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Abstract. Understanding the rheology of dense granular matter is a long standing problem and is important

both from the fundamental and the applied point of view. As the basic building blocks of granular materials are

macroscopic particles, the nature of both the response to deformations and the dissipation is very different from

that of molecular materials. In the absence of large gradients, the best approach formulates the constitutive

equation as an effective friction: for sheared granular matter the ratio of the off-diagonal and the diagonal ele-

ments of the stress tensor depends only on dynamical parameters, in particular the inertial number. In this work

we employ numerical simulations to extend this formalism to granular packings made of frictionless elongated

particles. We measured how the shape of the particles affects the effective friction, volume fraction and first

normal stress difference, and compared it to the spherical particle case. We had to introduce polydispersity in

particle size in order to keep the systems of the more elongated particles disordered.

1 Introduction

After a few decades of research, the physics of granular

material has reached today a good level of general under-

standing [1]. In particular, it has been shown that the rhe-

ology of dense granular flows takes a simple form when

working at controlled pressure P [2]. It this case, the

constitutive laws have been formalized in terms of the so-

called inertial number I = γ̇d/
√

P/ρ, where γ̇ is the shear

rate and d and ρ are the grain size and density [3–6]. This

dimensionless quantity compares the macroscopic shear-

ing time scale 1/γ̇ to the microscopic time scale of local

plastic events d/
√

P/ρ. In the limit of rigid grains, the

effective friction coefficient μ, which compares the shear

stress τ to the pressure P, as well as the volume fraction φ
of the system must be functions of I, and one now refers

to this framework as the μ(I)-rheology for granular flows.

The shape of the function μ(I) has first been determined

by means of numerical simulations [4–6], also comple-

mented by experimental measurements [7, 8]. Its behav-

ior has been related to grain contact distribution, whose

anisotropy increases with I [9]. This rheology is able to

recover Bagnold scaling in flows down an incline plane

[10]. More generally, this approach has been successfully

applied in different geometries [2, 3], e.g. silo discharge

[11], granular chute flows [12–15] and granular column

collapse [16, 17], as well as to describe dynamic com-

pressibility effects associated with spontaneous oscillatory

motion [18, 19]. Interestingly, experiments and numeri-

cal simulations have recently provided evidence for limi-
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Figure 1. Numerical setup. (a) The simulation box. The velocity

difference between the top and bottom sides is v = γ̇Lz, where Lz

is adjusted continuously as if a contstant pressure was applied to

the top and bottom sides. (b) Particles used: sphere (Q = 1) and

spherocylinders with aspect ratio Q = 1.5, 2, 2.5 and 3.

tations of the μ(I)-rheology, when some non-local effects

come into play (see e.g. [20] and references therein).

Many works are now interested in possible extensions

of this rheology, when another effect is added, such as co-

hesion [21], particle softness [22] or activity [23]. This

framework has also been extended to the case of granu-

lar suspensions [24, 25]. In this case, the dimensionless

viscous number J, which compares the shear rate to the

viscous frequency P/η f , where η f is the viscosity of the

fluid, must be used instead of, or in complement to I. In-

terestingly, the case of Brownian suspensions can also be

described in this framework [26]. Finally, these constitu-

tive laws have been incorporated to models for a diphasic

description of sediment transport [27–30].
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Figure 2. Crystallization. The pair correlation function is plotted in the neutral y direction for (a) spheres, (b) Q = 2 and (c) Q = 3

spherocylinders. Monodisperse spheres and Q = 2 spherocylinders show no crystallization: the pair correlation function rapidly

converges to its asymptotic value of 1 after a few oscillations. However, for Q = 3 monodisperse spherocylinders the peaks are very

sharp, and the oscillation is still very strong even at the 7th neighbor. Introducing polydispersity at δR = 0.1 (red curve) restores

disorder. The insets are side views of the simulation box taken from the x direction. The ordering for Q = 3, δR = 0 is clearly visible.

Several recent studies investigated the behevior of

elongated grains under shear [31–37]. These studies

mostly focused on quasistatic flows [31, 32] or on the ori-

entational distribution of particles as a function of grain

elongation and shear rate [33–36]. Stresses were analyzed

as a function of particle shape for glued-spheres and true

cylinders [38]. In these systems, the shear induced align-

ment (average orientation of the grains) is not parallel to

the streamlines but encloses a small angle with it. In the

present work, we numerically consider the case of elon-

gated grains shaped as spherocylinders, and investigate

how the μ(I)-rheology is modified with respect to the as-

pect ratio Q of the grains.

2 Numerical system

In the numerical measurements we used the 3-dimensional

plane Couette geometry [Fig. 1(a)], where the boundary

conditions were periodic in the flow (x) and neutral (y)
directions, and Lees-Edwards in the velocity gradient (z)
direction. The box was filled with elongated particles:

we used spherocylinders with aspect ratio Q = 	/2R =
1.5, 2, 2.5 and 3, where the R is the radius of a particle

(both of its spherical cap and of its cylindrical body),

and 	 is its total length. For reference we used spheres

(Q = 1) as well. The interaction between the particles in

this work was frictionless: the repulsive force was propor-

tional to the overlap and contained an additional velocity-

dependent dissipative term: Fi j = (−k δi j + b vc,i j · ĉi j) ĉi j ,
where Fi j is the force between particle i and j, the overlap

is δi j = Ri +Rj − di j; the distance di j and its unit length di-

rection ĉi j between the core line segments of the particles

(connecting the centers of the spherical caps) is calculated

by an efficient algorithm [39]. The velocity difference be-

tween particles at contact, vc,i j, is calculated using the ve-

locity difference between the centers of the particles, their

rotation angular velocities and the relative position of the

contacts. The prefactor b of the dissipative term is set such

that the restitution coefficient e takes a specified value, we

used e = 0.5. The length unit was the average particle di-

ameter (not length), the mass unit was set by specifying

unit density for the particles (they were solid bodies), and

fixing the stiffness to k = 1 defined the force scale and

consequently the pressure and time scales.

The time evolution was calculated by a velocity-Verlet

scheme, with particle rotations represented by quaternions

[40]. The time step was taken to 1/100 of what would be

the duration of a binary collision between two particles.

The initial conditions were prepared by a strongly

overdamped dynamics, afterwards the system was sheared

by a constant shear rate γ̇. During shear the Lx and Ly
sides of the box were kept fixed, but Lz was adjusted by

a feedback loop such that the Pz component of the stress

tensor, monitored continuously, fluctuated around a prede-

fined value P; we used P = 10−3 in our units.

To ensure stationary state, before making measure-

ments we sheared the system for shear strain γ = 25 start-

ing from a random initial condition, or for γ = 10 starting

from a final state of the same system sheared with a differ-

ent shear rate; all transients have decayed to below noise

level at this deformation. After ensuring no crystalliza-

tion (see next Section), we checked that in the stationary

state the density and particle level quantities like the av-

erage alignment angle and nematic order parameter were

homogenous in the simulation box. The velocity profile

was linear, consistent with the prescribed γ̇ – i.e. no shear

banding was observed.

After the stationary state has been reached, we mea-

sured the particle volume fraction φ and the stress tensor

σ at regular intervals and recorded their time average over

strain scale γ = 5. The stress tensor was defined as

σαβ =
1

V

∑

<i j>

(ri − r j)α Fi j,β − 1

V

∑

i

miv∗i,αv
∗
i,β ,

where v∗i is the non-affine velocity of particle i in excess

of the average shear velocity at that position; the second,

kinetic term is negligible except at high shear rates. The

most relevant elements ofσ are the shear stressσzx and the
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diagonal elements σxx = −Px, σyy = −Py and σzz = −Pz

(the compressive pressures are positive).

3 Crystallization

With our numerical simulation we aimed to model the be-

havior of real, disordered granular systems. However we

observed that our numerical model produces configura-

tions ordered spatially in the y and z directions, when the

shear rate was not too large for sufficiently elongated par-

ticles.

According to common wisdom 2D packings of

monodisperse disks crystallize easily, while in 3D this

phenomenon is less pronounced. It has been observed,

however, that in 3D numerical systems of identical spheres

crystallization may happen after sufficiently long shear

[41] or shaking [42]. Experiments of sheared identical

spheres also displayed ordering, where chains of parti-

cles formed along the streamlines, and neighboring chains

were arranged on a triangular lattice in the perpendicular

plane [36].

We also observed in our simulations that small peri-

odic packings (around 500 particles) crystallized easily

unders shear, though that order was quickly destroyed by a

few percent of polydispersity, slight deviation from spher-

ical shape, and even by increasing the system size.

For the typical system size used in this work (1000

particles) no crystallization was observed for spheres and

Q = 2 spherocylinders, but those with Q = 3 displayed

strong spatial order. To quantify this we calculated the

pair correlation function in the neutral y direction, the re-

sults are shown in Fig. 2. In order to destroy this order we

introduced polydispersity: the particles were of identical

aspect ratio, but their radii were distributed according to a

uniform distribution, characterized by the variation coef-

ficient δR (the ratio of standard deviation of radii to their

average). At polydispersity δR = 0.1 no spatial order has

been observed for the Q = 3 spherocylinders; for consis-

tency we used this value of polydispersity for all particle

shapes in the following rheological measurements.

4 Rheological laws

Our main goal in this work was the measurement of rheo-

logical quantities as a function of the inertial number I for

different particle shapes; the results are shown on Fig. 3.

The effective friction, defined as the ratio of the shear

stress and the control pressure, μ = σzx/Pz, is shown on

Fig. 3(a). The general trend of the elongated particles is

similar to that of spheres: μ tends to a nonzero value in

the quasistatic (I → 0) limit even for frictionless parti-

cles, and gradually increases with the inertial number. It

is interesting to note that the dependence appears to be

non-monotonic with Q, as in the quasistatic limit the ef-

fective friction for Q = 1.5 appears to be larger than for ei-

ther spheres or more elongated particles; though this value

needs to be extracted systematically for a sharp statement.

The particle volume fraction φ is plotted in Fig. 3(b).

For spheres in the quasistatic limit it tends to a value close
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Figure 3. Rheological laws: (a) effective friction coefficient, (b)

volume fraction and (c) normalized first normal stress difference

as a function of I for five different particle shapes.

to that quoted for random close packing, though for com-

paring actual values one needs to take into account the

polydispersity we used. For elongated particles the qua-

sistatic volume fraction is higher, similarly to what has

been observed for ellipsoids [43]. For increasing inertial

numbers the constant pressure volume starts to increase as

the collisions become increasingly violent, consequently

the volume fraction starts to drop.

Finally the first normal stress difference was measured

as well, which we normalize by the control pressure as

N1/Pz = (Px − Pz)/Pz; see Fig. 3(c). As expected, for

spheres this quantity is zero up to moderate inertial num-

bers, and starts to deviate from zero only in the colli-

sional regime. For elongated particles the normal stress

difference is nonzero even for small inertial numbers. The

quasistatic limit needs to be determined carefully before

a conclusive statement can be made about its value for

spherocylinders. The second normal stress difference (not

shown) is smaller in magnitude, its sign is positive, and the

values for Q > 1.5 seem to collapse on each other.

     
 

DOI: 10.1051/, 03062  (2017) 714003062140EPJ Web of Conferences epjconf/201
Powders & Grains 2017

3



In summary, we performed numerical simulations to

determine the rheological properties of homogenously

sheared granular packings of frictionless spherocylinders.

We found that the qualitative behavior of the effective fric-

tion is similar to that of spheres: takes a nonzero value

in the quasistatic limit, and increases with the inertial

number; furthermore its aspect ratio dependence is non-

monotonic. The volume fraction of sheared spherocylin-

ders is higher than spheres for all aspect ratios we consid-

ered. The first normal stress difference for elongated par-

ticles deviates from zero even for small inertial numbers,

unlike for spheres.

Our short term plans include extracting systematically

the quasistatic limit of μ, φ and the normal stress differ-

ences, determining their aspect ratio dependence, and try-

ing to establish a link between these macroscopic rheo-

logical properties and the particle level behavior like shear

induced alignment and coordination of elongated particles.
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