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Abstract
The rheology of a 3-dimensional granular system consisting of frictional elongated particles was
investigated by means of discrete element model calculations. A homogenous shear flow of
frictional spherocyliders was simulated, and a number of rheological quantities were calculated. In
the framework of the μ(I) rheology, the effective friction was found to be a non-monotonic
function of the aspect ratio for interparticle friction coefficient μp � 0.4, while it was an increasing
function for larger μp. We reveal the microscopic origin of this peculiar non-monotonic behaviour.
We show the non-trivial dependence of the velocity fluctuations on the dissipation regime, and
trace back the behaviour of the normal stress differences to particle-level quantities.

1. Introduction

Dense granular flows, with their rich phenomenology, are of great interest for fundamental questions as
well as for their relevance in applied problems. They have been the subject of a large number of studies in
the last decades, with experimental, theoretical and numerical approaches, see the general book [1]. Taking
advantage of the constant increase of computational power, numerical simulations of granular systems have
now reached an impressive degree of realism, allowing them for reliable predictions, even in rather
sophisticated configurations [2]. In an effort to go beyond the ideal case of frictionless hard spheres,
particles with various shapes [3–15] and surface or bulk conditions [16–24] (e.g., friction, cohesion,
stiffness), have been modelled and investigated.

Here, our interest is focussed on the rheological behaviour of assemblies of frictional elongated grains
close to jamming. The fundamental question is, how large is the resistance (i.e., the effective friction μ) of
the material against slow shearing, and how this effective friction changes with grain elongation. In such
systems the shear flow induces particle rotation which leads to more intensive collisions between
neighbouring particles than for spherical grains. The speed of the shear induced rotation depends on the
particle orientation, faster rotation for particles parallel to the shear gradient and slower rotation for
particles pointing in the flow direction, which results in orientational order. Both of these
phenomena—collisions due to rotation and orientational ordering—affect the flowing and mechanical
properties of the system [25–28]. This problem has previously only been addressed numerically in
simplified situations: either with frictionless grains [29] or in a 2D system [30]. Those studies revealed an
unexpected, peculiar behaviour: the effective friction was found to be non-monotonic (increasing and
decreasing) with increasing aspect ratio α for the 3D frictionless case [29], and this non-monotonic
tendency was shown to persist even for frictional grains in a 2D system, although only at small values of the
interparticle friction coefficient (up to around μp = 0.15) [30]. In a real world situation the interparticle
friction is significantly larger (μp is around 0.3). Moreover, a 3D system is substantially different from the
2D case as the rotating particles have extra degrees of freedom to evade and reduce the effect of collisions,
which is not possible in 2D. Discrete element model (DEM) simulations provide both macroscopic and
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Figure 1. Setup of the simulation. Here we plot only one particle near the centre of the box (orange) and particles in its
hemispherical neighbourhood (blue); their aspect ratio is α = 2. The system is sheared with shear rate γ̇ = dvx/dy, and a
constant normal stress σyy = py is maintained by adjusting box side Ly by a feedback loop.

microscopic information about these processes. An effective way is to use a pressure-imposed shear
geometry, where the constitutive laws for elongated grains followed [29, 30] the general framework of the
so-called μ(I) rheology [4, 31–33]. In this description the effective friction μ = τ/p as well as the volume
fraction φ are functions of the inertial number I = γ̇d/

√
p/ρ, where τ is the shear stress, p the pressure, γ̇

is the shear rate, d is the grain size and ρ is the grain density. These rheological functions also depend on the
aspect ratio α of the grains. In addition to the above mentioned non-monotonic behaviour of the effective
friction on α, we found that these flows develop normal stress differences for α > 1.

The value of the interparticle friction has an important role in the rheological behaviour of dense
granular flows. One example is that numerical simulations with circular or spherical grains have shown [4]
that the effective friction in the low shear rate limit μc is an increasing function of μp. Another one concerns
the exponent of the constitutive law (see equation (1) below). In the simulations of Favier et al [21] it is
found that the exponent of the power law term switches from β = 0.5 in a low friction limit (μp � 10−2) to
β = 1 in the high friction limit (μp � 10−1). Three regimes have been identified and associated with
different dissipation mechanisms [34, 35].

In this work we extend the μ(I) rheology to the case of a 3-dimensional system of frictional
spherocylinders. We show, that in a realistic 3D frictional system the peculiar non-monotonic behaviour of
μ(α) is observed in a much wider range of interparticle friction (up to around μp = 0.4, thus including
common granular materials) than in the previously reported case of a simplified 2D system (up to
μp = 0.15) [30]. We reveal the microscopic origin of this observation and relate the behaviour of the
constitutive coefficients to the above mentioned dissipation regimes. The paper is organised as follows: in
section 2 we briefly recall the numerical setup of the simulations, which builds on that of our earlier work
[29]. In section 3 we present and discuss our numerical results, explain a number of observed phenomena,
including scaling arguments to understand and interpret the data. We summarize and draw perspectives in
section 4.

2. Setup

We performed numerical simulations of homogenous shear flow in 3D plane Couette geometry, see
figure 1. The particles were frictional spherocylinders with length-to-diameter aspect ratio α = 	/2R. The
interparticle force Fij which particle j exerts on particle i consists of a soft core repulsion and a tangential
component due to friction. The repulsive force points in the direction of the local surface normal ĉij, its
amplitude is proportional to the virtual overlap δij between the particles, and it contains a dissipative term
proportional to the velocity difference vc,ij at the contact point: Frep

ij = (−k δij + b vc,ij · ĉij) ĉij . The prefactor
b was determined by requiring a given coefficient of restitution e for binary collisions (we used e = 0.5 in
this paper). The frictional tangential force is based on the Mindlin force law: the force increment between
time steps is ΔFfric

ij = kΔtc,ij , where Δtc,ij is the tangential displacement (projected to the plane
perpendicular to ĉij) during a time step between the touching contact points of the particles. The magnitude
of the frictional force is limited by the interparticle friction coefficient: |Ffric

ij | < μp|Frep
ij | .
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Figure 2. The inertial number dependence of rheological parameters are shown on top row for α = 2: (a) effective friction, (b)
normalized first normal stress difference, and (c) normalized second normal stress difference. The colours and symbol shapes
indicate different interparticle friction coefficient values, including frictionless (μp = 0) and frictional in the range
10−3 � μp � 10. The quasistatic limit (I → 0) of the same quantities are plotted in the bottom row for a range of shapes
1 � α � 3; on the insets also the quasistatic limit values are plotted, but for α = 2 and against μp, see text for details.

The length, time and mass units of the simulation were set implicitly by setting the mean particle
diameter 2R, density ρ and contact stiffness k (equal for the normal and tangential force) to unity. To
prevent crystallization for frictionless particles [36], especially at larger values of α, we used size
polydispersity of 10% (standard deviation to mean ratio in a uniform distribution). While crystallization
was less critical for frictional particles, we kept the polydispersity fixed for consistency. The rheological
measurements were performed under fixed normal stress: the py := − σyy component of the stress tensor
(where y is the velocity gradient direction) was controlled around a fixed value of 10−3 by a feedback loop
adjusting the Ly side of the periodic simulation box.

The rest of the simulation details, including the preparation protocol for the initial conditions, are
detailed in reference [29].

3. Results

3.1. Rheology
The inertial number dependence of the following rheological parameters are shown on the top row of
figure 2: effective friction μ = σxy/py, normalized first normal stress difference N1/py = (σxx − σyy)/py, and
normalized second normal stress difference N2/py = (σyy − σzz)/py. The solid curves are fit (in the range
10−3 � I � 10−1) to the following empirical form:

μ(I) ≈ μc + μ1Iβ , (1)

and similarly for N1/py and N2/py. The values of the exponent β ranged between about 0.4 and slightly
more than 1, where we observed the smallest values for the frictionless case, and the largest values for
moderate friction 0.1 � μp � 0.4. Equation (1) enables the reliable extraction of the quasistatic (I → 0)
limits, which are plotted in the bottom row of figure 2.

3.1.1. Effective friction
One remarkable finding is that the quasistatic effective friction coefficient μc is a non-monotonic function
of the aspect ratio for negligible to moderate interparticle friction (μp � 0.4), and the aspect ratio where
the maximum occurs shifts to larger values for increasing μp. For large μp the effective friction is a
monotonically increasing function of the aspect ratio, at least in the range 1 � α � 3 we explored3.

3 We note that μc extrapolated from high inertial number non-homogenous flow down an inclined plane [37] (for μp = 0.5) is
remarkably close to our measurements.
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Figure 3. The aspect ratio dependence of (a) the average of the shear alignment angle θ, (b) circular variance of 2θ, and (c)
circular variance of 2ϕ. The angle θ denotes the deviation angle of the particle orientation from the streaming direction towards
the gradient direction, and ϕ is the deviation towards the neutral direction. Circular variance of 1 corresponds to completely
uniform angular distribution, while 0 corresponds to zero-width (Dirac-delta) distribution. Symbols and colours represent
different μp. The insets, like on figure 2, show the dependence on μp for aspect ratio value α = 2.

As discussed above, the nonmonotonicity of μc(α) has been observed earlier for purely frictionless
spherocylinders [29], and for 2D ellipses with low friction coefficient [30]. The data in figure 2(d) clearly
show, that in a 3D system this is observed in an extended friction range, which already includes realistic
materials. We now explore the microscopic ingredients leading to this behaviour.

The explanation can be traced back to the shear induced alignment of elongated particles, initially
described in references [25] and [38]. Let us denote the deviation of the particle axis from the streamlines
by θ within the x-y plane, and by ϕ out of this plane. Due to shear the elongated particles develop nematic
ordering, where 〈θ〉, which we call shear alignment angle, is interestingly non-zero (see figure 3(a))4 , while
〈ϕ〉 = 0 by symmetry. With increasing elongation α the distributions of these angles become typically
narrower, see figures 3(b) and(c). (Due to the periodicity directional statistics have to be used, and since
both θ and ϕ are periodic by π, the relevant quantities are the circular variances Var[2θ] and Var[2ϕ].) For
small μp the circular variances drop sharply with α, resulting in more orientationally ordered
configurations. In addition 〈θ〉 decreases as well, which altogether leads to a situation where the particles
obstruct each other’s motion less, thus despite the more elongated shape the shear resistance μc decreases.
For larger particle friction however, Var[2θ] barely decreases with α, and the drop in Var[2ϕ] is also very
small; these packings remain orientationally rather disordered. The disoriented particles with increasing
elongation hinder each other’s motion more, leading to a monotonically increasing μc as a function of α.

3.1.2. Normal stress differences
The first normal stress difference (figure 2(e)) is zero for spherical particles regardless of friction, and
increases monotonically with aspect ratio (except for very small μp). The second normal stress difference
(figure 2(f)) is nonzero even for spherical particles.

The insets of the bottom row of figure 2 present the effective friction and the normal stress differences as
a function of the interparticle friction coefficient μp for α = 2. As it is expected the effective friction of the
system is first gradually growing with increasing μp, but we find an interesting unexpected breakdown of
this growing trend between 0.4 < μp < 1. We also see, that N1, i.e. the normal stress in the gradient
direction (with respect to the flow direction) reaches a peak at μp = 0.1, where μc has the highest growth
rate, and then decreases back to a small value. At the same time N2, the normal stress in the neutral
direction with respect to the gradient direction also reaches its minimum. This can be explained by
considering the strong change in the particle orientational order, and the distribution of the forces on the
particles.

The first and second normal stress differences can be rewritten in terms of average particle level
quantities, like orientational angles, their variance, and quantities related to the force distribution on the
particle surface. In order to obtain an analytical expression to the stress differences, we have to make
approximations, most importantly neglect correlations between the in plane angle θ, the out of plane angle
φ, and the eigenvalues of the single particle stress tensor. By doing so we get curves that closely resemble the
values obtained by the simulation, including their dependence on α and μp in most cases (figures 2(e) and
(f) and their insets). In particular, these calculations recover that N1 = 0 for α = 1 (with the exception of
very small μp); that N1 is increasing and N2 is decreasing function of α, the dependence of N1 on μp is
non-monotonic (for example for α = 2), and the decreasing trend of N2 on small to medium values of μp.

4 The periodicity of θ by π must be taken into account when calculating its average. This can be done by calculating the nematic order
tensor 〈(3/2)ê ◦ ê − 1/2〉 (where ê is the unit vector in the particle’s axis) and considering its largest eigenvalue’s eigendirection, which
we do to obtain figure 3(a), or by averaging on the complex unit disk: (1/2)arg〈exp(2iθ)〉.

4



New J. Phys. 22 (2020) 073008 D B Nagy et al

Figure 4. The quasistatic value of the (a) volume fraction φc and (b) coordination number zc, plotted against the aspect ratio α
for different interparticle friction coefficient values. The symbols are the same as in figure 2, with the blue full circles with dashed
lines corresponding to random close packed simulations without particle friction in non-sheared systems [3].

These derivations are technical and we have gathered them in the supplementary material
(http://stacks.iop.org/NJP/22/073008/mmedia) accompanying this article.

3.1.3. Volume fraction and coordination number
To complete the rheological description, the quasistatic values of the volume fraction φc and the
coordination number zc are plotted as a function of the aspect ratio on figure 4. It is interesting to note, that
for the packing fraction the random close packed (RCP) values, obtained as simulation of frictionless
particles without shear [3], follow closely our μp = 0 case for α � 2, but deviate for larger aspect ratios: our
values start to increase while RCP shows decreasing trend for growing α. For moderate interparticle friction
the packing fraction of sheared spherocylinders also decreases for large α, but the curves are still shallow.
Our explanation is the following. The most significant difference between our measurements and RCP is
that in our case the system is sheared, while for RCP it is not. Shear induces orientational order for
elongated particles [25], which gets increasingly pronounced for larger aspect ratios, and orientational order
increases the packing fraction. Similar effect (sheared spherocylinders and RCP deviates only for α � 2) is
observed for the coordination number zc as well. A volume controlled simulation has been performed
recently by Nath and Heussinger [15]; their jamming density agrees with our measurements using stress
controll, which shows the robustness of these results.

3.2. Dissipation regimes
The flow of granular materials is—like any typical material—dissipative, quantified by the effective friction
coefficient μ. For granular materials dissipation has two sources: collisional loss (parameterized by the
coefficient of restitution e) and sliding friction (parameterized by the interparticle friction coefficient μp).
Since the two mechanisms have different nature, it is worth considering which one is dominant as a
function of the parameters [34]. When comparing the two mechanisms, we keep the coefficient of
restitution at a fixed intermediate value e = 0.5, and vary μp and I.

5
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Figure 5. (a) The fraction of the collisional loss of the total dissipation as a function of the inertial number and interparticle
friction coefficient, plotted as level sets. (b) Dependence of the 50% level set on the aspect ratio in the range 1 � α � 3. (c)
Collisional and (d) sliding friction contribution to the effective friction coefficient as a function of the inertial number for a range
of interparticle friction coefficient values. The power law exponent depends on the dissipation regime. The aspect ratio on panels
(a), (c) and (d) is α = 2. The symbols on panels (c) and (d) are the same as on figure 2.

3.2.1. Regime diagram

Figure 5(a) shows the fraction of the collisional loss (calculated on the contacts during force evaluation) to
the total loss as a function of I and μp. The 50% level set divides the parameter space into three regimes:
collisional loss dominated for large I and small μp, sliding friction dominated for intermediate values of μp,
and a third regime, which we call collisional-frictional5 , where sliding friction is somewhat suppressed as μp

is so large that the contacts are rarely sliding. Since the transitions are smooth, we call these regions as
regimes, instead of phases (which would imply sharp transition). These regimes have been identified earlier
for spherical particles [34, 35]; here we confirm their presence for elongated grains, and investigate how
they are affected by changing the particle elongation. Figure 5(b) shows the dependence of the 50% level set
on the aspect ratio. The borderline between sliding and collisional–frictional shifts to larger μp for more
elongated particles: the nearly spherical particles stop sliding at around μp ≈ 2, while for α = 3 this only
happens beyond μp ≈ 4 or 5. The elongated particles are more entangled by their neighbours, their
rotational degrees of freedom are suppressed, resulting in a decrease in collisional dissipation, so sliding
friction dominated regime extends further. The border between collisional and sliding friction dominated
regime also shows slight aspect ratio dependence, but there it is not monotonic on α.

Figures 5(c) and (d) show the dependence of the collisional and the sliding friction contribution to the
effective friction as a function of the inertial number. Power law scaling can be observed, with the scaling
exponents depending on the dissipation regime. This is especially striking for μp = 0.01, where increasing I
switches regimes from sliding to collisional at around I = 10−2.

3.2.2. Velocity fluctuations
The velocity fluctuations also depend strongly on the dissipation regime. On figure 6(b) the distribution of
the random velocity is shown (v∗ is the excess velocity on top of the linear velocity profile). The velocity
distribution displays a heavy tail in both the collisional and the collisional-frictional regimes. The same
phenomenon is displayed by the width (second moment) of the velocity distribution (figure 6(a)). Not only
the value, but also the I-dependence of the velocity fluctuations varies by the dissipation regime. Figure 6(c)
shows that

〈
v∗2

〉
/(γ̇d)2 ∼ I−1 in the collisional and collisional–frictional regimes, while practically

independent of I (i.e., ∼ I 0) in the sliding friction regime. Below we provide scaling arguments based on the
underlying microscopic processes, which also explain the behaviour of the autocorrelation functions plotted
on figure 6(d).

The velocity fluctuations can be understood by the following simple microscopic picture. One must
distinguish between the regime of low and large values of μp on the one hand, for which these fluctuations
are large, and the regime for intermediate values of μp on the other hand, for which they are significantly
smaller (figure 6(a)). In the first highly fluctuating case, the grains move in an intermittent way. They
experience short phases of typical duration T = d/

√
p/ρ during which they are suddenly accelerated by the

pressure p to a velocity d/T with respect to their neighbours. The average fluctuating kinetic energy per
grain then scales as ρd3(d/T)2 × f, where f is the fraction of time during which this acceleration phase

5 While reference [34] calls this region ‘rolling’, we consider collisional–frictional more appropriate, as the dominant contribution to
dissipation is collisional, and not rolling dissipation.
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Figure 6. (a) Variance of the random velocity v∗, non-dimensionalized by the shear rate, as a function of μp, for I = 10−3. Line
colours represent different α values, as in the legend of figure 5(b). (b) Distribution of v∗ for α = 2. (c) Variance of the random
velocity v∗, as a function of the inertial number. The symbols on panels (b) and (c) represent the same values of μp as in
figures 2–4. (d) Normalized autocorrelation of the random velocity for μp values in the three regimes (colours) and two different
inertial number values (continuous and dashed lines). The autocorrelation function in the sliding friction regime (μp = 10−1

curve) fall off by γ̇t, so the curves for different I collapse. However, in the collisional and the collisional-frictional regimes
(μp = 10−3 and 101) the dependence is on γ̇t/I; the curves would approximately collapse when shifted by the difference in I.

occurs, i.e. f = Tγ̇ = I. This argument [21, 31] gives m
〈
v∗2

〉
∼ d3pI. Dividing by the average relative

velocity, we obtain
〈
v∗2

〉
/(γ̇d)2 ∼ I−1, as shown in figure 6(c).

By contrast in the second case, the particles’ motion does not appear intermittent. The grains move
continuously ( f = 1), at a time scale that follows the overall shear rate: T ∼ 1/γ̇. The average fluctuating
kinetic energy per grain then scales as d3pI2, leading to

〈
v∗2

〉
/(γ̇d)2 ∼ I 0. This behaviour is also consistent

with the corresponding curves in figure 6(c), which are almost flat for intermediate μp.
This change in the relevant time scale T is supported by the computation of the autocorrelation

function, displayed in figure 6(d). For μp = 10−1, the curves lie above those for μp = 10−3 and μp = 101,
indicating more persistent grain motion. Also, plotted as functions of γ̇t the curves for intermediate μp

show a collapse when varying I, while the others rather follow the scale t
√

p/ρ/d = γ̇t/I.

3.2.3. Fluctuations of local shear and rotation
The fluctuations display similar trend on the mesoscopic scale as well. To extract local deformation rates,
the simple shear can be written as a sum of pure shear and solid body rotation:

γ̇ =

⎛
⎝0 γ̇ 0

0 0 0
0 0 0

⎞
⎠ =

⎛
⎝0 ε̇ 0
ε̇ 0 0
0 0 0

⎞
⎠+

⎛
⎝ 0 ω 0
−ω 0 0

0 0 0

⎞
⎠ ,

7
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Figure 7. (a) Distribution of the local pure shear rate ε̇loc (solid symbols) and local angular velocity ωloc (open symbols) on
mesoscopic scales. (b) The distribution width (standard deviation) of the mesoscopic pure shear rate and angular velocity as a
function of μp. Both quantities have relatively narrow distribution in the sliding frictional regime, and have very wide
distribution in the other two regimes.

so ε̇loc and ωloc can be obtained as the symmetric and antisymmetric xy component of the local
deformation rate tensor. For homogenous simple shear, ε̇ = ω = γ̇/2. Figure 7(a) shows the distribution of
the local pure shear rate and the local angular velocity of mesoscopic regions. The local strain rate tensor is
obtained by linear regression of the relevant components of the matrix, which projects the particle positions
onto their velocity space. The particles are sampled from localized regions of linear extent 1/4 of the largest
side of the simulation box. As evident from this panel and figure 7(b) (the distribution width of the same
quantities), both the local pure shear rate and the local angular velocity have moderately narrow
distribution around their mean (which is 1/2 for both the normalized ε̇loc/γ̇ and ωloc/γ̇) in the sliding
frictional regime, while the distribution is very wide in the other two regimes. This includes non-negligible
fraction of mesoscopic regions, which deform and/or rotate with opposite sign compared to the bulk
average.

Similarly to the velocity fluctuations, due to the intermittency of grain motion at small and large μp, the
width of these distributions around their average values are an order of magnitude larger than that for
intermediate interparticle friction. In the latter case, the grain’s velocity is then typically affine, following
the global shearing dynamics.

3.2.4. Force and dissipation spatial distribution
It is interesting to consider which part of the surface of the particles experience the strongest confining
forces, and whether these areas coincide where most of the dissipation takes place. In the left panel’s first
column of figure 8 the normalized forces on an α = 1.3 particle are displayed: the absolute value of the
vectorial average of the forces acting on a surface element is normalized by a typical force based on the
confining pressure. In the frictionless regime the forces are concentrated on the cylindrical belt, which
holds, somewhat less sharply, in the sliding friction regime as well.

8
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Figure 8. The spatial distribution of forces and the dissipation on the surface of the particles. On the left panel the particles are
only slightly elongated, aspect ratio is α = 1.3; this is the shape where the effective friction μc is maximal for μp = 0.1. The right
panel displays more elongated particles with α = 2, corresponding to the shape used on the insets of figure 2. On both panels the
first columns show the force distribution on the surface of a particle, non-dimensionalized as | 〈Fk〉 |/Akσyy , where the numerator
is the absolute value of the vectorial average of the forces on the kth surface element, and Ak is the area of the surface element.
The second columns show the dissipation distribution non-dimensionalized as N〈Pk〉A/σxy γ̇VboxAk, where Pk is the power
dissipated on the surface element, N is the number of particles, A is the surface area and Vbox is the volume of the box. For this
figure α = 1.3 and I = 10−3. The normalization in the first columns is fixed across the three images (σyy = 10−3), while in the
second columns it is different (σxy , like μc, varies by a factor of ≈ 4 across small to large μp).

This concentration of the forces on the cylindrical belt can be understood by looking at the torque. For
spherocyliders the torque on particle i can be expressed as:

τi =
∑
j∈Z(i)

(
λijoi + d

(
1 − 1

2
δij

)
ĉij

)
× |Frep

ij |
(
ĉij + μpζ t̂c,ij

)
, (2)

where oi is the orientation vector of the particle, Z(i) is the set of particles that particle i is in contact with,
λij ∈ [−d (α− 1) , d (α− 1)] is the (signed) distance between the centre of mass and the normal projection
of the contact point to the symmetry axis, and ζ = |Ffric

ij |/μp|Frep
ij | ∈ [0, 1] is the friction mobilization or

plasticity index. In the frictionless case (μp = 0) only one component remains (since ĉij × ĉij = 0):

τi =
∑
j∈Z(i)

λij|Frep
ij |oi × ĉij. (3)

Based on this expression the torque of a single contact is zero only at the two singular points at the tips of
the particle (oi × ĉij = 0) which are unstable, and at the circle along the centre of the cylinder (λij = 0)
which is stable. This shows that frictionless particles, regardless their aspect ratio, prefer to align in a way
that their contact points (especially those carrying large forces) are at the middle of the cylindrical belt, as
simultaneous force and torque balance is easier achieved when many of the torque contributions are small;
this is especially apparent when only a few (e.g. two) contacts dominate the force balance on a particle. This
argument is valid with good approximation for small nonzero μp, as the Coulomb cone is still restricted
close to the normal direction (μpζ 
 1). In the collisional–frictional regime, however, the areas
experiencing the largest forces are the edges of the spherical caps.

The second column on the left panel of figure 8 shows the distribution of the dissipation, also
normalized by the fraction of the total dissipation projected onto a surface element. There is strong
correlation between areas of large forces and large dissipation, with two remarks. First, in the collisional
regime there is an extra high-dissipation ring on each of the spherical caps, their location is determined by
geometrical constraints on the neighbouring particles. Second, the noise in the obtained distribution is
largest in the collisional–frictional regime. This can be explained by the fact that the contacts are long
lasting in this regime, so fewer separate contacts contribute to the average; and unlike in the sliding friction

9
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regime, the contacts are more often localized to their original formation point, and thus contribute only to
a single surface element.

On the right panel of figure 8 we show the same quantities for a more elongated, α = 2 particle shape.
We can observe, like for less elongated particles, that the forces are concentrated on the middle of the
cylindrical belt, especially for small to intermediate particle friction. For μp = 10−3, the spherical caps
receive also significant incoming forces6, while for μp = 10−1 they do not. This can be explained by
considering that the elongated particles, regardless of μp, are oriented by shear to an average direction
which is close to the streaming (x) direction. We have seen in section 3.2.2 that in the collisional regime the
velocity fluctuations are large; for oriented elongated particles this fluctuation mainly happens in the axial
direction of the particles7, causing frequent collisions on the caps. For the sliding friction regime the
velocity fluctuations are much smaller, therefore the collisions on the caps are less frequent and weaker,
resulting in less incoming force on those surface elements. This in fact explains why N1 = σxx − σyy is small
in the collisional regime and large in the sliding friction regime: up to moderate particle friction the
Coulomb cone of the forces is narrow, the direction of the contact forces is close to the surface normal,
which for particles oriented with their axis close to the x direction means that forces on the spherical caps
contribute mostly to σxx, while those on the top and bottom of the cylindrical belts contribute to σyy. In the
collisional regime the difference is small, while in the sliding friction regime it is large as the caps receive
little incoming force. In the high particle friction collisional–frictional regime both the Coulomb cone is
very wide and the orientational ordering is weak, thus the forces can point in almost any direction, resulting
in a more isotropic force direction distribution, therefore again small N1. This completes the explanation of
the non-monotonic behaviour of N1 on μp for elongated particles (figure 2(e) inset).

4. Summary and perspectives

We performed DEM simulations to investigate the rheology of a realistic 3-dimensional frictional granular
material consisting of elongated particles (spherocylinders). Such systems develop orientational ordering
when exposed to shear flow. The degree of this ordering depends on the interparticle friction and particle
elongation in a nontrivial manner. Namely, the shear induced orientational ordering is in principle
increasing with particle elongation, but the characteristics of collisional and frictional interactions between
neighbours (which hinder each others rotation) changes with the interparticle friction coefficient. We
measured how key rheological quantities, including effective friction and normal stress differences depend
on these two key parameters. We found that the aspect ratio dependence of the effective friction is
non-monotonic not only for frictionless particles as we saw earlier, but also for frictional particles up to
μp � 0.4,—a range already relevant for every day materials. For higher μp the effective friction is
monotonically increasing. We explained the microscopic origins of both the non-monotonic behaviour for
small and intermediate μp and the monotonic one for large μp. These observations are connected to the
fact, that for small friction coefficient the increasing particle aspect ratio leads to stronger ordering and
smaller average alignment angle—consequently less obstruction between particles—leading to less
resistance against shearing. For particles with large surface friction, however, for increasing aspect ratio the
stronger entanglement is not counteracted by the ordering—as it is weaker in this case—leading to
monotonically increasing shear resistance. We showed that the collisional, sliding frictional, and
collisional–frictional dissipation regimes, which have been identified before for spherical particles, are
found also for elongated ones, and observed that the boundary between the sliding frictional and the
collisional–frictional regimes moves towards higher μp for increasing aspect ratio, i.e. increasing grain
elongation leads to the expansion of the sliding frictional regime to higher values of the interpaticle friction.
We explain this by considering the effect of entanglement on motion: for more elongated particles the larger
entanglement leads to the suppression of the rotational motion, shifting the balance from
collision-dominated to sliding friction dominated dissipation. We observed that the velocity fluctuations
behave differently in the dissipation regimes, and explained its microscopic origins based on the different
characteristic time scales of the fluctuations. We measured the spatial distribution of the forces on the
particle surfaces, and observed that for small μp the forces are concentrated on the cylindrical belt. We gave
the explanation of this phenomenon based on torque balance on the particles and the nature of the
contacts. Finally we expressed the first and second normal stress differences in terms of average particle level

6 Similar increased concentration of contacts on the central region at small aspect ratios, and on the tips at large aspect ratios are also
observed on frictionless 2D elongated particles [14].

7 We confirmed that the velocity fluctuations are indeed larger in the x direction compared to the y and z directions.
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quantities, which explained some of the properties of the normal stress differences. One particular
non-monotonic behaviour, i.e., how N1 depends on the particle friction μp for elongated particles, can be
explained by the interplay between the amount of velocity fluctuations and the orientation of the particles:
large velocity fluctuations (collisional regime) or large Coulomb cone with weak orientational order
(collisional–frictional regime) increase the isotropy of the force network, resulting in small values of N1;
while its value in the intermediate (sliding friction) regime is high.

This work opens towards the rheology of elongated particles with more complicated shapes or fibres
with some flexibility, for which entanglement effects are enhanced [39–41]. Also, in the context of active
matter, it occurs that swimmers or bacteria can present an elongated shape, which matters for their
behaviour [42]. Beyond the properties of clustering of self-propelled rods [43–45], the extension of the
rheology of active dense granular flows [46] for such long particles remains to be studied. Finally, the
limitations of the μ(I) rheology have been recently emphasised, especially in the presence of strong
gradients with non-local effects coming into play [19, 47–57], or as a source of ill-posedness in time
dependent calculations [58–62]. Because elongated particles can develop secondary flows and consequently
build gradients over time, these issues become crucial for the description of their flows [63].
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