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Nucleation and Bulk Crystallization in Binary Phase Field Theory

László Gránásy,1 Tamás Börzsönyi,1,2 and Tamás Pusztai1
1Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary

2Groupe de Physique des Solides, CNRS UMR 75-88, Universités Paris VI at VII, Tour 23, 2 place Jussieu,
75251 Paris Cedex 05, France

(Received 28 September 2001; published 6 May 2002)

We present a phase field theory for binary crystal nucleation. In the one-component limit, quantitative
agreement is achieved with computer simulations (Lennard-Jones system) and experiments (ice-water
system) using model parameters evaluated from the free energy and thickness of the interface. The critical
undercoolings predicted for Cu-Ni alloys accord with the measurements, and indicate homogeneous
nucleation. The Kolmogorov exponents deduced for dendritic solidification and for “soft impingement”
of particles via diffusion fields are consistent with experiment.
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Understanding alloy solidification is of vast practical
and theoretical importance. While the directional geome-
try in which the solidification front propagates from a cool
surface towards the interior of a hot melt is understood
fairly well, less is known of equiaxial solidification that
takes place in the interior of the melt. The latter plays
a central role in processes such as alloy casting, hiberna-
tion of biological tissues, hail formation, and crystalliza-
tion of proteins and glasses. The least understood stage
of these processes is nucleation, during which seeds of the
crystalline phase appear via thermal fluctuations. Since
the physical interface thickness is comparable to the typi-
cal size of critical fluctuations that are able to grow to
macroscopic sizes, these fluctuations are nearly all inter-
face. Accordingly, the diffuse interface models lead to a
considerably more accurate description of nucleation than
those based on a sharp interface [1,2].

The phase field theory, a recent diffuse interface ap-
proach, emerged as a powerful tool for describing complex
solidification patterns such as dendritic, eutectic, and peri-
tectic growth morphologies [3]. It is of interest to extend
this model to nucleation and postnucleation growth includ-
ing diffusion controlled “soft impingement” of growing
crystalline particles, expected to be responsible for the un-
usual transformation kinetics recently seen during the for-
mation of nanocrystalline materials [4].

In this Letter, we develop a phase field theory for crystal
nucleation and growth and apply it to current problems of
unary and binary equiaxial solidification.

Our starting point is the free energy functional

F �
Z
dr

Ω
e2T
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developed along the lines described in [5,6]. Here
f and c are the phase and concentration fields,
f�f,c� � WTg�f� 1 �1 2 P�f��fS 1 P�f�fL is the
local free energy density, W � �1 2 c�WA 1 cWB is the
free energy scale, the quartic function g�f� � f2�1 2
5-1 0031-9007�02�88(20)�206105(4)$20.00
f�2�4 that emerges from density functional theory [7]
ensures the double-well form of f, while the function
P�f� � f3�10 2 15f 1 6f2� switches on and off the
solid and liquid contributions fS,L, taken from the ideal
solution model. (A and B refer to the constituents.)

For binary alloys the model contains three parameters
e, WA, and WB that reduce to two (e and W ) in the one-
component limit. They can be fixed if the respective in-
terface free energy g, melting point Tf , and interface
thickness d are known [8]. Such information is available
for the Lennard-Jones, ice-water, and Cu-Ni systems [9],
offering a quantitative test of our approach.

Relying on the isothermal approximation the
time evolution is described by Langevin equa-
tions ≠f�≠t � 2Mf�dF�df� 1 zf and ≠c�≠t �
=�Mc=�dF�dc�� 1 z=c, where �dF�dx� stands for the
functional derivatives (x � f,c), Mx are mobilities, while
zf and z=c are appropriate noises added to the right-hand
side to mimic thermal fluctuations. The dimensionless
form of these equations [10] is obtained by measuring
length and time in units j and j2�DL, t � t̃j2�DL,
r � r̃j. Here j and DL are the characteristic length
scale and the diffusion coefficient in the liquid, while the
quantities with a tilde are dimensionless.

The critical fluctuation (nucleus) is a nontrivial time-
independent solution of the governing equations. For
spherical symmetry (a reasonable assumption), the phase
field equation reduces to =2f � Dm�f,c���e2T�. Here
Dm�f,c� � WTg0�f� 1 ��1 2 c�DfA 1 cDfB�P0�f� is
the local chemical potential difference relative to the initial
liquid, the prime stands for differentiation with respect
to the argument, the local concentration is related to the
phase field as c�f� � c`e2y��1 2 c` 1 c`e2y�, where
y � y�WB 2 WA�g�f��R 1 y�DfB 2 DfA� �P�f� 2
1��RT , while Dfi are the volumetric free energy dif-
ferences between the pure liquid and solid phases.
Solving these equations numerically under boundary
conditions that prescribe bulk liquid properties far from
the fluctuations (f ! 1, and c ! c` for r ! `), and
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zero field gradients at the center, one obtains the free
energy of critical fluctuation as W� � F 2 F0. Here
F is obtained by numerically evaluating Eq. (1) after
having the time-independent solutions inserted, while F0
is the free energy of the initial liquid. This is compared
with W� � �16p�3�g3

f�Df2 from the sharp interface
“droplet” model of the classical nucleation theory [11],
where gf � g�Tf �.

The homogeneous nucleation rate is calculated as J �
J0 exp�2W��kT�, where the nucleation prefactor J0 of the
classical kinetic approach is used [12], which proved con-
sistent with experiments [11].

To study the soft-impingement problem we introduce a
nonconservative orientation field u, which is random in
the liquid and has a constant value between 0 and 1 in the
crystal that determines crystal orientation in the laboratory
frame. By this, we capture the feature that the short-range
order in the solid and liquid are usually similar, with the
obvious difference that the building units have a uniform
orientation in the crystal, while their orientation fluctuates
in the liquid. Following [13], we assume that the grain
boundary energy acts in the solid and is proportional to
j=uj. We realize this by adding fori � Mj=uj to fS ,
where coefficient M is assumed to be independent of c.
The respective equation of motion has the form ≠u�≠t �
2Mu�dF�du� 1 zu, yielding

≠u

≠t̃
�

jMuM

DL
=̃

Ω
�1 2 P�f��

=̃u

j=̃uj

æ
1 zu , (2)

where zu � zu,0P�f�, and Mu � Mu,S 1 P�f� �Mu,L 2

Mu,S�, while subscripts S and L indicate the values for the
bulk liquid and solid phases, respectively. When f , 1,
Eq. (2) switches in orientational ordering and chooses the
value of u that survives as the orientation of the particle,
which then serves as the direction relative to which the
anisotropy of g �� g0�1 1 s0 cos�m�q 2 u��� form-fold
symmetry) is measured. A similar model has been suc-
cessfully applied for describing grain boundary dynamics
[13,14]. Unlike previous work, in our approach the ori-
entation field u is coupled to the phase field and extends
to the liquid phase where crystallographic orientation de-
velops from orientational fluctuations. While our model
incorporates grain boundary dynamics, our primary inter-
est is solidification, and Mu,S is set so that grain rotation
is negligible on the time scale of solidification.

Nucleation is incorporated into the simulations as fol-
lows: method I: by including white noise into the gov-
erning equations of amplitude that forces nucleation in
the spatial and time windows used; method II: the simu-
lation area is divided into domains according to the lo-
cal composition. The time-independent solution is found
for these compositions. Critical fluctuations of statistically
correct numbers following Poisson distribution are placed
into these areas in every time step. The added small-
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amplitude noise makes these critical fluctuations either
grow or shrink.

In nucleation-growth processes the transformed frac-
tion often follows the Kolmogorov scaling, X�t� � 1 2

exp�2�t�t0�p �, where the “Kolmogorov exponent” p is
representative of the mechanism of the phase transforma-
tion and is evaluated from the slope of the plot ln�2ln�1 2

X�� vs lnt. In this work f , 0.5 is used to define the trans-
formed fraction.

First we apply the phase field theory to predict the nu-
cleation rate in 3D. In the one-component Lennard-Jones
system, the nucleation rate [15] and all the relevant physi-
cal properties are known from molecular dynamics simu-
lations [9]. The radial phase field profiles [Fig. 1(a)]
indicate that the critical fluctuations are diffuse and do not
show bulk crystal properties for undercoolings larger than
14 K. The predicted interfacial free energy [Fig. 1(b)] in-
creases with temperature. While the phase field predic-
tions agree with results from computer simulations, those
from the classical sharp interface theory differ from the
experiments by 8 to 10 orders of magnitude. Similar
results were obtained for the ice-water system (Fig. 2)
with input data from [16]. Without adjustable parame-
ters, a quantitative agreement has been achieved with com-
puter simulations [15] and experiment [17], proving the

FIG. 1. Nucleation in the modified Lennard-Jones system:
(a) radial phase field profiles for critical fluctuations at several
temperatures. (b) Relative interfacial free energy vs reduced
temperature. (c) Comparison of nucleation rates predicted by
the phase field theory (PFT), the classical sharp interface theory
(CNT), and computer simulations (squares) [15]. Short-dashed
lines show the limits of the nucleation rate allowed by the error
of the interfacial free energy. e � 137.07k and s � 3.383 Å
are taken for Ar. Below 61.7 K, the simulations increasingly
underestimate the true nucleation rate due to an unknown
equilibration period caused by quenching the liquid to the
nucleation temperature [15].
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FIG. 2. Nucleation rate vs temperature in the ice-water sys-
tem. The experimental results (symbols) are from [17]. The
branches below 232 K indicate results obtained with physically
reasonable upper and lower estimates for the Gibbs free energy
of undercooled water [2]. Notation as in Fig. 1.

power of the phase field technique in attacking nucleation
problems.

In the case of binary alloys, such a rigorous test cannot
be performed since the input information available for the
crystal-liquid interface is far less reliable. In the nearly
ideal Cu-Ni system, the critical undercoolings computed
for the realistic range of nucleation rates (J � 1024 to
1 drop21 s21 for electromagnetically levitated droplets of
6 mm diameter) fall close to the experimental ones [18]
(Fig. 3), indicating homogeneous nucleation. This contra-
dicts the heterogeneous mechanism suggested earlier [18]
on the basis of Spaepen and Meyer’s value aHS � 0.86
[19] for the dimensionless interfacial free energy for the
hard-sphere system. (For definition of a, see [9].) Recent
computer simulations [20] yielded considerably smaller
values aHS � 0.51 and aNi � 0.58 (�0.6 we used), in-
validating the earlier conclusion. These findings raise the
possibility that homogeneous nucleation is more common
in alloys than previously thought.

We turn now to the problem of soft impingement that
we investigate in 2D using the properties of Cu-Ni alloys.
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FIG. 3. Nucleation temperature vs composition that the phase
field theory predicts for the nearly ideal Cu-Ni system. Upper
and lower solid lines correspond to nucleation rates of 1024 and
1 drop21 s21 for droplets of 6 mm diameter. The experimen-
tal data (squares) refer to electromagnetically levitated droplets
[18]. The calculated liquidus and solidus (dashed lines) are also
shown.
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Owing to the known difficulties of phase field simulations
due to different time and length scales of the fields, we
used an enhanced interface thickness (d � 41.6 nm), a re-
duced interfacial free energy (a � 0.1), and an increased
diffusion coefficient (	100 3 DL). To ensure reasonable
statistics and negligible influence of the periodic boundary
conditions, the governing equations were solved numeri-
cally on a 7000 3 7000 grid under conditions [21] that
ensure interfaces consisting of more than ten grid points
needed for numerical accuracy.

We begin by comparing three simulations where the
particles were nucleated by method II: (i) large anisotropy
s0 � 0.25 and small dimensionless nucleation rate
J̃ � 0.49 yielding 886 dendritic particles (the first large
scale simulation of multiparticle dendritic solidification)
[Fig. 4(a)], (ii) s0 � 0.25 with large nucleation rate
J̃ � 24.5 (10 623 particles) [Fig. 4(b)], and (iii) isotropic
growth with J̃ � 24.5 (10 528 particles) [Fig. 4(c)]. The
respective Kolmogorov exponents differ from p � 2 that
standard references [22] assign for steady-state nucle-
ation and diffusion controlled growth [Fig. 4(d)]. Our
prediction for dendritic solidification, p � 3, obeys the
relationship p � 1 1 d (constant nucleation and growth
rates in d dimensions) confirmed experimentally [23],
which follows from the steady-state traveling tip solution
of the diffusion equation. In cases (ii) and (iii), p deviates
from 2, as the formation of the diffusion layer is preceded
by a transient period in which phase field mobility controls
growth. This period appears as an effective delay of the
diffusion controlled process, yielding an initially enhanced
p that decreases with increasing transformed fraction [4].
This effect is pronounced at large nucleation rates for
which the delay is comparable to the solidification time.
Indeed, qualitatively similar behavior is observed at the
extreme nucleation rates that occur during the formation
of nanocrystalline alloys [4].

The introduction of large amplitude noise into the gov-
erning equations (method I) leads to comparable results.
For s0 � 0.25 with zf,0 � 0.015, which yield 	830 den-
dritic particles [case (iv)], more irregular shapes are pro-
duced [Fig. 4(d)], and transient nucleation of “induction
time” t�Dt̃ � 1400 is observed. The latter leads to fur-
ther increased p, which reduces to 	3 when replacing t̃ by
t̃ 2 t. Because of numerical stability problems appearing
at large noise amplitudes, method I can be applied far from
equilibrium, where nucleation occurs in reasonable simu-
lation time and area.

Summarizing, we demonstrated that the present phase
field model is able to quantitatively describe crystal
nucleation in one-component 3D systems. The other
predictions, including binary nucleation in 3D and
transformation kinetics in 2D, are also consistent with
experiment.

This work has been supported by the ESA Prodex Con-
tract No. 14613/00/NL/SFe, by the Hungarian Academy
of Sciences under Contracts No. OTKA-T-025139 and
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FIG. 4. Soft impingement in the phase field theory. (a)– (d) 1000 3 1000 segments of 7000 3 7000 snapshots for the concentration
field in cases (i)– (iv), respectively, taken at t̃�Dt̃ � 4000, 1500, 1500, and 6000 (black and white correspond to the solidus and the
liquidus, respectively); (e) Kolmogorov exponent vs crystalline fraction, h � X�Xmax, where Xmax is the final value of the crystalline
fraction; (f) experimental results for the crystallization of amorphous Fe73.5Si17.5CuNb3B5 [4].
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