscillates
around its equilibrium position induced by boundaries.

Next, we consider FreH edericksz-type instabilities where the time-averaged director reorients
homogeneously in the plane of the layer (Section 5). For simple linear Couette #ow no homogene-
ous instabilities are predicted to occur in contrast to the case of Poiseuille #ow [12,13], even if the
possibility of transitions out of the #ow plane is included [13,14]. We consider only situations
where the director lies initially in the shear plane. We have analysed the time-averaged (over the
oscillation period) torques acting on the director in spatially homogeneous situations (no boundary
conditions) [12,13]. For low-frequency Couette #ow there are no torques whereas for Poiseuille
#ow there are torques directed away from the #ow-alignment angles and, for h'h

&-
, away from the

#ow plane. Besides the weakly stable planar state n("x( (for #ow-aligning materials) there exists
a stationary attractor out of the #ow plane. Numerical simulations con"rm that for non-planar
(homeotropic or oblique) boundary conditions above a critical #ow amplitude an out-of-plane
transition indeed occurs leading to the new stationary state [13,14]. Some recent experimental
results on the orientational transition in homeotropically oriented NLCs under oscillatory
Poiseuille #ow will be presented.

In Couette #ow with increasing #ow amplitude one has found experimentally transitions to
di!erent roll states [15}17] (rolls axis perpendicular or parallel to the shear direction), which were
not understood very well [16,18] (in the theory the elastic torque in the oscillatory part of the
destabilising #uctuations has been neglected, which is a questionable approximation at low
frequencies). In Section 6 we show our recent experimental and theoretical results. Comparison of
the threshold amplitude of the roll instability between experiment and numerical linear stability
analysis shows satisfactory agreement [19].

Elliptical shear #ow (including circular as a special case), by applying oscillations
x(t)"A

x
sinut, y(t)"A

y
sin(ut#U) to one of the con"ning plates (or by applying the two

rectilinear components to the two plates) is interesting also at small #ow amplitudes below the
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occurrence of any #ow instability (it has been studied intensively in the past in view of roll
instabilities [6,20}23]). In particular, in the presence of an electric "eld above the bend FreH e-
dericksz transition, a slow precession of the in-plane director and associated phase waves are
observed. The only previous study of the FreH edericksz distorted state in the presence of elliptic
shear was carried out by Dreyfus and Pieranski [24]. In Section 7 our latest results on these
phenomena are presented. Similar phenomena are observed under oscillatory compression at
ultrasonic frequencies, where one has strong deviations from the linear velocity pro"le.

2. Experimental methods

A nematic layer of thickness d was con"ned between two glass plates. To obtain rectilinear
Couette yow periodic motion of the upper plate [see Fig. 1(a)] was generated by loudspeakers,
controlled by high-precision mechanical elements and it was detected by position-sensitive photo-
detectors. To obtain elliptic Couette yow the lower plate was also set into periodic motion (with
appropriate phase shift). The thickness of the sample was adjustable in the range of d"10}200 lm.
Homeotropic boundary conditions were obtained on clean SnO

2
-coated glass plates. For rectilin-

ear shear the substance 5CB was used. The transmission of a parallel laser beam was detected
between crossed polars for the analysis of the small amplitude (below the roll threshold) behaviour.
The characteristics of the spatial patterns were studied by computer controlled digital image
analysis of the sample between crossed polars.

In the case of elliptic shear substances with negative dielectric anisotropy (MBBA, MERCK-
Phase5) have been investigated. A tilted director con"guration was achieved by an applied voltage
; across the cell.

The slow precession of the director generated by elliptic shear was studied by digital image
analysis. The slow director precession can be revealed by an other type of excitation: periodic
compression ( f"1}100 kHz) of the sample, which was realized by piezoelectric elements [25].
Other details of the set-up can be found in [19,26].

The set-up for oscillatory Poiseuille yow experiments consists of a nematic sample con"ned
between two glass plates. The thickness d of the nematic layer was controlled by two spacers placed
along the #ow direction. The nematic liquid crystal MBBA was "lled by capillary forces and for
homeotropic alignment at the glass plates their surfaces were treated with the surfactant DMOAP.
An oscillatory pressure di!erence between the two open sides of the cell was generated by two
vertical cylinders accommodating pistons driven sinusoidally in opposing sense by an electromotor
[see Fig. 1(b)]. Two cavities of adjustable volume were used for regulation of the amplitude of the
applied pressure in the range from 1 to 20 kPa. This set-up allowed to study an oscillatory
Poiseuille #ow in the frequency range from 1 to 20 Hz. The transmitted light intensity between
cross polars was measured by a photo detector in the microscope and/or by a CCD camera.
Interfaces for the signal processing were either an A/D board or a frame grabber.

3. General formulation and dimensional analysis

The standard set of hydrodynamic equations governing the director orientation and the #ow
"eld for nematic liquid crystals (Leslie}Ericksen continuous formulation [7,27]) consists of the
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Fig. 1. Experimental setup for oscillatory Couette (a) and Poiseuille (b) #ow.

director dynamic equation (balance of torques) involving the elasticities K
11

, K
22

, K
33

and the
rotational viscosities c

1
"a

3
!a

2
, c

2
"a

6
!a

5
, Navier}Stokes equation (momentum balance)

involving the Leslie viscosities a
1
,2,a

6
, incompressibility condition and director normalisation.

These equations de"ne two dynamic processes involved, which are described by two typical time
scales:

q
$
"

c
1
d2

K
33

, q
7
"

od2

g
, (1)

where g is an appropriate shear viscosity of NLC which is of order of the rotational viscosity c
1
,

representing relaxation times for the director (by bend elasticity) and the velocity "eld (by viscous
damping). The ratio q

7
/q

$
is typically very small (&10~6) thus the relaxation of the velocity

#uctuations is much faster than the orientational relaxation. Then one can eliminate adiabatically
the velocity "eld, i.e., discard the inertia of the mass #ow. For a nematic layer of the thickness
d under an oscillatory #ow with frequency f"u/(2p) one has natural dimensionless variables

r8"r/d, tI"tu, *8 "*/(du) , (2)
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and the nematohydrodynamic equations contain the dimensionless quantities

e"(q
$
u)~1, d"q

7
u"

d2

l2
, (3)

where l"Jg/(ou) is the viscous penetration depth. All additional dimensionless quantities
appearing in the basic equations involve ratios of the elasticities and viscosities which are mostly of
order 1. The only exception of some relevance in the following is j"a

3
/a

2
. Oscillatory motion of

the con"ning plates (Couette #ow) or application of oscillatory pressure gradient (Poiseuille #ow)
introduce the dimensionless control parameter a"A/d where A is a #ow displacement amplitude.
One can introduce for our problem the Ericksen number which is a measure of the e!ect of the #ow
on the director orientation (viscous stress/elastic stress)

Er"a/e . (4)

Since the ratio q
$
/q

7
is also a material constant, the response of a given NLC depends on d, u and

A only through e (or d) and a. As a result the critical #ow amplitude for a particular orientational
instability is a universal function depending only on the product ud2 (or q

$
u).

4. Homogeneous 6ow

We "rst look for solutions of the nematohydrodynamic equations where the director n( and the
velocity * are functions only of the transverse coordinate z and time t

n("Mn
x
(z, t), n

y
(z, t), n

z
(z, t)N ,

*"Mv
x
(z, t), v

y
(z, t),0N . (5)

Clearly the incompressibility condition + ) *"0 is satis"ed. Setting

N"n
x
#in

y
, <"v

x
#iv

y
, (6)

one can rewrite the nematohydrodynamic equations [7,27] (consisting of the director torque
balance and Navier}Stokes equation) in complex notation

N
,t
"

n
z

(1!j)A<,z
!

1#j
2

N(N<M
,z
#NM <

,z
)B

!eMk
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N#p2h2[N(m( ) n( )2!(m( ) n( )M]N , (7)
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with n
z
,J1!DND2, B,i(NNM

,z
!NM N

,z
), f

,i
denote derivatives, Lg"L

x
#iL

y
and

k
i
"K

ii
/K

33
, a8

i
"a

i
/c

1
, c

1
"a

3
!a

2
,

e"E/E
F
, E

F
"

p
dS

K
33

e
0
De
a
D
, h"H/H

F
, H

F
"

p
dS

K
33

k
0
s
a

, (9)

where the tildes have been omitted and E
F
, H

F
are the electric and magnetic bend FreH edericksz

transition "elds, respectively. In Eq. (7) we include the e!ect of electric "eld E"(0,0,E) and
a magnetic "eld H"H(m

x
, m

y
,m

z
) with m( 2"1, M"m

x
#im

y
which we will need later on.

Boundary conditions for the velocity for the rectilinear Couette #ow are

p
0
"0, <(z"#1

2
)"a cos t, <(z"!1

2
)"0 , (10)

where a"A/d with A the displacement amplitude. For the rectilinear Poiseuille #ow one has

p
0,g"a

p
cos t, <(z"$1

2
)"0 (11)

and a
p
"(*P/*x)d/(c

1
u) (*P/*x is the applied pressure gradient in physical units). This is to be

supplemented by the boundary conditions for the director.
In the basic state solution for rectilinear #ow n( and * remain con"ned to the #ow plane

n("Mcos h
0
(z, t),0, sin h

0
(z, t)N, *"Mv

0x
(z, t),0,0N . (12)

For the director we consider two cases, the limit of strong homeotropic anchoring

h
0
(z"$1

2
)"p/2 (13)

and the weak-anchoring limit, which corresponds to torque-free boundary conditions

h
0,z

(z"$1
2
)"0 . (14)

The solution h
0
(z, t), v

0x
(z, t) of Eqs. (7) and (8) exists for all #ow amplitudes, but may lose stability

at some critical amplitude (see Section 6). In the low-frequency range to be considered here one has
d;1 (with o+103 kg/m3, g+10~1 N s/m2 and d+10~4 m one has d(0.1 for frequencies
f(150 Hz) and it is reasonable to neglect the inertia of the mass #ow [left-hand side of Eq. (8)] (this
was checked in simulations). Then analytic progress is possible in two limiting cases:

(i) Omitting the elastic coupling terms on the right-hand side of Eq. (7) one easily "nds for
Couette #ow

h
0
(t)"

p
2
!arctanG

1

Jj
tanhC

Jj
1!j

a sin(t)DH , (15)

v
0x

(z, t)"a(z#1
2
) cos(t) , (16)

so that the director is independent of z [28,14]. For Poiseuille #ow one gets after integration of Eq.
(8) and elimination of v

0x
from Eq. (7)

P
Q(h

0
)!K2(h

0
)

K(h
0
)

dh
0
"a

p
z sin(t) ,

K(h)"
j cos2 h!sin2 h

1!j
,

2Q(h)"a
4
#(a

5
!a

2
) sin2 h#(a

3
#a

6
#2a

1
sin2 h) cos2 h . (17)
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The integral on the left-hand side of Eq. (17) can be calculated analytically giving the expression for
h
0
(z, t) in an implicit form [29].
For torque-free boundary conditions (14), Eqs. (15), (16) and (17) are exact solutions of (7) and (8)

with the inertia term dropped. For strong anchoring (13) the omitted terms control the behaviour
near the boundaries, where one has boundary layers of thickness Je (in physical units JK

33
/c

1
u),

which corresponds to the orientational di!usion length that is neglected here. So then one needs
the condition e;1, i.e., u<1/q

$
(for typical material parameters K

33
+10~11 N, c

1
+10~1

N s/m2 and d+10~4 m one has 1/q
$
"0.01 s~1).

(ii) For the case of small distortions of the director away from the homeotropic orientation we
write h

0
"p/2#hI

0
, v

0x
"v8

0x
with DhI

0
D;1, Dv8

0x
D;1 and linearise Eqs. (7), (8) with respect to hI

0
,

v8
0x

. Then the solution in the form

hI
0
(z, t)"h

01
(z) cos t#h

02
(z) sin t ,

v8
0x

(z, t)"v
01

(z) cos t#v
02

(z) sin t (18)

can be easily found [30,29]. The director oscillates periodically around the homeotropic orienta-
tion h

0
"p/2 and there is a frequency-dependent phase shift of these oscillations relative to the

#ow oscillations.
The homogeneous solutions [cases (i) and (ii)] have been investigated experimentally for

rectilinear oscillatory Couette #ow and a good quantitative agreement was found when compared
with theory [19].

5. Homogeneous instabilities

5.1. Stability of the yow-alignment solution

Let us look at the special case when the director is oriented within the #ow plane (x}z plane) at
the #ow-alignment angle h

&-
[Leslie angle, h

&-
"arctan(Jj)] at z"$1/2. Then the basic state

corresponds to the simple #ow-alignment solution

n("Mcos h
&-
,0, sin h

&-
N, t"Mv

0x
(z, t),0, 0N (19)

of Eqs. (7) and (8). In case of steady #ow this solution is stable for any #ow amplitude [2,7]. We
performed the linear stability analysis of the solution (19) for rectilinear oscillatory #ow and found
that for any #ow with v

0x,zz
O0 the #ow-alignment solution becomes unstable at some critical #ow

amplitude [14]. For oscillatory Poiseuille #ow the (dimensionless) critical #ow amplitude [14]

a
#
"

pJ2
8K@(h

&-
)

(20)

independent of frequency (for d;1). The corresponding result for oscillatory Couette #ow

a
#
"j

1@4
2J2

Q(h
&-
)c

1
oud2K@(h

&-
)

, (21)

where j
1@4

"2.78088 is the minimal positive root of the Bessel function J
1@4

(j
1@4

)"0 [31].
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From direct numerical simulations of Eqs. (7) and (8) we "nd that the #ow-alignment solution
becomes unstable as for oscillatory Poiseuille #ow as for Couette #ow at some critical amplitude.
The critical amplitude for Poiseuille #ow decreases slightly with increasing frequency
(2.55a

#
52.3 for 5 Hz 4f4100 Hz) which is near to the value a

#
"2.78 obtained from the

linear stability analysis in case of prescribed velocity "eld. The agreement with Eq. (21) for Couette
#ow is also very good [31].

5.2. Time-averaged approach: out-of-plane transition

Let us now analyse the nonlinear director evolution. Introducing

n("Mcos h(z, t) cos/(z, t), sin/(z, t), sin h(z, t) cos/(z, t)N ,

*"Mv
x
(z, t), v

y
(z, t),0N, (22)

where h is the angle with respect to the x-axis within the #ow plane and / is the out-of-plane angle.
The system (7), (8) reduces to four coupled equations for h, /, v

x
and v

y
[14] with either time

periodic boundary conditions for v
x

at z"$1
2

(Couette #ow) or time periodic pressure gradient
(Poiseuille #ow) and appropriate boundary conditions for h, /. In order to simplify the problem
and to gain some understanding of nonlinear director evolution we will treat v

x
(z, t) as a prescribed

time periodic function with time average Sv
x
(z, t)T"0 and v

y
"0. The numerical analysis of the

whole set of equations shows that this is a good approximation for small #ow amplitudes and
moreover, for larger amplitudes this approximation is still reasonable for low frequencies
u;1/q

7
(d;1) [14]. In this approximation v

x
"a(z#1/2) cos t for Couette #ow and

v
x
"a(4z2!1) cos(t) for Poiseuille #ow where a is the dimensionless #ow displacement amplitude.

Then the problem reduces to the two coupled nonlinear equations for h and / which are equivalent
to Eq. (7).

For frequencies u<1/q
$

(e;1), one may introduce a `slowa time ¹"et for the modulations of
the periodic behaviour on the `fasta time scale, so that h"h(z, t,¹), /"/(z, t,¹) and
L
t
"L

t
#eL

T
. Then a systematic perturbation expansion

h"h
0
#eh

1
#2, /"/

0
#e/

1
#2 , (23)

can be formulated where all functions h
i
, /

i
are periodic in t. At order e0, corresponding to neglect

of the elastic coupling (and boundary conditions for the director), one has a continuous two-
parameter family of periodic solutions (h

0
, /

0
) that can be parametrized by the `phasesa g(z,¹)

and s(z,¹) [12}14]. Thus, h
0

oscillates around g and /
0

around s. The solvability conditions for
the inhomogeneous linear equations for h

1
and /

1
at order e lead to the evolution equations for

g and s that describe the slow evolution of the time-averaged director orientation [13,14]. The
time-averaged torques on the director vanish for a simple linear velocity "eld (Couette #ow)
whereas for Poiseuille #ow (and more general #ow "elds with v

x,zz
O0) one has torques that tend

to orient the director essentially perpendicular to the #ow plane. In Fig. 2 the trajectories of the
system of evolution equations for g and s in the absence of other orienting e!ects (electric and
magnetic "elds, orienting boundaries) are plotted schematically for a #ow-aligning nematic (j'0)
and a non-#ow-aligning nematic (j(0). For j'0 one has two attractors. However, since for
typical nematics h

&-
is small, one expects the solution (g"0, s"0) to be very weakly stable (small

178 A.P. Krekhov et al. / Physics Reports 337 (2000) 171}192



Fig. 2. Phase diagrams for the spatially uniform solutions of evolution equations for j'0 (a) and j(0 (b).

Fig. 3. Frequency dependence of the critical pressure amplitude *P
#
for out-of-plane transition in MBBA: experimental

(squares) and calculated (solid line).

domain of attraction) compared to (g"p/2, s"s
0
). For j(0 only the "xed point s"p/2 is

stable. In both cases, (g"p/2,s"0) is unstable with respect to out-of-plane motion. Clearly, this is
di!erent from the case of steady #ow with the director initially oriented within the #ow plane where
even for tumbling motion of the director for non-#ow-aligning nematics, the director remains
within the #ow plane.

Including boundary conditions one obtained the critical #ow amplitude for the out-of-plane
transition. The threshold found from the linear stability analysis of the evolution equations for
g and s is in a good agreement with the one obtained from the full numerical simulations of Eqs. (7)
and (8) [13,14]. This orientational instability in homeotropically oriented nematics under oscilla-
tory Poiseuille #ow was recently found experimentally and the frequency dependence of the critical
pressure amplitude *P

#
is plotted in Fig. 3. Using the experimental set-up (Fig. 1b) the transmitted

light intensity was measured in the geometry of cross polars with polariser parallel to the #ow
direction. For amplitudes *P below any instability the director oscillates within the #ow plane and
the intensity is minimal (and constant in time). At some critical pressure amplitude, as a result of an
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Fig. 4. Plot of trajectories in (g, s) phase space for the solutions of the evolution equations for a/h"1 (a), a/h"2 (b) and
a/h"3 (c). Magnetic "eld h at the #ow-alignment angle h

&-
. Note that the director performs rapid oscillations with the

external frequency u/2p around the position (g, s).

out-of-plane transition, the transmitted light intensity increases and exhibits two rather sharp
double peaks over the oscillatory #ow period. Since the out-of-plane transition involves the
breaking of a two-fold symmetry one expects the appearance of patches of the two states. Indeed,
under the microscope we always observed domain boundaries indicating patches of &0.1}1 mm2
area. After some initial coarsening they did not change much over times of several minutes, except
for oscillatory motion of the boundaries with the #ow "eld.

5.3. Slow director oscillations

The analysis of the evolution equations for the time-averaged director motion shows that for
oscillatory Poiseuille #ow the system can exhibit an interesting bifurcation scenario with a regime
of slow limit-cycle oscillations when, in addition, the magnetic "eld of strength h is applied in the
#ow plane at the #ow-alignment angle h

&-
. Such a magnetic "eld imitates the #ow-alignment

boundary conditions. The trajectories of the system in (g, s) phase space are plotted schematically
for this case in Fig. 4 for di!erent values of a/h. For values of a/h(1.9 (for MBBA material
parameters) [Fig. 4(a)], the orienting e!ect of the magnetic "eld is strong compared to the in#uence
of the oscillatory #ow, and one has only one attractor (g"h

&-
, s"0), corresponding to the

#ow-alignment solution (h"h
&-
, /"0) whereas all the other "xed points are unstable. With

increasing a/h the #ow-alignment solution becomes unstable and a large stable limit cycle appears
through a homoclinic bifurcation from the saddle point at a/h"1.9 [Fig. 4(b)]. This limit cycle
corresponds to a slow-time periodic out-of-plane motion of the time-averaged (over the oscillatory
#ow period) director orientation. Further increase of a/h leads to a reduction of the limit cycle and
increase of its frequency. It disappears at a/h"2.27 through a supercritical Hopf bifurcation from
the spiral point A (we have followed the bifurcation in the reverse sense). For a/h'2.27 point A is
stable [Fig. 4(c)] and one has a constant time-averaged out-of-plane director orientation which is
characterised (approximately) by g

A
, s

A
. In addition h

41
and h

&-
cross through each other at

a/h"2.52 (for MBBA parameters) thereby exchanging their stability properties.
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Fig. 5. Bifurcation diagram for Sh
m
T, S/

m
T. Flow alignment boundary conditions; frequency of Poiseuille #ow

f"10 Hz.

In order to verify the results obtained in the framework of time-averaged approach direct
simulations of Eqs. (7) and (8) for oscillatory Couette and Poiseuille #ow were performed using
central "nite di!erences for the spatial derivatives and the predictor-corrector scheme for the time
discretisation. All calculations were made for MBBA material parameters (see Appendix A) and
#ow frequencies 5 Hz4f4100 Hz [14]. We did not "nd an essential di!erence between the results
obtained using the prescribed velocity "eld [13] and full numerical simulations with the self-
consistent velocity "eld [14].

We have veri"ed the existence of the stable limit-cycle solutions by simulating Eqs. (7) and (8).
The bifurcation diagram as a function of the oscillatory Poiseuille #ow amplitude a is shown in
Fig. 5. Here the in-plane and out-of-plane director distortions are characterised by the averaged
(over the oscillatory #ow period) angles Sh

.
T and S/

.
T respectively, taken at the midplane of the

nematic layer (z"0). We "nd the limit cycles in a narrow region of the #ow amplitudes (the
minima and maxima of Sh

.
T and S/

.
T are plotted). Clearly, the situation is analogous to that

discussed before, where the boundary conditions are replaced by a magnetic "eld, but the range of
existence of the slow-time oscillations here is smaller. The typical temporal evolution of Sh

.
T and

S/
.
T is shown in Fig. 6. The period of the oscillations is of the order of the director relaxation time

q
$

(in physical units).
We have also studied a system with planar boundary conditions [h(z"$1

2
)"0,

/(z"$1
2
)"0] in the presence of an external magnetic "eld h"0.5 lying in the #ow plane at an

angle h
.
"p/4 with respect to the x-axis. Then, at low amplitudes of oscillatory Poiseuille #ow,

one has in-plane director oscillations which do not exceed the $h
&-

limit. With increasing #ow
amplitude a limit cycle corresponding to the slow director oscillations appears as in the previous
cases through a homoclinic bifurcation. Further increase of the amplitude a leads to a reduction
and disappearance of the limit cycle. The critical #ow amplitude a for the limit-cycle instability
depends on the value of the magnetic "eld h and remains very sensitive to the anisotropy of the
elastic constants [14].
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Fig. 6. Slow-time out-of-plane director oscillations. Frequency of Poiseuille #ow f"10 Hz; amplitude a"2.325.

6. Roll instability in a homeotropic nematic under Couette 6ow

We now allow for variations along the shear direction x which leads to a two-dimensional
analysis of the nematohydrodynamic equations. Con"ning n( and * to the #ow plane one can write

n("Mcos h(x, z, t), 0, sin h(x, z, t)N, *"Mv
x
(x, z, t), 0, v

z
(x, z, t)N . (24)

The governing equations [7,27,19] are to be supplemented by the boundary conditions. For the
velocity one has no-slip boundary conditions

v
x
(z"!1

2
)"0, v

x
(z"#1

2
)"a cos t ,

v
z
(z"$1

2
)"0 (25)

with a"A
x
/d. For the director we consider the limit of strong homeotropic anchoring

h(z"$1
2
)"p/2 . (26)

For su$ciently small shear amplitudes the director oscillates homogeneously around the homeo-
tropic position (see Section 4), i.e., no x dependence and v

z
"0. This basic state loses stability at

some critical value a
#

of the #ow oscillations and then a roll instability sets in with the roll axis
perpendicular to the direction of the shear (see Fig. 7). The frequency-dependent critical #ow
amplitude a

#
was measured and calculated numerically from the linear stability analysis of the

basic state [19]. We have used for the basic state (h
0
, v

0x
) the solution (15), (16), which is valid for

d;1. Due to the general scaling properties of the problem (see Section 3) one has for the critical
#ow amplitude a

#
and critical wave number of the roll structure q

#
:

a
#
"a

#
(q

$
u), q

#
"q

#
(q

$
u) . (27)

The a
#
(q

$
u) curve (dotted line) is plotted in Fig. 8 with the experimental data for various

thicknesses (40 lm(d(130 lm). We have also plotted in Fig. 8 the critical amplitude obtained
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Fig. 7. Roll pattern observed in polarized white light at f"80 Hz and A
x
/d"0.5. The rolls are perpendicular to the

direction of the upper plate oscillations.

Fig. 8. The normalised threshold amplitude A
xc

/d for the formation of the roll pattern as a function of the quantity q
$
u

for cell thickness d"40 lm ("), d"50 lm (h), d"60 lm (e), d"70 lm (n), d"80 lm (¢), d"90 lm (£),
d"100 lm (¤), d"110 lm (#), d"120 lm (]), d"130 lm (*). The dotted line corresponds to the numerical
results of linear stability analysis with fully rigid boundary conditions while the dashed line is calculated from [18].

from the threshold formula of a previous analysis [18] (dashed line). As it is seen our calculations
describe the experimental data fairly well except at low frequencies (that correspond to large
oscillation amplitudes). The q

#
(q

$
u) curve (solid line) is plotted in Fig. 9 together with the

experimental data for the thickness d"50 lm.
Our results di!er from those reported in Ref. [18] (dashed lines in Figs. 8 and 9) where

a small-amplitude approximation for the basic state, the lowest-order time Fourier approximation
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Fig. 9. The wave number (q
#
) of the evolving pattern as a function of the quantity q

$
u. The continuous line corresponds

to the numerical results of linear stability analysis while the dashed line is calculated from [18]. The experimental data (")
are measured at d"50 lm.

and a one-mode approximation with simple symmetry for the z dependence of the perturbations, as
well as some additional simpli"cations were made. Since the threshold disappears in the formula of
Ref. [18] when the inertia term is neglected (it diverges for oP0) the results qualitatively
contradict our (essentially rigorous) computations. We found it necessary to go beyond the
lowest-order time Fourier approximations and to keep more than one mode with opposite
z symmetry. In Fig. 10 we show the `snapshotsa of the director and velocity pro"les (in x}z plane)
for di!erent time moments together with the time-averaged distributions at onset of the roll
instability obtained from the numerical linear stability analysis. One can see that there is no
zP!z symmetry as in the director as in the velocity distribution.

7. Slow director precession and nonlinear waves

We have found that a slow precession of the director and associated nonlinear waves can be
generated by elliptic shear or oscillatory compression at ultrasonic or at low frequencies. As initial
condition the system must be in a continuously degenerated distorted state that can be obtained by
homeotropic boundary conditions and an applied external destabilising (e

a
(0) electric "eld

E"(0, 0,E
z
). Alternatively the distorted state can be obtained by having a nematic-isotropic

interface inside (and parallel to) the NLC layer produced by a temperature gradient across the
sample. Typically the director at such an interface is tilted.

7.1. Elliptic shear

After applying a voltage ;';
F

(where ;
F

is the FreH edericksz threshold) across the layer the
director tilts away from the initial homeotropic alignment. The degeneracy with respect to the
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Fig. 10. The director (left) and velocity (right) pro"les at onset of the roll instability obtained from numerical linear
stability analysis. Shear #ow frequency f"100 Hz, critical #ow amplitude a"0.49, NLC layer thickness d"50 lm and
5CB material parameters.

azimuthal angle / leads to the well-known `Schlieren texturea observed between crossed polars.
After applying the elliptic shear (typically with amplitudes A/d"0.2 and frequency f"50}500 Hz)
the director precesses slowly (typical frequency )+0.1 Hz) around the z-axis. This precession
leads to the movement of dark and bright domains between crossed polars. The precession slows
down as the ellipticity is decreased and stops in the case of rectilinear shear.

For frequencies such that u;1/q
7

and small dimensionless shear amplitudes one can use
a linear #ow "eld, i.e., complex velocity gradient <,

z
"a(cos t#i b sin t) in Eq. (7) where a"A

x
/d

and b"A
y
/A

x
is a measure of ellipticity (b"1 for circular shear). It is useful to neglect "rst any

space dependence, which is a good approximation when the Ericksen number a/e [6] is large.
Consistently, one then also has to discard the electric "eld, so that in Eq. (7) one is left with the
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terms in the "rst line. Introducing angles by writing N"sin h exp i/ one can rewrite Eq. (7) as

h,
t
"a@(cos2h!j sin2 h)[cos t cos/#b sin t sin/] ,

/,
t
"a@ cot h[!cos t sin/#b sin t cos/] , (28)

where a@"a/(1!j). For rectilinear shear (b"0) one recovers the #ow-alignment solution
cot2 h"j, /"0.

Eqs. (28) represent a conservative, reversible dynamical system. For j"0 the director is
advected passively by the velocity "eld and Eqs. (28) separate into

L
t
(tan h cos/)"a cos t , L

t
(tan h sin/)"ab sin t . (29)

The solutions for arbitrary initial conditions can easily be written. They describe simple, closed
2p-periodic orbits, which either include or exclude the origin (h"0, homeotropic orientation).
Clearly, this case can be generalised to arbitrary time dependence of the #ow.

For circular #ow (b"1), Eqs. (28) are integrable even for jO0. Then the terms in square
brackets become cos (/!t) and !sin (/!t), respectively. Introducing the phase lag u"/!t
the equations become autonomous. Transforming them into second-order ODE

u,
tt
"(u,

t
#1)(2u,

t
#1) cotu!ja@2 sinu cos u (30)

one can verify that the quantity

C"

(u,
t
#1!ja@2 sin2u)2

(2u,
t
#1!ja@2 sin2u) sin2 u

(31)

is a constant of motion. Solving for u,
t
one obtains the period ¹ of the motion as an integral which

can be solved analytically giving

¹"P
2p

0

du/u,
t
"2p/J1!ja@2 (32)

(independent of C!). For jO0 the orbits are in general quasi-periodic. Thus, in addition to the
rapid oscillations with u, the director performs a slow precession with frequency

)"A1!
2p
¹ Bu+

j
2

A
x
A

y
d2

u (33)

in physical units. The precession is for #ow-aligning materials positive (same sense of rotation as
the elliptic shear) and negative otherwise. In Fig. 11 some typical orbits are shown for circular
(b"1) and elliptical (bO1) shear #ow.

The dependence of ) on the shear amplitude and on the frequency is in accordance with the
experimental results [32] (see Fig. 12). However, the system shows a remarkable behaviour when
varying the voltage (see Fig. 13). We have illustrated the typical spatio-temporal behaviour of the
system with the snapshots taken at di!erent voltages. At su$ciently high voltages the director
orientation varies slowly in space and precesses almost homogeneously in time (snapshot 1. in Fig.
13). Around 1.2;

F
inhomogeneities emit traveling waves and umbilics generate spiral waves

(snapshot 2. in Fig. 13), very similar to those observed in oscillatory and excitable chemical
reactions [33,34]. The longer waves in the background originate from the lateral cell boundaries.
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Fig. 11. The orbits of the in-plane director under elliptic shear for j"0.2, a"0.5 and b"1 (a), b"0.7 (b). The thick
circle represents a pure rapid rotation around the z axis relevant below the FreH edericksz transition. Other orbits exhibit
the slow precession. We show examples with a small average tilt (dotted), expected to be relevant slightly above the FT,
and with a large tilt (dashed).

Fig. 12. Precession frequency X vs. driving frequency and amplitude. The parameters are: (a) ;/;
F
"2.3, d"20 lm,

A
x
"0.8 lm, A

y
"1 lm and ¹"25.53C. (b) Circular shear, d"20 lm, f"122 Hz, ¹"28.53C and ;/;

F
"2.3.

At lower voltages spiral pairs seem to be created spontaneously (without umbilics) and one
observes spatio-temporal chaos (snapshot 3. in Fig. 13). Although a detailed understanding of this
behaviour is still lacking one can understand the qualitative features by noting that in the presence
of elliptic shear with b near 1 the FreH edericksz transition transforms into Hopf bifurcation [32].

7.2. Oscillatory compression

A periodic compression of the sample (typical frequencies f"1}100 kHz) also leads to the slow
precession of the director [25]. Inhomogeneities in space lead to target-like waves similar to those
observed in [35}37] (see Fig. 14, inset). When the phase waves break (in the snapshot) defects
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Fig. 13. The frequency of the slow time precession of the director as a function of the applied electric "eld. The cell
thickness d"20 lm, circular shear, A

x
"A

y
"3.4 lm, f"155 Hz. The spatio-temporal behaviour of the system is

considerably di!erent in the three regimes: 1. At large electric "elds a nearly homogeneous precession is observed; 2.
Around;"1.2;

F
spiral formation has been detected; 3. At smaller voltages (;(1.2;

F
) spatio-temporal chaos can be

observed.

Fig. 14. The frequency of the slow time precession of the director as a function of the applied electric "eld. The cell
thickness d"20 lm, compression amplitude A

z
"17 nm and f"11.3 kHz. The snapshot shows a typical `target-likea

pattern.
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Fig. 15. The critical voltage for FreH edericksz transition ;
F

(h) and voltage corresponding to the precession reversion
;X/0

(L) as a function of the compression amplitude A
z
.

appear in the phase wave structure. This e!ect can be seen in the inset of Fig. 14 in the region where
the waves emitted by the two centres collide. As is seen from Fig. 14 at large voltage the slow
precession has similar dependence on voltage as in the case of the elliptic shear (Fig. 13). However,
approaching;

F
from above, the precession stops at ;+1.2;

F
. By further decreasing the voltage

the precession reverses ()(0). This interesting result has been observed for MBBA and Phase
5 (MERCK) and was found to be reproducible in several samples. In Fig. 14 the applied voltage is
normalised to the voltage corresponding to the FreH edericksz transition in the absence of compres-
sion [;

F
(A

z
"0)].

We mention that the critical voltage corresponding to the FreH edericksz transition depends on the
oscillatory compression. The dependence of the FreH edericksz transition voltage on the compression
amplitude A

z
(at the location of a target) is plotted in Fig. 15 (squares) together with the voltage

corresponding to the precession reversal (circles). Clearly, one can observe the reversal by either
changing the voltage or the compression amplitude.

These e!ects of the precession reversal and decrease of the FreH edericksz transition voltage in the
presence of oscillatory compression are not yet understood. From the theoretical point of view the
main problem here is the lack of knowledge of the #ow "eld.

8. Conclusion

There is room for further work in all three #ow problems considered here. For rectilinear
oscillatory Poiseuille #ow in a homeotropically oriented sample theory predicts an interesting
scenario for boundary anchoring corresponding to the #ow-alignment angle or, alternatively,
simple planar anchoring of the director with an additional magnetic "eld in the #ow plane at an
angle of 453with respect to the x-axis. Then a transition to a slow time-periodic director precession
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has been predicted theoretically (see Section 5.3 [14]). This director motion emerges with
increasing #ow amplitude through a homoclinic bifurcation and disappears through a Hopf
bifurcation. The e!ect depends strongly on the anisotropy of elastic constants and in fact
disappears in the one-constant approximation. It would be interesting to perform experiments to
test this prediction.

The mechanism leading to rolls in rectilinear oscillatory Couette #ow with its uniform shear rate
is quite interesting. We are dealing with a system that is parametrically driven in a time-periodic
and, when inertia terms are neglected, essentially spatially homogeneous manner (the velocity
gradient of the basic #ow, which is the relevant quantity, is spatially constant). Then, as long as the
state remains homogeneous, the spatial coupling of the director through orientational di!usion is
not activated. The system behaves as a zero-dimensional one, which is integrable and cannot
develop instabilities. The only way to produce a time-averaged torque on the director is to establish
(spontaneously) a space dependence, thereby activating the spatial coupling (and escape integrabil-
ity). Thus, paradoxically, the di!usive coupling is instrumental in producing the spatial in-
homogeneities. The e!ect is complementary to the mechanism operative in the "rst case when the
driving is inhomogeneous (Poiseuille #ow) and the director undergoes a homogeneous transition. It
would be interesting to verify experimentally the structure of the rolls as predicted by theory.

Concerning the director precession under an elliptic shear #ow the theory describes the slow
precession at large "elds essentially quantitatively. The scenario of the waves on the background of
the slow precession (di!usive phase waves at large "elds changing to amplitude waves with
dispersion and eventually Benjamin}Feir chaos at low "elds) can be understood qualitatively.
There remains to be done a quantitative analysis at low "elds as well as an experimental test of the
most provocative rediction, namely the reversal of the slow precession for non-#ow aligning
materials in situations where the elasticity-induced e!ects are small. Understanding the somewhat
similar e!ects observed under oscillatory compression remains a challenge.
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Appendix A. Material parameters

The numerical computations were carried out for the following MBBA (4-methoxybenzylidene-
4@-n-butylaniline) material parameters at 253C [38,39].

Viscosity coe$cients in units of 10~3 Ns/m2:

a
1
"!18.1, a

2
"!110.4, a

3
"!1.1, a

4
"82.6, a

5
"77.9, a

6
"!33.6.
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Elasticity coe$cients in units of 10~12 N:

K
11

"6.66, K
22

"4.2, K
33

"8.61,

and mass density o"103 kg/m3. We used the layer thickness d"20 lm.
For the nematic liquid crystal 5CB (4-n-pentyl-4@-cyanobiphenyl) we took the material para-

meters at 263C [40].
Viscosity coe$cients in units of 10~3 Ns/m2:

a
1
"!6.6, a

2
"!77.0, a

3
"!4.2, a

4
"63.4, a

5
"62.4, a

6
"!18.4.

Elasticity coe$cients in units of 10~12 N:

K
11

"5.95, K
22

"3.77, K
33

"7.86,

and mass density o"1021.5 kg/m3.
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