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We present a phase field theory for the nucleation and
growth of one and two phase crystals solidifying with
different crystallographic orientations in binary alloys.
The accuracy of the model is tested for crystal nuclea-
tion in single component systems. It is shown that with-
out adjustable parameters the height of the nucleation
barrier is predicted with reasonable accuracy. The ki-
netics of primary solidification is investigated as a func-
tion of model parameters under equiaxial conditions.
Finally, we study the formation of polycrystalline growth
morphologies (disordered dendrites, spherulites and
fractal-like aggregates).

Polycrystalline solidification is of  general interest from
both practical and theoretical viewpoints. To describe
such a process we need a model that can handle crystal
nucleation and growth on equal footing. Over the past
decade the phase field theory (PFT) has demonstrated
its ability to describe complex solidification morpholo-
gies(1) including thermal and solutal dendrites(2–7) and
eutectic/peritectic fronts.(8–11) In the PFT, nucleation has
been modelled by introducing Langevin noise into the
governing equations(9,12) or by inserting supercritical
particles into the simulation window.(11,13) Until re-
cently,(14–18) differences in the crystallographic orienta-
tion of the nucleating/growing particles could not been
handled. In this paper we present results on modelling
polycrystalline morphologies achieved by extending the
approach of Kobayashi, Warren & Carter (KWC).(14)

KWC introduced a normalised orientation angle that
describes the orientation of the crystal planes in the labo-
ratory frame. In our approach, developed recently,(15–17)

the orientation is now extended to the liquid to describe

local order in that phase. This allows us to handle such
processes as freezing of orientation defects and grain
boundaries into the solid, while taking the respective
free energy penalties into account. Here we demonstrate
that the formation of a broad range of polycrystalline
morphologies can be addressed within the framework
of this approach.

In this paper, first we apply the phase field theory for
describing crystal nucleation in undercooled liquids. We
test the accuracy of the predictions for one and two
component systems (Lennard–Jones, ice water, hard
sphere and the nearly ideal solution Cu–Ni). Then we
present a phase field theory that handles the nucleation
and growth of crystallites with different crystallographic
orientations. It is applied to study crystallisation kinet-
ics in binary two-dimensional liquids. In the last part of
our paper, various polycrystalline morphologies are pre-
sented that can be described using our approach.

Phase field theory for nucleation
Our starting point is the standard phase field theory
of binary alloys as developed by several authors.(5,19)

The Helmholtz free energy is a functional of  two fields.
1. A nonconservative a structural order parameter, j,
that describes the local crystallinity of  the matter. (Non-
conservative means that its volume integral is not con-
served.) This quantity can be viewed as the Fourier
amplitude of the dominant density wave of  the time
averaged singlet density in the solid. As pointed out by
Shen & Oxtoby(20) if  the density peaks in the solid can
be well approximated by Gaussians placed to the atomic
sites, all Fourier amplitudes can be expressed uniquely
in terms of the amplitude of the dominant wave, thus a
single structural order parameter suffices. Here we take
j=0 in the solid and j=1 in the liquid.
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2. The concentration (solute) field, c. We assume mass
conservation which implies that the integral over vol-
ume of this field is a constant.

In terms of these fields, the free energy functional is
written in the following form
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where in the case of  isotropic systems, G(—j)2=(—j)2,
ej is a constant, T the temperature and f(j,c) the local
free energy density. The first term on the right hand
side is responsible for the appearance of  the diffuse
interface. The local free energy contribution has the
form f(j,c)= [(1-c)wA+cwB]Tg(j)+[1-p(j)]fS+p(j)fL,
where the ‘double well’ and ‘interpolation’ functions
have the forms g(j)=1/4j2(1-j)2 and p(j)=j3(10–
15j+6j2), respectively, that emerge from the thermo-
dynamically consistent formulation of the PFT,(21) while
the Helmholtz free energy densities of  the solid and
liquid, fS and fL, are taken from the ideal or the regular
solution model. These relationships result in a free en-
ergy surface that has two minima, whose relative depth
depends on the temperature and composition.

Being in unstable equilibrium, the critical fluctuation
(the nucleus) can be found as an extremum of this free
energy functional,(15–17) subject to the solute conserva-
tion constraint discussed above. To impose this con-
straint one adds the volume integral over the solute field
times a Lagrange multiplier to the free energy. The field
distributions, that extremise the free energy, have to obey
the appropriate Euler–Lagrange (EL) equations, which
in the case of  such local functional take the form

0
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where dF/dc stands for the first functional derivative
of  the free energy with respect to the field c that can
be either j or c, while w is the total free energy density.
The EL equations have to be solved assuming that un-
perturbed liquid exists in the far field, while, for sym-
metry reasons, zero field gradients exist at the centre
of  the fluctuations. The same solutions can also be
obtained as the nontrivial time independent solution
of  the governing equations for field evolution.(15–17)

Assuming spherical symmetry that is reasonable
considering the low anisotropy of the crystal–liquid
interface at small undercoolings, the EL equations take
the following form
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where w=(1-c)wA+cwB is the free energy scale, wi, fi, D
fi, and c• are the free energy scale, the free energy den-
sity the free energy density difference for pure compo-

nent i=A,B, and the concentration of component A
far from the fluctuation, respectively. Here ¢ stands for
differentiation with respect to the argument of the func-
tion. Note that Equation (3b) provides the analytic re-
lationship c=c(j), thus Equation (3a) is an ordinary
differential equation for j(r). This equation has been
solved here numerically using a fourth order Runge-
Kutta method. Since j and dj/dr are fixed at different
locations, the central value of  j that satisfies jÆj•=1
for r Æ•, has been determined iteratively. Having de-
termined the solutions j(r) and c(r), the work of for-
mation of the nucleus W* can be obtained by inserting
the solution into the free energy functional. The steady
state nucleation rate JSS is calculated using the classi-
cal nucleation prefactor, J0 as given by Kelton(22)

JSS=J0exp{-W*/kt} (4)

a prefactor verified experimentally on oxide glasses.(23,24)

In the binary case the three model parameters ej,
wA and wB can be determined from the interface free
energy and thickness, which are known for the equilib-
rium planar interface of  each of the pure components.
In fact, with this information the problem is over de-
termined, thus we assign a linear temperature depend-
ence which can be assigned to one of  the model
parameters, which for symmetry reasons is chosen to
be the coefficient of  the square gradient (SG) term,
ej=ej(T). Then, the height of  the nucleation barrier
can be predicted, with no fitting parameters, for all
undercoolings and initial liquid compositions. It is
worth noting that in the one component limit the model
contains only two parameters ej and w that can be
fixed provided that the interface free energy and inter-
face thickness are known for the equilibrium interface.

We use a similar approach for modelling crystal nu-
cleation in the hard sphere system.(25) Here the con-
served field is the volume fraction n=ps3r/6, where s
is the diameter of  the hard spheres and r the number
density. Owing to the complex form of fS(n) and fL(n)
emerging from the equations of  state fitted to molecu-
lar dynamics simulations, the respective Equation (3b)
can only be inverted numerically.

Formal theory of  polycrystalline solidification
Nucleation growth problems are usually handled in the
framework of the Johnson–Mehl–Avrami–Kolmogorov
(JMAK) approach. The ‘overlapping’ crystalline frac-
tion is given by the integral
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where J, v and R* are the nucleation and growth rates,
and the radius of  the critical fluctuation, while the inte-
gration variables J and t have time dimension. This ex-
pression coincides with the true crystalline fraction X at
the beginning of the process, when the crystalline parti-
cles grow independently. However, soon they overlap,
and several times covered volumes form, and Equation
(5) overestimates the true crystalline fraction. A simple
mean field correction dX=(1-X)dz that counts only that
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fraction of dz that falls on the untransformed region,
yields X=1-exp{-z }. This approach is exact if  (i) the
system is infinite, (ii) the nucleation rate is spatially ho-
mogeneous and (iii) either a common time dependent
growth rate applies or the anisotropically growing par-
ticles are aligned parallel. Then, for constant nucleation
and growth rates in infinite systems, the time evolution
follows the JMAK scaling X=1- exp{-(t/t0)p}, where t0

is a time constant, p=1+d is the Kolmogorov exponent
and d is the number of dimensions.(26)

In systems, where chemical diffusion plays a signifi-
cant role, condition (iii) is not satisfied. We are going
to apply the phase field theory to explore what hap-
pens in such a case.

Phase field theory for polycrystalline solidification
Once the free energy functional is defined, crystal growth
is described by the usual governing equations that en-
sure positive entropy production. For the nonconserved
phase field, a Cahn–Allen type equation applies
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while for the conserved fields a Cahn–Hilliard equa-
tion is appropriate
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Here Mj and Mc are the respective field mobilities
that can be related to the kinetic coefficient of  growth
and the diffusion coefficient.

The phase field theory of a single crystal particle
has been worked out for two and three dimensions,
and with appropriate handling of the interface it re-
produces the results of  the microscopic solvability
theory of dendritic solidification.(3,4,27,28) In this paper
we work in two dimensions. We now scale the equa-
tions by a length x (a characteristic size) and time x2/
Dl yielding the dimensionless forms
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dw=wB-wA, dDg=DgB-DgA, R the gas constant, vm the
average molar volume, while mi, Li, Ti, di and gi are the

reduced phase field mobility, heat of  fusion, melting
point, interface thickness and interface free energy for
the pure components (i=A and B). The quantities
marked with tilde are dimensionless. The anisotropy
of the interface free energy is given by the function
s=1+s0 cos(nJ) for n-fold symmetry, where
J=atan[(∂j/∂y)/(∂j/∂x)] is the local interface orienta-
tion angle (x and y are rectangular coordinates).

To describe particles with different crystallographic
orientations, the formation of  grain boundaries, and
grain boundary dynamics, we follow KWC,(14) and in-
troduce an orientational field qŒ[0,1], a normalised
orientation angle that gives how the crystal planes
alignment in the laboratory frame (in 2D a single an-
gle suffices to fix orientation). To recover the grain
boundary dynamics inherent in their model, we add
fori=H |—q | to fS. This term is known to reproduce a
rich set of  behaviours including grain rotation, grain
boundary wetting, etc.(29)

Unlike Kobayashi, Warren & Carter, we extend the
orientation field to the liquid regions(15–17) where q is
assumed to fluctuate in space and time. Assigning lo-
cal crystal orientation to liquid regions, even a fluctu-
ating one, may seem artificial at first sight. However,
due to geometrical constraints a short-range order ex-
ists even in simple liquids, which is often similar to the
one in the solid. By rotating the crystalline first neigh-
bour shell so that it matches the best to the local liquid
structure, we can assign a local orientation to every
atom in the liquid. This orientation fluctuates in time.
The correlation of the atomic positions/angles shows
how good this fit is. (In our approach the orientation
field and the phase field play these roles.) Approach-
ing the solid from the liquid, the orientation becomes
more definite and matches to that of  the solid, while
the correlation between the local liquid structure and
the crystal structure improves.

Since the orientation field is a non-conservative one,
the dimensionless equation of motion is
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where c is the reduced orientation mobility, related to
the rotational diffusion coefficient, and K(|—q |)=|—q |.
Note that a term proportional to fori enters equation (7a).

According to computer simulations and real time
experiments on colloidal suspensions,(30) during nuclea-
tion the crystal like clusters dynamically form and de-
cay, and then reform again with different orientation,
etc. To model this phenomenon, we introduce fluctua-
tions of  the phase and orientation fields (Langevin
noise in the dynamic equations).

Equations (7) are solved by an explicit finite differ-
ence scheme on 3000×3000 and 7000×´7000 rectangu-
lar grids under periodic boundary conditions. The
computer code has been parallelised using the MPI
protocol. To perform the computations a PC cluster
dedicated to phase field modelling has been built and
housed at the Research Institute for Solid Sate Physics
and Optics. Currently this cluster contains 56 nodes
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of  1 to 2·4 GHz Athlon processors.
This model can also be extended to describe eutec-

tic/peritectic solidification where the two phases have
the same structure (e.g. Ag–Cu, Ag–Pt). This is real-
ised by incorporating regular solution thermodynam-
ics, a SG term for the chemical composition (a fourth
order differential operator appears then in Equation
(7b)), while a more complex form of  K is used that
sets preference for a definite orientational relationship
between the two solid phases a and b : K(c,|—q|, |—q|2),
where K=h(c)K1(|—q|)+[1-h(c)]K2(|—q|)+1/2eq

2TH-1|—q|2,
and we use the following functions

h(c)=1/2{1+cos[(c-ca)/(cb-ca)2p]}

K1(|—q |)=|—q |

K2(|—q |)=a+b|cos(2npd |—q |+y)|

Here ca and cb are the equilibrium solid composi-
tions, a and b are constants, d is the interface thick-
ness, while n, or y, or both can be used to define the
preferred orientation change at the interface. Note that
the function h(c) controls the preference for the orien-
tation change for solid compositions that differ sig-
nificantly from the equilibrium solid compositions
ca<c<cb. Such intermediate compositions normally
occur only at the a–b interface in the solid. Anisotropy
of  the free energy of the phase boundary might be
incorporated by making either eq

2 or y dependent on
the interface inclination angle Jc=atan[(∂c/∂y)/(∂c/∂x)].
While the functions used here have been chosen intui-
tively, for different combinations of crystal structures,
K1 and K2 can be deduced on physical grounds.

Material parameters
The nucleation studies were performed for the
Lennards–Jones (LJ), ice–water, and hard sphere (HS)
systems. In all these cases the thermodynamic and in-
terfacial properties are available from sources speci-
fied in Table 1. Thus the calculations can be made
without adjustable parameters, and can be compared
with nucleation rates from simulations or experiment,
or with the height of  the nucleation barrier from
simulations, Table 1.(31–44)

The phase field simulations for polycrystalline so-
lidification of a single crystalline phase were performed
using the properties of  the Cu–Ni system given in Ta-
ble 2. Since the physical thickness of  the interface is in
the nanometer range and the typical solidification
structures are far larger (µm to mm), a full simulation
of polycrystalline solidification from nucleation to par-
ticle impingement cannot be performed even with the
fastest of  the present supercomputers. Therefore, fol-
lowing other authors,(5,6) the interface thickness has

been increased by a factor of  20, the interface free en-
ergy has been divided by 6, while the diffusion coeffi-
cient has been increased by a factor of  100. This allows
us to follow the life of  crystallites from birth to im-
pingement on each other. The time and spatial steps
were Dt=4·75×10-6 and Dx=6·25×10-3, x=2·1×10-4 cm
and Dl=10-5 cm2/s. Dimensionless mobilities of
x2Mj/Dl=0·9, xMq,lH/Dl=720 and xMq,lH/Dl=7·2×´10-4

were applied, while Dl=0 was taken in the solid. The
simulations were performed at 1574 K for various re-
duced liquid composition x=(c•-cs)/(cl–cs) between the
solidus and liquidus, where c s=0·399112 and
cl=0·466219 are the solidus and liquidus compositions.
White noises of  amplitudes 0·0025, 0 and 0·25 were
used for the three fields j, c and q, respectively.

In the case of  eutectic solidification of the Ag–Cu
system at T=900 K the interaction parameters are cho-
sen so that the respective phase diagram approximates
reasonably the experimental one [WLv=(16000-4T)J/mol;
WSv=(26000-4T) J/mol]. At this temperature the equi-
librium solid concentrations are caª0·1, and cbª0·9,
while the eutectic concentration is ~0·35. The dimen-
sionless time and spatial steps we use are 2·5´×10-7, and
5×10-3, while x=6´×10-6 cm. The simulations were per-
formed on a 1000×´1000 grid. With an appropriate
choice of the parameters a=0·9/d, b=0·1/d, n=1/2, y=0,
d=Dx, zc=1, zq=(eq/ej)2=10-9, where eq is the SG term
for concentration, we are able to simulate multigrain
eutectic solidification. Note that the choice n=0·5 gives
preference to a step of Dq=±0·5 in the orientation field
at the a–b interface. Consequently, a particle of  the
dominant phase of  orientation q prefers contact with
a grain of the secondary crystalline phase of orienta-
tion q¢=q+Dq.

Results
Prediction of nucleation barrier in 3D
The nucleation rates predicted for the LJ and ice–
water systems by the phase field theory are compared
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Table 1. Source of physical properties used in calculating
the nucleation rate/barrier height

LJ Ice–water HS

Thermodyn. 31 32 33
d 34 35 36,37
g 38 39 40
Dl 31 32
JSS 41 42,43

Table 2. Physical properties of Cu, Ni and Ag used in
phase field simulations

Cu Ni Ag

T f (K) 1358 1728 1234
L (J/cm3) 1728 2350 1097
g (mJ/m2) 247 315 140
Dl (cm2/s) 10-5 10-5 10-5

 CDM CDM 

PFT PFT 

Figure 1. Nucleation rate versus temperature as predicted for (a) the
Lennard–Jones and (b) the ice–water systems by the phase field theory
(PFT, solid line) and by the classical droplet model (CDM, dashed
line). The dotted lines above and below the PFT results show the
uncertainty originating from the error of the interface free energy.
For comparison results from molecular dynamics(41) and
experiment(42,43) are also shown
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with the results of  computer simulations and meas-
urements in Figure 1. Note that these predictions are
made without adjustable parameters. The nucleation
rates from the PFT are in a reasonable agreement with
the simulations and the experiments.(15–17) This success
of the PFT follows from two sources. (i) The realistic
temperature dependence of  the equilibrium interface
free energy it predicts, namely geqµT; this relationship
is trivially satisfied for the HS system and is also fol-
lowed by other simple liquids, as shown by recent MD
simulations for the Lennard–Jones system.(45) (ii) The
ability to work with local properties that differ from
the bulk ones. Indeed, under the conditions of inter-
est, no bulk properties have been seen even at the cen-
tres of  the critical fluctuations. Accordingly, the
classical sharp interface droplet model, which relies on
bulk thermodynamic properties and the value of the
interface free energy taken at the melting point, un-
derestimates the nucleation rate by 10 to 20 orders of
magnitude.

Similar results were obtained using our two-order-
parameter PFT for crystal nucleation in the HS liq-
uid.(25) The interface thickness for phase field is
evaluated from the cross-interfacial variation of the

height of  the singlet density peaks given in Refs 36
and 37. The model parameters are fixed in equilibrium
so that the free energy and thickness of  the (111), (110)
and (100) interfaces from molecular dynamics are re-
covered. The density profiles predicted without adjust-
able parameters are in a good agreement with the
filtered densities(36,37) from the simulations. The bar-
rier heights calculated with the properties of  the (111)
and (110) interfaces envelope the Monte Carlo re-
sults,(44) while those obtained with the average inter-
face properties fall very close to the exact values. As
pointed out previously,(44) the sharp interface droplet
model considerably underestimates the height of  the
nucleation barrier, which leads to a 3 to 5 orders of
magnitude difference in the nucleation rate.

In the case of  binary alloys, such a rigorous test
cannot be performed since the input information avail-
able for the crystal–liquid interface is far less reliable.
In the nearly ideal Cu–Ni system, the critical
undercoolings computed for a realistic range of nu-
cleation rates (J=10-4 to 1 drop-1s-1 for electromagneti-
cally levitated droplets of  6 mm diameter) fall close to
the experimental values(46) (see Figure 3). This indicates
a homogeneous nucleation, contradicting thus the het-
erogeneous mechanism suggested earlier(46) on the ba-
sis of  Spaepen's value aHS=0·86(47) for the dimensionless
interfacial free energy of the HS system. (Note that
a=g N0

1/3vm
2/3/DHf, where N0 is the Avogadro number.)

Recent computer simulations yield considerably smaller
values aHS=0·51(40) and aNi=0·58(48) (close to the 0·6 we
used), invalidating the earlier conclusion. These find-
ings raise the possibility that homogeneous nucleation
is more common in alloys than previously thought.

Transformation kinetics in 2D
A snapshot of polycrystalline dendritic solidification
in the phase field theory, for the Cu–Ni system at 1574
K in 2D is shown in Figure 4. The large number of
particles (~1500) provides reasonable statistics to evalu-
ate the Kolmogorov exponent p.

We compare four simulations: two are performed
for a reduced concentration of x=0·2, while the others
at 0·5 and 0·8. 1000×1000 sections of the respective
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Figure 4. Solidification morphology for primary crystallisation in a
binary alloy (Ni–Cu) at 1574 K, and supersaturation 0·8. By the end
of solidification ~1460 dendritic particles form. The calculations were
performed on a 7000×7000 grid

0.52 0.525 0.53 0.535 0 

10 

20 

30 

40 

50 

v ∞ 

 W*/kT 

PFT 

CDM 

upper curve: (110) 
central curve:  average 
lower curve:  (111) 

Figure 2. Reduced nucleation barrier height versus volume fraction of
the initial liquid. [Upper three lines (solid): phase field theory - PFT;
lower three lines (dashed/dotted): classical droplet model - CDM.]
Within these triplets of lines for PFT and CDM, the upper and lower
curves were calculated using the physical properties of the (110) and
(111) interfaces, respectively (as indicated by the caption in the
figure). The prediction for the (100) interface (not shown here) falls
slightly below the results obtained with the average interface properties
(heavy lines). For comparison, the results of  Monte Carlo
simulations(44) are also shown (triangles)

Figure 3. Nucleation temperature versus composition predicted by the
phase field theory for the nearly ideal Cu–Ni system. Upper and lower
solid lines correspond to nucleation rates of 10-4 to 1 drop-1s-1for
droplets of 6 mm diameter. The experimental data (squares) refer to
electromagnetically levitated droplets.(46) The calculated liquidus and
solidus lines (dashed) are also shown
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simulations are shown in Figure 5 (panels (a)–(d)), to-
gether with the respective Kolmogorov exponents
evaluated as a function of the normalised crystalline
fraction h=X/Xmax, (panels (e)–(h)), where Xmax is the
maximum crystalline fraction achievable at the given
liquid composition. If  the nucleation rate is sufficiently
low there is space enough to develop a full dendritic
morphology, Figure 5(a). Since the dendrite tip is a
steady state solution of the diffusion equation, con-
stant nucleation and growth rates apply, that are ex-
pected to yield p=1+d.(26) Indeed, the observed

Kolmogorov exponent is pª3. In the other simulations,
the particles have a more compact shape, and interact
via their diffusion fields, a phenomenon known as ‘soft
impingement’. The respective Kolmogorov exponents
decrease with increasing solid fraction. A closer inspec-
tion of  the process indicates that growth in the initial
stage after nucleation is interface controlled (governed
by the phase field mobility), as opposed to control by
chemical diffusion. This results in a delay in the onset

L. GRÁNÁSY ET AL: NUCLEATION AND POLYCRYSTALLINE SOLIDIFICATION IN BINARY PHASE FIELD THEORY

 

Figure 5. Transformation kinetics in 2D versus composition in the Cu–Ni system at 1574 K. (a)–(d) Snapshots of the concentration distribution
(black – solidus; light gray – liquidus); and the respective Kolmogorov exponent vs normalised transformed fraction curves are shown. Simulations
presented in panels (a) and (b) differ in the magnitude of the nucleation rate

Figure 6. ‘Dizzy’ dendrites formed by sequential deflection of dendrite
tips on foreign particles: comparison of experiments on 80 nm clay-
polymer blend film (dark gray panels, by the courtesy of V. Ferreiro
and J. F. Douglas, for experimental details see Refs 50,51) and phase
field simulations (light gray panels). The simulations have been
selected from 30 random configurations according to their resemblance
to the experimental patterns. (The simulations were performed on a
3000×3000 grid, with 18000 orientation pinning centres per frame)

Figure 7. Disordered dendrite formed by dynamic trapping of
orientation defects, which initiated the growth of new grains (left:
composition map; right: orientation map) as predicted by the phase
field theory
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of diffusion controlled growth, which will lead to a p
decreasing with time. Such an effect will only be per-
ceptible in the case of  copious nucleation, where the
length of this transient period is comparable to the
total solidification time. Indeed, similar behaviour has
been observed during the formation of  nanocrystal-
line materials when crystallising metallic glass rib-
bons.(49)

Polycrystalline growth morphologies in 2D
In thin polymer blend films crystallisation morphol-
ogy can be influenced spectacularly by adding foreign
(clay) particles.(50,51) This leads to the formation of dis-
ordered dendritic structures (‘dizzy’ dendrites), see Fig-
ure 6. These structures are formed by the engulfment
of the clay particles into the crystal, inducing the for-
mation of  new grains. This phenomenon is driven by
the impetus to reduce the crystallographic misfit along
the perimeter of  clay particles by creating grain
boundaries within the polymer crystal. This process
changes the crystal orientation at the dendrite tip,
changing thus the tip trajectory (‘tip deflection’). To
model this, we introduced randomly distributed ‘ori-
entation pinning centres’ to the simulation which are
represented by regions of  externally imposed orienta-
tion.(18) Since relevant material properties are unknown
for the polymer mixtures, the computations were per-
formed for the familiar Ni/Cu system, which, as is the
case with polymers, is both miscible and forms nearly

square crystals close to equilibrium.
Our simulations show that tip deflection happens

only when the pinning centre is above a critical size,
comparable to the dendrite tip radius. Pinning centres
cause deflection only if  directly hit by the dendrite tip,
a finding confirmed by experiment. This explains why
only a small fraction of the pinning centres influence
morphology. Using an appropriate density of  pinning
centres comparable to the density of clay particles, a
striking similarity is obtained between experiment and
simulation, Figure 6. This extends to such details as
curling of  the main arms and the appearance of extra
arms. This disorder in dendrite morphology originates
from a polycrystalline structure that develops during
a sequential deflection of dendrite tips on foreign par-
ticles.(18)

Another way to form polycrystalline growth mor-
phologies is via reducing the orientational mobility.
Below a critical Mq, a uniform orientation cannot be
established along the whole perimeter of  the crystal-
line particles, polycrystalline grains form due to the
orientational disorder quenched in. At anisotropies that
lead to the formation of dendritic particles, reduced
Mq leads to the formation of ‘dizzy’ dendrites without
foreign particles, Figure 8. Here the dynamically en-
trapped orientational disorder is responsible for the
polycrystalline structure. This route to form ‘dizzy’
dendrites is yet to be confirmed experimentally.

Both in experiment and phase field simulations, at

Figure 8.  Polycrystalline spherulites formed in phase field simulations (left: composition map; centre: orientation map) and in experiment
(right panel, courtesy of G. Ryschenkow & G. Faivre, for details see Ref. 53)

Figure 9.  Flowerlike eutectic spherulites formed in phase field simulations (left) and in a laser melted Al–Si alloy (right, by the courtesy of J.
H. Perepezko). For the experimental details see Ref. 54
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large supersaturations, space filling multigrain objects
appear, the well known polycrystalline spherulites(52)

(Figure 8) that are composed of  radially elongated
grains.(17,53) They form if only the long range chemical
diffusion is negligible. This occurs when the solute is
trapped either in the solid, in liquid inclusions (droplets
or channels) or in a second solid phase of higher solute
concentration (eutectic spherulites, Figure 9).(54,55)

Polycrystalline fractal like particle aggregates form
if  the solidification is diffusion controlled and the ori-
entational mobility is low,Figure 10. These morpholo-
gies are similar to those seen in diffusion limited
aggregation, and resemble closely to the fractal like
polycrystalline aggregates seen in electro-deposition.(56)

Summary
We have shown for the Lennard–Jones, ice–water, and
hard sphere systems, that using accurate interfacial
properties to fix the model parameters, the phase field
theory can be made quantitative: one can predict the
nucleation rate and nucleation barrier height with good
accuracy. In contrast, the classical droplet model pre-
dicts nucleation rates that differ from the true values
by several orders of  magnitude.

From large scale phase field simulations, which rely
on an orientation field in handling nucleation and ani-
sotropic growth with different crystallographic
orientations, we determined the Kolmogorov expo-
nent for polycrystalline dendritic solidification and
for the ‘soft impingement’ of  compact particles in-
teracting via their diffusion fields. The Kolmogorov
exponents obtained agree with theoretical expecta-
tions and experiments.

The same theory has been used to model the for-
mation of polycrystalline growth morphologies via in-
corporating static and dynamic heterogeneities (foreign
particles and orientational defects frozen in the crystal
due to the reduced orientational mobility, respectively).
We demonstrated that the present approach can be used
to model the formation of a broad variety of poly-
crystalline morphologies, including disordered
dendrites, spherulites and fractal like aggregates.
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