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1 Introduction

Liquid crystals (LCs) are substances possessing one or more mesophases between
their liquid and solid phase. The sequence of these mesophases represents a step
by step ordering of the structure. The nematic (N) phase is characterized by an
orientational order of the elongated molecules described by the director n, but
the centers of mass of the molecules are arranged randomly. In the smectic (Sm)
phases besides the orientational order the centers of mass of molecules form a
layered structure. The smectic-A (SmA) phase has no positional order within
the layers, while the smectic-B (SmB) phase is characterized by a long-range
hexagonal order in each layer and by a weak correlation between the layers. The
features of these and other LC phases are described in detail in the literature –
see e.g. [1,2,3].

Liquid crystals are quite rich in pattern forming phenomena [4]. Owing to the
orientational order LCs possess strongly anisotropic physical properties, which
on the one hand result in the known pattern forming processes (observed in
other systems such as Rayleigh-Bénard convection, viscous fingering, etc.) with
richer scenarios, and on the other hand allow for new instability mechanisms
(such as electrohydrodynamic convection, patterns at the Freedericksz transi-
tion, etc.). Furthermore, optical and other properties of LCs (e.g. birefringence,
transparency, phase transition temperatures close to the room temperature, rel-
atively fast transport processes) make the detection of patterns and realization
of the experiment easier. Therefore LCs are often considered as model materials
for studying both bulk and interfacial instabilities. In general, patterns in LCs
are characterized by a relatively low threshold, high regularity and by a large
aspect ratio (LC sandwich cells typically have lateral dimensions of x, y ≈ 1 − 2
cm and thickness of z ≈ 10 − 100 µm).

2 Bulk Instabilities

When a liquid crystal is confined between properly treated surfaces usually a ho-
mogeneous equilibrium (basic) state is obtained. In this state the elastic restoring
torques force all spatially periodic director fluctuations to decay. External influ-
ences (electric or magnetic fields, thermal gradients or mechanical stresses) may,
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however, lead to the appearance of destabilizing bulk torques. Then if the ex-
ternal field exceeds some critical threshold value the destabilizing torques may
overcome the restoring ones, i.e. the amplitude of fluctuations starts growing and
a nonhomogeneous pattern evolves. During this process typically a wavelength
selection occurs, thus a pattern (stripes, spirals, targets, hexagons) is obtained
which is characterized by a spatially periodic modulation of the director. The
anisotropic optical properties of liquid crystals make these patterns easily ob-
servable either in microscopes with or without polarizers or via laser diffraction.

The above considerations are almost independent of the actual mechanism
of the instability hence various physical processes, as e.g. the thermally driven
Rayleigh-Bénard instability, the electric field induced convection or the shear
flow instabilities, may provide very similar patterns [4].

2.1 Electroconvection

Electroconvection (electrohydrodynamic instability) [5] is a pattern forming pro-
cess which – as explained by Carr and Helfrich in the late 60s – is related to the
anisotropic physical properties of the liquid crystal.

In the classical electroconvection (EC) experiments a planarly oriented (n
‖x) layer of a nematic liquid crystal with negative dielectric anisotropy (εa < 0)
corresponds to the homogeneous basic state. Besides the elastic torques due to
the director gradient in this geometry the dielectric torques (which tend to keep
the director perpendicular to the electric field) also serve as restoring torques.
Due to the anisotropy of the electrical conductivity (σa > 0), however, in the
presence of a director modulation (a thermal fluctuation) the electric currect may
have a component perpendicular to the field which leads to charge separation.
The electrostatic force acting on the charges induces a convective flow which
provides a viscous destabilizing torque on the director.

Patterns at the Onset of the Electroconvection

The EC instability has been extensively studied since the first observation of
a regular roll pattern, the Williams domains [6]. The formation of patterns is
governed by two control parameters, the amplitude V and the frequency f of the
applied voltage. Varying the frequency two regimes can be distinguished [5]. At
low frequencies (in the ‘conductive’ regime) the periodic director and flow pat-
terns are stationary and the charges oscillate with the field. At high frequencies
(in the ‘dielectric’ regime) on the contrary, the charge distribution is stationary
while the director and the flow velocities oscillate. The two regimes are sepa-
rated by the cut-off frequency fc which is roughly proportional to the electrical
conductivity. In the ‘conductive’ regime there can be two different scenarios. The
direction of the rolls is either perpendicular to the director (normal rolls, NR),
or it is tilted (oblique rolls, OR) forming zig and zag domains. Oblique rolls
can be observed at frequencies below the Lifshitz point fL, with the roll angles
increasing with decreasing frequency.
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The threshold voltage Vc and the critical wavevector qc of the roll pattern at
the onset of the instability can be calculated by a linear stability analysis of the
standard model of EC (a set of 6 coupled differential equations for the director,
the flow velocity and the charge distribution) [7,5]. This model provides a full
description of all above scenarios in agreement with the experiments.

In the ‘conductive’ regime Vc has a strong frequency dependence (it diverges
approaching the cut-off frequency), while the wavelength λc of the rolls is about
the sample thickness d. In the ‘dielectric’ regime the threshold grows with the
square root of f , while the wavelength - only a few µm - is independent of the
thickness and for typical cells (d > 10 µm) is much smaller than in the ‘conduc-
tive’ regime. In both regimes λc decreases with increasing frequency. One usually
introduces ε = (V 2 − V 2

c )/V 2
c as a reduced control parameter characterising the

deviation from the threshold.
Roll patterns can be observed in twisted planar cells too, where at the two

boundaries the director is oriented perpendicular to one another. In this case
the rolls are expected to be directed at 45 degrees (along the bisectrix of the
preferred directions of the surfaces). This has been proved for the ‘conductive’
regime, however, according to recent experiments it might not always hold for
‘dielectric’ one. Diffraction measurements have shown a superposition of two roll
structures above some critical frequency which depends on the sample thickness
[8]. These rolls are oriented along the preferred orientations of the surfaces and
are thus normal to one another. This observation indicates a possible transition
from the standard bulk electroconvection state (rolls at 45o) to an instability
which is restricted to thin regions at the surfaces. Though such surface roll
structures have been proposed earlier as a model for the ‘dielectric’ rolls [9], no
theoretical explanation has yet been given for this transition which seems to
occur at a small wavelength to thickness ratio.

In homeotropic cells (n ‖ z) in electric field the first instability is a homo-
geneous tilt of the director (a Freedericksz transition – FT [1,3]), however, EC
may set in at higher voltages. As the homeotropic orientation is fully degenerate
in the surface plane, the direction of the tilt and hence that of the rolls are
randomly selected and may vary in space and time. That represents a direct
transition to spatio-temporal chaos already at the onset of the EC (soft mode
turbulence) and is therefore subjected to detailed experimental and theoretical
investigations [10,11,12,13,14].

The azimuthal degeneracy in the xy plane can be removed by an additional
magnetic field H parallel to the surfaces (i.e. perpendicular to the electric field)
which selects the tilt direction [11,13,15]. Under such conditions the EC scenarios
typically are very similar to those in the planar case. It has been shown, however,
both experimentally and theoretically that certain combination of the material
parameters may lead to the appearance of a second (low frequency) Lifshitz
point [16,17], i.e. to the preference of normal rolls at very low frequencies. For
the time being this feature has only been observed in homeotropically oriented
samples of Nematic Phase 5A (Merck).
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Scenarios above Threshold

Until now we focused on the characteristics of the EC patterns at the onset of
the instability. Increasing the voltage above Vc will, however, modify some of
these characteristics (vary the wavevector or the director profile) and may also
lead to new scenarios.

One of the scenarios at higher ε is the ‘abnormal’ roll (AR) pattern which de-
velopes from normal rolls. As shown experimentally first in homeotropic [18,19],
[15,16,17], later also in planar cells [20,21], in ‘abnormal’ rolls the director may
rotate out of the tilt plane gaining a ϕ �= 0 azimuthal angle, while the direction
of the rolls remains unchanged. In homeotropic cells the appearance of such an
out-of-plane component of the director leads to a net rotation of the optical axis
of the sample, thus the ‘abnormal’ rolls can be easily detected using crossed
polarizers (Fig. 1). In planar cells, however, due to the strong surface anchoring
only a twist deformation can develop, thus detection requires more sophisticated
techniques [22,21].

Fig. 1. ’Abnormal’ roll domains (dark and bright patches) in a homeotropic nematic
Phase 5A (Merck) in the presence of a small orienting magnetic field. Crossed polars
are rotated by 8o with respect to the magnetic field.

The equations of the standard model of EC are too complicated to be solved
in the nonlinear regime. Instead, for a weakly nonlinear analysis a Ginzburg-
Landau formalism is used, i.e. an amplitude equation is constructed [23,5]. In-
spired by the experiments a reconsideration of the symmetries of the system has
led to the realization of the fact that the pattern amplitude in itself is not enough
to describe the nonlinear behaviour. Allowing for a Goldstone mode one has to
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take into account an additional degree of freedom, the azimuthal angle ϕ of the
director, which is coupled to the pattern amplitude A [24,20]. This feature is a
consequence of the anisotropy of liquid crystals so it is not a privilege of EC, the
coupling between A and ϕ is observable in thermal convection too [25]. Solving
the resulting coupled differential equations thresholds of secondary instabilities
could be derived and an ε−f phase diagram could be constructed. It showed that
the NR pattern becomes unstable either due to a zig-zag instability (modulation
of the roll direction) near the Lifshitz point or by a normal–’abnormal’ roll tran-
sition at higher frequencies. In this latter case the out-of-plane component of the
director appears as a forward (pitchfork) bifurcation for the azimuthal angle ϕ
with increasing ε. As the rotations into both out-of-plane directions are equally
probable, two types of domains with opposite sign of ϕ are expected to exist. The
phase diagrams in the planar and the homeotropic (with a small superposed ori-
enting magnetic field) geometry look similar except that in homeotropic samples
the critical ε for the secondary instabilities are much smaller and the frequency
range for the zig-zag instability is narrower. The theoretical predictions could
be checked experimentally for both geometries and an excellent agreement has
been found [21,16]. However, in contrast to the expectations, in homeotropic
samples no distinct domains with sharp boundaries could be detected, instead a
continuous (almost periodic) variation of ϕ could be observed with an approx-
imate wavelength about 10 times that of the rolls [16,17] – ‘prechevron’ state
(see later).

Increasing the voltage much above Vc the regularity of the roll pattern de-
creases by the appearance of defects which are typically dislocations in the con-
vection roll pattern. The number of defects increases with the voltage as well as
their mobility until we enter a chaotic, turbulent regime.

These defects play an important role as any adjustment of the wavevector can
be realized only by generation and motion of defects. Changing the control pa-
rameters often leads to conditions where the actual wavevector q of the pattern
is substantially different from the ideal qid one belonging to the given voltage
and frequency. If the wavevector mismatch ∆q = q−qid is large enough defects
are usually generated in pairs and start moving to reduce ∆q. Motion of a defect
along the roll direction (’climb’) will modify the roll spacing, while motion nor-
mal to the rolls (’glide’) can adjust their direction. Using the Ginzburg-Landau
formalism the velocity v of an individual (far from and therefore not interacting
with their neighbours) defect could be calculated yielding v ⊥ ∆q and a log-
arithmic singularity in v for ∆q → 0 [26]. In early experiments on planar EC
only the ‘climb’ motion could be excited by sudden simultaneous change of the
voltage and frequency [27,28]. In the homeotropic geometry the ‘glide’ motion
can easily be generated by rotating the small orienting magnetic field. In recent
experiments using local heating due to laser pulses for generating the defects
both the predicted direction of v and the logarithmic singularity of v(∆q) could
be verified [17,29].

It has been known for a long time that in the high frequency EC (in the
‘dielectric’ regime) the regular roll pattern breaks down at higher voltages to
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Fig. 2. Chevron scenarios in electroconvection of the homeotropic nematic Phase 5A
(Merck) . a. ‘dielectric’ chevrons, b. ‘conductive’ defect mediated chevrons, c. ‘con-
ductive’ defect free chevrons, d. prewavy pattern. Crossed polars. Sample thickness: a.
d = 20 µm, b-d. d = 60 µm.

chevron scenario [30,31], i.e. to a periodic arrangement of domains. In the neigh-
bouring domains the dielectric rolls are rotated alternatingly with respect to
their initial direction (zig and zag chevron domains, Fig. 2a). It has been ex-
plored that the domain boundaries in these dielectric chevrons consist of an
ordered chain of defects (dislocations) running along the initial roll direction
[28,32,33], moreover, besides the rolls the orientation of the director is rotated
too [22]. Thus in the chevron pattern the azimuthal angle ϕ of the director is
periodically modulated which can be detected optically just as in the case of
the ‘abnormal’ rolls in the ‘conductive’ regime. This ϕ modulation remains ob-
servable even if the visibility of the individual ‘dielectric’ rolls is much reduced
either due to their small wavelength or to the bulk-surface transition mentioned
earlier.

Recently the ordering of defects into chains has been theoretically explained
[34]. It has been shown that its mechanism is not restricted to the ’dielec-
tric’ regime, under proper conditions similar chevrons can exist in the ‘con-
ductive’ regime too. Such ‘conductive’ chevrons have actually been observed
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in homeotropic cells, especially in the absence or with only a small orienting
magnetic field (Fig. 2b) [15,17]. This scenario, which has been classified as a
defect mediated chevron [35,36] reminding the role of defects, typically occurs at
voltages much above the NR-AR transition.

Both the ‘dielectric’ and the ‘conductive’ chevrons possess a dual spatial
periodicity, one for the convective (’dielectric’ or ‘conductive’) rolls, the other
for the defect chains. The wavelength of the latter is typically about an order of
magnitude larger than that of the rolls, i.e. it can be larger than d.

These chevrons are not the only patterns with a wavelength larger than d.
Such patterns have been reported for MBBA strongly doped with ionic dopants
in planar and twisted planar (’wide’ domains) [37,38,3], as well as in homeotropic
geometries (‘prewavy’ pattern) [31,32,35,36]. These large wavelength patterns
have in common that they evolve from a (seemingly) pattern free state at a
threshold voltage having a weaker frequency dependence compared to either
that of the ‘conductive’ or the ‘dielectric’ rolls. They can be observed with
crossed polars (Fig. 2d), but the shadowgraph image with a single polarizer
is almost invisible, in contrast to the usual convection rolls. That indicates an
only azimuthal (without tilt) modulation of the director. It has been measured
recently in homeotropic cells that the amplitude of the azimuthal modulation
in the prewavy pattern increases with the voltage resembling a supercritical
pitchfork bifurcation [36,39]. At higher voltages a transition to chevrons could
be observed. However, while at higher frequencies these did correspond to the
‘dielectric’ chevrons mentioned above, near the Lifshitz point a different type of
‘conductive’ chevron pattern was observed (defect free chevrons) [35,36]. Though
it looks similar to defect mediated chevrons, no defects (dislocations) are present,
instead a continuos curvature of the rolls is observed (Fig. 2c). The chevron do-
mains coincide with the stripes of the initial prewavy pattern. These defect free
chevrons can thus be interpreted as ‘conductive’ normal rolls with azimuthally
modulated director orientation.

The appearance of the ‘wide domains’ or the prewavy pattern has not been
theoretically understood yet. At present no physical mechanism is known which
could produce such a periodic static deformation (without flow) at thresholds
lower than that of the electroconvection. The observed motion of dust particles
in these patterns (and even at voltages below threshold) stress the importance of
convection [40]. It suggests that an electroconvection mechanism, though differ-
ent from the Carr-Helfrich one, might be responsible for the formation of these
patterns [41]. One possibility could be the ‘isotropic’ mode [42] which is expected
to produce very fine rolls unresolvable by the visible light, however, the chevrons
formed from the defects of these fine rolls would possess similar features as the
prewavy pattern. Unfortunately, no direct experimental evidence has been found
to prove this assumption yet.

The defects (dislocations) mentioned so far usually possess a well defined core.
Sometimes, however, one can observe ‘long’ defects, where the core is delocalized
to phase–jump lines extending over several rolls (Fig. 3a). Computer simulations
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have shown that such structures are quite common in the AR range both in the
planar and in the homeotropic geometry [43].

Fig. 3. Exotic patterns in electroconvection of nematics. a. ‘long’ defects and b. co-
existing abnormal and CRAZY rolls in homeotropic Phase 5A (Merck), c. localized
structures (worms) in planar 10E4.

Besides the defects in the convection rolls (dislocations, ‘long’ defects) the
pattern may contain orientational singularities of the director field which usu-
ally appear in the form of domain walls or disclination loops. These orientational
defects are quite common in homeotropic nematics. One recently reported ex-
ample is the CRAZY roll pattern (Fig. 3b) [16,17] which may appear near the
Lifshitz point above the normal-abnormal roll transition. The CRAZY rolls cor-
respond to closed disclination loops located in the plane perpendicular to the
cell surfaces and parallel to the rolls, which grow into the abnormal roll pat-
tern without changing the wavelength or causing dislocations. Disclination loops
play an important role in the Zvinger pattern [44] observed in a substance pos-
sessing a nematic-smectic phase transition as well as during the prewavy-wavy
pattern transition. All these patterns appear high above threshold far beyond
the applicability of either the linear or the weakly nonlinear stability analysis.

Another fascinating phenomenon in the nonlinear range is the spontaneous
formation of localized states or pulses (’worms’). Chaotic localized traveling-
wave states which coexist with the ‘conduction’ state, are long lived, appear and
die at irregular locations and times, have unique small widths and irregularly
varying length, as seen in I52 [45]. Time dependent localized states (’roll sinks’
and ’butterflies’) coexisting with the uniform state have been observed in 10E6
[46] (see an example on 10E4 in Fig. 3c).

2.2 Shear

Shear flow phenomena in nematic liquid crystals have drawn much attention to
the experimental side, since the orientational instabilities are easy to be observed,
and they take place at much smaller shear rates than the laminar-turbulent tran-
sition. This results from the fact, that the relaxation of the director fluctuations
is usually orders of magnitude slower than that of the velocity fluctuations.
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The basic feature of the instabilities is, that the flow (velocity) field v(r, t) and
the director n(r, t) is coupled in the governing nemato-hydrodynamic equations.
For most of the substances due to the orienting effect of the flow in the stationary
case the director encloses a small angle Θfl with v (flow alignment) [1]. For
some nematic liquid crystals (in particular near a nematic-smectic transition) no
equilibrium state exists, but the flow exerts a continuous torque on the director,
which might lead to a tumbling motion [47]. Here we will consider the case of
flow aligning materials.

Rectilinear Flow

The instability mechanism varies considerably with the type of shear (station-
ary/oscillatory and Couette/Poiseuille flow), and each case has been considered
both from the theoretical point of view and from the experimental side with a
large variety of results which are summarized in [48] up to 1995.

The two basic cases are when the director is aligned (with external fields,
or surface treatment) perpendicular to the shear plane (defined by v and ∇v)
or in the shear plane. In the first case there is no torque on the director, but
the configuration is unstable and above a threshold perturbations grow. The
mechanism has been described by Pieranski and Guyon and was investigated
in details [49]. In the second case the flow field exerts a torque on the director,
and its orientation results in a balance between the elastic (or electric/magnetic)
torques and the torque applied by the flow.

From now on we consider only the case of oscillatory flow fields (with the
frequency f) that can be more easily realized experimentally than the case of sta-
tionary flow. One may first consider the response of the system before any insta-
bility occurs (basic state) where the director generally oscillates homogeneously
around its initial equilibrium position. Beyond the small-amplitude linear regime
one finds a response that is nonlinear in the shear strain. The temporal behavior
of the director has been calculated using some approximations [50]. In the case
of Couette flow (the shear is applied by moving one of the bounding plates in
its plane) at low frequencies (f below about 400 Hz) the viscous penetration
depth

√
η/ρω (ω = 2πf), is much larger than the cell thickness d, where η is an

appropriate effective shear viscosity and ρ denotes the mass density of the ne-
matic. Then the flow can be approximated by the simple linear flow field, which
amounts to neglecting the time derivative (inertia term) in the Navier-Stokes
equation. With this assumption one may expect Freedericksz-type instabilities
where the time-averaged director reorients homogeneously in the plane of the
layer. For the simple linear Couette flow field no spatially homogeneous insta-
bilities are predicted to occur (in contrast to the case of Poiseuille flow) [51,52],
even if the possibility of transitions out of the flow plane is included.

Above a critical flow amplitude Axc, transitions to spatially periodic roll
states have been observed in homeotropic (director perpendicular to the confin-
ing plates) [53,54] and planar alignment [55]. In Fig. 4.a a developed roll pattern
is shown in the homeotropic alignment [54].
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a. b.

d.c. e.

Fig. 4. (a.) Rectilinear shear: Roll pattern observed in polarized white light at f = 80
Hz and Ax/d = 0.5 in 5CB. The rolls are perpendicular to the direction of the upper
plate oscillations. (b.) Oscillatory compression of the sample: A typical “target like”
pattern in Phase 5 (Merck) at f=75 kHz for d = 20 µm. (c-e.) Elliptic shear: The
spatio-temporal behavior of the system is considerably different in the three regimes:
(c.) At large electric fields a nearly homogeneous precession is observed; (d.) Around
U = 1.2UF spiral formation has been detected; (e.) At smaller voltages (U < 1.2UF )
spatiotemporal chaos can be observed. Phase 5 (Merck), f=155 Hz, Ax = Ay = 3.4
µm, and d = 20 µm.

The threshold amplitude of the roll pattern decreases with f [54]. A suf-
ficiently rigorous linear stability analysis (that goes beyond the lowest-order
modes) gives a good quantitative agreement with the experimental threshold
values except for parameter ranges where the critical oscillation amplitude (in
physical units) becomes large [54].

When comparing our data with the roll threshold obtained in the planar
geometry [55] we find that the roll instability develops at smaller amplitudes in
the homeotropic geometry than in the planar, as it is expected intuitively (the
planar geometry is closer to the preferable flow alignment). However, the value
of Axc differs by a factor of 2, its frequency dependence is similar.
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Director Precession, Phase Waves

An other interesting case is, when an elliptic shear is applied by the linear oscil-
lation of the bounding plates in their plane perpendicular to each other. At large
enough amplitudes and small ellipticities similar types of orientational instabil-
ities take place as for the case of rectilinear flow. By increasing the ellipticity
(towards the circular case) a transition from the roll regime to hexagonal pat-
terns is observed [57].

An interesting configuration is, when the director is already tilted out by an
external electric field from the initial homeotropic orientation (εa < 0), and a
small amplitude elliptic shear is applied (below the instability threshold) [58,59].
The director is forced to precess around the z axis by the shear with a frequency
Ω which is normally orders of magnitude smaller than f .

The value of Ω increases linearly with f and Ax ∗ Ay [59]. This observa-
tion is in accordance with the analytical calculations – which are done for low
frequencies (f < 104 Hz), small amplitudes (A/d 	 1), circular shear, and ne-
glecting spatial dependence in the xy plane – yielding Ω ≈ (λ/2)(A/d)2 2πf
where λ = α3/α2 ≈ 0.05 for usual nematics.

The dependence of Ω on U is more complicated and for its understand-
ing probably one has to take into account the spatial dependence. At sufficiently
high voltages the director orientation varies slowly in space and precesses almost
homogeneously in time (Fig.4.c). Around 1.2UF inhomogeneities emit traveling
waves and umbilics generate spiral waves (Fig.4.d), very similar to those ob-
served in oscillatory and excitable chemical reactions [60]. At lower voltages one
observes spatio-temporal chaos (Fig.4.e).

We have also performed experiments with linear mechanical vibration along
z (compression) generated by piezo crystals (f ≈ 5 - 100 kHz) attached to one
of the bounding plates. The z oscillations presumably induce Poiseuille flow. As
before, the slow precession occurred only in the Freedericksz distorted state.

Here the phase waves are typically emitted from certain locations in the form
of target patterns (see Fig. 4.b), which presumably result from spatial inhomo-
geneities in the flow. The waves behave diffusively (even near UF ), which is
probably due to the fact that at the high frequencies used the elastic contribu-
tions to the precession are irrelevant. In the immediate neighborhood of the FT
and at not too high temperatures, a reversal of the precession was observed in
Phase 5 and MBBA. For more details, see [61].

Director precession and phase waves have been observed previously in cells
that were excited piezoelectrically at frequencies around 50 kHz [62]. The piezo
crystal formed one of the bounding plates. Phenomena reminiscent of the phase
waves were also seen in planar and homeotropic cells without electric field at
frequencies 10 kHz < f < 1 MHz [63]. There the waves originated from orienta-
tional defects at the surface.
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3 Interfacial Instabilities

Interfacial instabilities appear at the interface that divides two different sub-
stances, phases or structures. The interface is driven by the gradient of a field
which itself obeys a diffusion or Laplace equation. The emergence of the pattern
results from the interplay between the stabilizing effect of the surface tension
and interface kinetics and the destabilizing effect of the diffusive field.

From mathematical point of view these systems are similar. The surface
tension causes curvature effects that should be incorporated into the equation
describing a local equilibrium at the interface (moving boundary condition).
Consequently, it is not surprising that all these systems show very similar pat-
terns and that in the instability mechanisms the same parameters play important
roles, i.e. the anisotropy of the surface tension and the interface kinetics.

Interfacial instabilities have been investigated extensively theoretically as
well as experimentally in the last decades [64,65]. On the experimental side
solidification [66], viscous fingering [67], electrochemical deposition [68], as well
as growth of bacterial colonies [69] have been investigated. On the theoretical
side mostly numerical approaches are used, since the analytical treatment of
the problem is rather difficult except the stability analysis of the few (planar,
circular or dendritic) solutions [65]. The two basic numerical methods are the
sharp interface models (direct tracking of the front) [70,71] and the phase field
models which are dynamic extensions of the Cahn-Hilliard theory of first-order
phase transformations [72].

3.1 Propagation of a First Order Phase Transition Front

Here the growth is limited by diffusion (of heat or impurities) that exerts a
destabilizing force on the (macroscopically) smooth interface. It is the surface
tension and the phase transformation kinetics which tend to stabilize the in-
terface against perturbations. Several liquid crystalline phase transitions are
suitable to study the interfacial instability mechanisms:

The nucleation of the SmA phase in the isotropic (I) phase leads to the
growth of battonets (rod like shape) and if they are bent the focal conic textures
[2] develop. The formation of battonets is understood by taking into account the
free energy difference between the two phases, the elastic energy and the surface
energy [73].

The other well investigated phase transition is the I → columnar hexagonal
transition [74,75]. In the columnar phase rod like objects (columns) are formed
by the packing of disc like molecules on top of each other. A hexagonal order
is present between the columns. The morphology diagram was reported and
experimental results on both the surface tension and the kinetic anisotropy have
been given [74].

Dendritic growth has been observed in the I → N [76] and SmA → SmB
[77] phase transitions only in directional solidification.

In the smectic to crystal phase transition the morphological changes and the
nature of mode selection were analyzed in [78].
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Detailed studies have been made on theN → SmB transition [79,80,81,82,83]
on a homologous series CCHm (m=3; 4; and 5) of a bicyclohexane compound.
A thin (quasi 2D) sample after equilibration was cooled down below the phase
transition temperature TNS and the form of the nucleating and growing SmB
domains was detected and analyzed as a function of the undercooling ∆T =
TNS − T . Other details of the experimental setup can be found in [79]. With a
proper experimental procedure both planar and homeotropic orientations have
been achieved in the SmB and N phases and by that different anisotropies have
been assured in the plane of observation.

Since the growth was observed in a quasi two-dimensional geometry, the
angular dependence of the interfacial properties are relevant only in the plane
of the sample.

As it can be expected, the anisotropies in a plane perpendicular to the smectic
layers are much larger than parallel to them.

It has been shown [79,81], that in the case of a planar smectic germ (A.) the
anisotropies resulted from the structure of the smectic phase are dominant in
the pattern formation, while in the case of a homeotropic smectic germ (B.) the
effects originating from the anisotropy of the nematic phase become comparable
to the effects originating from the anisotropy of the smectic phase.

(A.) When the smectic layers are perpendicular to the sample (planar smec-
tic germ) at low undercooling the formation of facets is observed that are parallel
to the layers.

Normally the difference between the dynamics of a system with small anisotro-
pies and a system showing facets can be summarized as follows. In a system with
small anisotropies the solidification front is rough on the atomic level and the
phase transformation (attachment of particles to the crystal) is limited by heat
and impurity diffusion [65]. On the other hand faceted interfaces are smooth on
an atomic scale and the growth of the solid phase is limited by the attachment
kinetic process [84]. Thus in the later case usually the facet is blocked (does not
advance) even at large undercoolings.

According to our observations this is not the case for the facets at the N −
SmB interface of CCH3, where even at very small undercoolings (∆T = 0.02
oC) the facet advances with a finite velocity. (The case of CCH4 and CCH5
is more complicated, here the propagation of the facet was only detectable at
∆T > 0.1 oC which is still a small undercooling.)

Preliminary directional solidification measurements (a quasi-two-dimensional
sample is pulled with a constant speed in a constant thermal gradient towards
the cold side) also show that the nematic - smectic B front is more stable and
variations in the facet velocity are much smaller than for traditional faceted
fronts (e.g. the nematic - crystal interface of the same material) [85].

Phase-field simulations have shown [80], that even in the extreme (probably
not realistic) case (i.e. supposing isotropic interfacial kinetics) with a “cusp-
like” angular dependent surface tension obtained by the Wulff analysis of the
nearly equilibrium shapes of the smectic-B domains, at small undercoolings the
growth shapes are faceted (at a macroscopic scale) and at larger undercoolings
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four-armed dendrites are formed, which is in accordance with our experimental
observations [79].

(B.) To study the effect of the anisotropy of the nematic phase (liquid side)
in the interfacial instabilities the most suitable configuration is when the smectic
layers are parallel to the quasi two-dimensional layer of investigation, since the
anisotropy of the SmB phase is the smallest in the plane of the smectic layers.

b.a.

c. d.

Fig. 5. The growth shapes of homeotropic smectic domains in homeotropic (a.), and in
planar (b.) nematic phase at ∆T = 0.2 oC and ∆T = 0.15 oC respectively; Simulated
growth shapes (using the phase field model) in isotropic (c.) and anisotropic (d.) liquid
phase.

The growth morphologies have been compared for homeotropic and planar
nematics [81] (see Fig. 5.a-b). Using the phase field model we have analyzed
separately the effects coming from the superposing anisotropies of the surface
tension, phase transformation kinetics and heat diffusion in the nematic phase.

The most interesting result is, that the heat diffusion anisotropy induces an
elongation of the germ and the formation of dendritic tips perpendicular to the
nematic director n(N) [81] (See Fig. 5.a-b.).

This effect has also been observed in the case of planar smectic domains
in CCH4 where the two opposite pairs of the main arms of the four-armed
dendrites grow with slightly different velocities (asymmetric growth) if n(N) is
not a symmetry axis of the growth directions [82].

Finally, one should mention that material parameters of CCH3 (TNS , volume
change on phase transition, latent heat, electric conductivity, etc.) are in the
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range that allows an easy control of the dendritic side-branching process by
pressure oscillations or by a periodic heat release in the volume [83]. Such a
method of controlling the side-branching process besides of academic aspects
might have also implications in practical applications.

3.2 Viscous Fingering

The Saffman-Taylor (viscous fingering) problem, where a less viscous liquid (or
gas) is pressed into a liquid with larger viscosity, represents a relatively simple
case of nonlinear interfacial pattern formation and has been intensively studied
– see e.g. reviews [86,67]. The evolution of the air – viscous fluid interface placed
between two close parallel plates (Hele-Shaw cell) is determined by the pressure
field p in the fluids satisfying the Laplace equation subjected to boundary con-
ditions that are the pressures far from the interface on its both sides, and the
pressure drop across the interface given by the Gibbs-Thomson condition and
by the wetting properties.

For the interface of isotropic fluids experimental results agree well with the
linear stability analysis [87,88]. Later stages of the interface growth in the radial
geometry (after breakup of the initial circle) are less understood than those of
the channel flow. For isotropic fluids the pattern continues to evolve through
repeated tip-splitting to form more and more fingers.

Using non-Newtonian fluids (e.g. liquid crystal) as (usually) a more viscous
fluid [89,90] however, gives a much richer morphological diagram than that ob-
tained for isotropic fluids, due to the inherent anisotropy. As mentioned previ-
ously, in nematic liquid crystals the director field n and the velocity field v are
coupled by nonlinear nematohydrodynamic equations – see e.g. [48,91] that in
the lowest approximation lead to the same governing equations of viscous finger-
ing as for isotropic fluids with some effective viscosity µeff and effective surface
tension σeff [92,93].

For a v = vx(z) velocity profile one has to distinguish different orientations
of the nematic director which give different µeff as follows:

i. For planar cells and n ‖ x (nx ≈ 1, ny 	 1, nz 	 1): µeff = (α3+α4+α6)/2 =
η1

ii. For homeotropic cells (n ‖ z, i.e. nx 	 1, ny 	 1, nz ≈ 1): µeff = (α4 +α5 −
α2)/2 = η2

iii. For planar cells and n ‖ y (nx 	 1, ny ≈ 1, nz 	 1): µeff = α4/2 = η3.

Here αi (i = 1−6) are the Leslie viscosity coefficients and ηi (i = 1, 2, 3) are the
Miezowitz viscosity coefficients (see e.g. [48]) that satisfy relation: η1 < η3 < η2.

The orientation of the director with respect to the interface defines the surface
tension of the air – nematic interface in the range of: σ⊥ ≤ σeff ≤ σ‖, where
σ‖ and σ⊥ are the surface tension parallel and perpendicular to n, respectively.
However, the change in the surface tension from σ‖ to σ⊥ is typically in the
range of 20-50% for nematic substances [94], while the anisotropy in the viscosity
is much larger: typically η2 � 5η1 far below the nematic → isotropic phase
transition temperature – see e.g. [95,96].
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A number of experiments have been done in systems with a nematic liquid
crystal as the more viscous fluid, for review see [67,92,93,97]. Four basic types
of morphologies have been found in these systems: tip-splitting branches (SB),
dense branching (DB), sparse dendritic (SD) and dense dendritic (DD) – see Fig.
6 [90,98]. The tip stabilization and the appearance of the dendritic pattern in a
certain pressure – temperature range has been attributed to the anisotropy of
µeff at the tip, induced by flow alignment of the nematic [88,99]. Recently, it has
been shown by numerical simulation that non-Newtonian behavior can suppress
tip splitting and produce dendritic growth with side-branches [100,101].

Fig. 6. Four basic morphologies of the air – 8CB liquid crystal interface.

Fig. 7. Morphological transition at the nematic – air interface induced by electric field
(pe = 123 mbar); (a) E = 0, (b) E = 0.5 V/µm.

The effective viscosity µeff of the nematics and σeff of the N – air interface
in the shear plane can be tuned by an electric field. Namely, using nematic
liquid crystals with positive dielectric anisotropy εa = ε‖ − ε⊥ > 0 and applying
an external electric field E perpendicular to the plane of the cell, one has two
limiting cases: (a) When the shear torque [48] exerted on the director is much
larger than the electric torque (high excess pressure pe and low E, elastic torques
are negligible in our case) the effective viscosity is µeff ≈ η1 and the surface
tension is σeff ≈ σ‖ (assuming ‘flow alignment’ so that n is in the plane of
the cell and perpendicular to the interface). (b) In the opposite case, when the
electric torque is much larger than the shear torque, we have µeff ≈ η2 and
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σeff ≈ σ⊥ (n is perpendicular to the bounding glass plates). Consequently, in
the experiments µeff and σeff can be tuned depending on E and pe in the
range of: η1 ≤ µeff ≤ η2 and σ⊥ ≤ σeff ≤ σ‖ that can induce a morphological
transition as it is shown in Fig. 7 [102].

Viscous fingering phenomena at the SmA – air interface are less well stud-
ied compared to the N – air system. Tip splitting of the fingers growing in
the homeotropic SmA phase of 8CB has been observed leading to the dense-
branching morphology (no anisotropy in the flow in the shear plane) with a
decrease of the characteristic finger width with decreasing temperature [99]. In
case of planar SmA phase (where anisotropy in the flow is present in the shear
plane) however, a change in the direction of ‘easy growth’ of the fingers has been
detected as a function of the excess pressure pe [98] – a phenomenon that is still
not fully understood.
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(Springer, Berlin, 1995) pp. 221–255.

6. R. Williams: J. Chem. Phys. 39, 384 (1963)
7. E. Bodenschatz, W. Zimmermann, L. Kramer: J. Phys. (France) 49, 1875 (1988)
8. H. Bohatsch, R. Stannarius: Phys. Rev. E 60, 5591 (1999)
9. S. Kai, K. Yamaguchi, K. Hirakawa: Jpn. J. Apl. Phys. 14, 1653 (1975)

10. A. Hertrich, W. Decker, W. Pesch, L. Kramer: J. Phys. (France) II 2, 1915 (1992);
L. Kramer, A. Hertrich, W. Pesch: ’Electrohydrodynamic convection in nematics:
the homeotropic case.’ In: Pattern Formation in Complex Dissipative Systems.
ed. by S. Kai. (World Scientific, Singapore, 1992).

11. S. Kai, K. Hayashi, Y. Hidaka: J. Phys. Chem. 100, 19007 (1996)



Patterns in Liquid Crystals 315

12. Y. Hidaka, J.-H. Huh, K. Hayashi, S. Kai, M. I. Tribelsky: Phys. Rev. E 56,
R6256 (1997); Y. Hidaka, J.-H. Huh, K. Hayashi, M. I. Tribelsky, S. Kai: J.
Phys. Soc. Jpn. 66, 3329 (1997)

13. J.-H. Huh, Y. Hidaka, S. Kai: J. Phys. Soc. Jpn. 67, 1948 (1998)
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