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Evolution of shear zones in granular materials
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The evolution of wide shear zones or shear bands was investigated experimentally and numerically for
quasistatic dry granular flows in split bottom shear cells. We compare the behavior of materials consisting of
beads, irregular grains, such as sand, and elongated particles. Shearing an initially random sample, the zone width
was found to significantly decrease in the first stage of the process. The characteristic shear strain associated with
this decrease is about unity and it is systematically increasing with shape anisotropy, i.e., when the grain shape
changes from spherical to irregular (e.g., sand) and becomes elongated (pegs). The strongly decreasing tendency
of the zone width is followed by a slight increase which is more pronounced for rodlike particles than for grains
with smaller shape anisotropy (beads or irregular particles). The evolution of the zone width is connected to
shear-induced packing density change and for nonspherical particles it also involves grain reorientation effects.
The final zone width is significantly smaller for irregular grains than for spherical beads.
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I. INTRODUCTION

Shear banding is often observed in granular materials and
is an important factor in various industrial and geological
processes. For dry granular materials several features of the
stationary flow have been explored in the last two decades for
narrow or wider shear bands. One convenient model system
to investigate shear localization is the flow of beads near the
moving boundary in a cylindrical Couette geometry [1,2]. Here
the mean velocity was found to decay rapidly with distance
from the moving surface [1]. Recent discrete element simula-
tions of simple plane shear show that shear localization near
smooth walls is even more enhanced [3]. When dealing with
nearly uniform grains, magnetic resonance imaging (MRI)
and x-ray computed tomography (x-ray CT) gave quantitative
information about the shear profile inside the granular material
in the stationary state, showing that uniform grain shape
leads to strong layering in shear flow [4]. Moreover, spherical
beads with small size dispersion were shown to crystallize
due to shear [5,6], leading to compaction and decreased shear
stress.

The case of wider shear bands is even more puzzling
since their width results from the complex rheology of the
granular flow including various factors. The so-called split
bottom geometry [7] is suitable to investigate these wider
shear bands which develop in the bulk (away from the
boundary). Experimentally, the cylindrical configuration is the
most convenient to realize stationary shear rates and quantify
the position and width of the shear band, which has been done
for a variety of materials [8–11]. To explain why these zones
are wider than expected, the most important ingredients are
probably nonlocal aspects of the rheology [12–14], i.e., flow
induces agitations in the neighborhood and thereby contributes
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to yielding of the material. Recently, a continuum model
based on this approach was very successful to reproduce the
stationary sizes of the shear zones in various geometries [14].
Similar nonlocal effects had to be incorporated in earlier
numerical simulations using the so-called fluctuating narrow
band model [15–17] in order to reproduce the experimentally
observed features. Another important ingredient could be
the competition between the organizational tendencies of the
flow and the gravitational pull [18]. The shear flow leads
to the dilation of the material with respect to the random
close-packed state. The number of grain contacts is increased
in the compressional direction and decreased in expanding
directions, while gravitational forces locally might favor a
different anisotropy of the contact numbers. According to
Depken et al. [18,19] this might easily lead to a nonuniform
effective friction across the zone (having minimum friction
in the middle of the zone), which would contribute to the
widening of the zone. MRI experiments in this system provided
information about the Reynolds dilation of the material under
continuous shear [20], and showed that dilatancy grows with
accumulated strain γ and saturates when the local strain
reaches the order of one. The fully dilated stationary state
obtained at large strain is often referred to as “critical state”
in the engineering literature. In that state, the rheological
properties do not change any more.

Much less is known about the evolution of the system before
the shear band finds the final configuration, starting from a
random configuration or reversing the shear direction.

This complex question was mostly studied numerically
for spherical or nearly spherical grains. Soft particle discrete
element method (DEM) simulations with spheres provided
information about the evolution of the stress intensity, and
indicated that a local strain of about γ ≈ 2 is needed to reach
the stationary stress level [21]. DEM simulations by Ries
et al. [22] showed that the zone shrinks when approaching
the stationary state, which was attributed to the fact that
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time needed to locally reach the above mentioned critical
state depends on the spatial position. More explicitly, during
shearing the material undergoes shear hardening where new
contacts are created against the shear. The typical strain scale
for this process was estimated to be γ = 0.2, which is reached
earlier in the center of the zone than in the outer regions. In
the early stage of the process when the critical zone is smaller
than the shear zone, the shear rate is slightly enhanced outside
the critical region, leading to a wider zone. After the whole
zone reaches the critical state, this additional widening effect
ceases and the zone converges to its stationary asymptotic
width. Very recent numerical DEM simulations by Azéma
et al. investigate the time evolution of the density of a sheared
system consisting of nonspherical particles (rigid aggregates of
overlapping spheres). The scenario is very similar for various
particle shapes: A quick density decrease is found which
saturates after a cumulative strain of about 0.5 [23].

Experimentally, a layer of photoelastic disks exposed to
shear in a two-dimensional (2D) Couette system was investi-
gated by Utter and Behringer, where the system relaxed faster
for the case of initially uniformly distributed particles than for
reversed shear [24]. In that paper, the rearrangement of the
force network associated with the transient was investigated.
More recent 2D experiments focused on the effect of particle
shape using disks or ellipses [25], where the shear-induced
rotation of the ellipses resulted in richer dynamics (compared
to the case of disks) as well as complex density profiles. In
three-dimensional (3D) systems the evolution of the packing
density under shear was successfully determined using x-ray
imaging for materials with various particle shapes [6,26].
Further experiments focusing on the case of reversed shear
with glass beads in a Taylor-Couette cell [27] showed, that
during the transient the system compacts, the shear force
is small, and the shear band is wide, corresponding to
the rearrangement (reversal) of the force network over a
characteristic strain of γ = 0.5.

In this paper, we aim to fill the gap by presenting
quantitative experimental results on the evolution of a 3D
system. We compare the behavior of materials consisting of
beads, irregular grains, such as sand, and elongated particles,
focusing on changes of zone width, packing density of the
material, and orientational ordering for the case of elongated
grains. We study two protocols: (i) The system is started from
a random initial configuration and (ii) the shearing direction is
reversed after a stationary configuration had been achieved.
We also present a numerical model, which is capable of
reproducing several features (e.g., the nonmonotonic change
of the zone width) of the transient.

II. EXPERIMENTAL METHODS AND MATERIALS USED

The experiments were carried out in two geometries: (i)
straight split bottom cell and (ii) cylindrical split bottom cell
as shown in Figs. 1(a) and 1(b), respectively. In the first
setup, the granular sample with height H and width 4.0 cm is
sheared by displacing the two L-shaped sliders parallel to each
other. In the second setup, shearing is realized by rotating the
plate which is placed below the material at the bottom of the
container. Here H is measured above the rotating plate. Two
containers were used with radius of 12 cm and 28.5 cm and

H Rotating plate
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FIG. 1. (Color online) Schematic view of the two experimental
geometries used: (a) straight and (b) circular split-bottom cell. (c)–(l)
Photographs of the materials used as follows: (c) spherical glass
beads, (d) sand particles, (e) spherical silica gel beads, (f) irregular
shaped corundum particles, (g) glass rods, (h) rape seed, (i) peas,
and (j)–(l) wooden pegs with three different elongations. The bars
correspond to (c) and (d) 1 mm, (e)–(h) 5 mm, and (i)–(l) 10 mm.
The grain parameters are indicated in Table I.

the corresponding rotating plates had radii of R = 7.5 cm and
19.5 cm, respectively. In the experiments, various materials
were used, photographs are shown in Figs. 1(c)–1(l), and the
main parameters are given in Table I. The grain diameter of
the irregular grains (sand and corundum) was adjusted by
sieving the material, so that the equivalent grain diameter
(defined as the diameter of a sphere with the same volume)
matches the diameter of the corresponding spherical beads
(glass and silica gel). Two kinds of experiments were carried
out: (i) optical detection of the distortions at the surface
of the materials and (ii) tomographic (MRI and x-ray CT)
detection of the internal distortion of the sample during shear.
The experimental methods are summarized in Table II, where
we have also listed the figures in which the corresponding
results are presented, including those obtained by numerical
simulations. Each experiment will be described in detail in the
corresponding section.

TABLE I. Main particle parameters are as follows: diameter d ,
length L, and aspect ratio L/d of the materials used.

Material d (mm) L (mm) L/d image

Glass beads 0.25 Fig. 1(c)
Sand 0.25 Fig. 1(d)
Silica gel beads 1.8 Fig. 1(e)
Corundum 1.8 Fig. 1(f)
Glass rods 1.9 6.6 3.5 Fig. 1(g)
Rape seeds 1.8 Fig. 1(h)
Peas 7.1 Fig. 1(i)
Pegs 5 10 2 Fig. 1(j)
Pegs 6 20 3.3 Fig. 1(k)
Pegs 5 25 5 Fig. 1(l)
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TABLE II. Summary of the experimental methods.

Measurement Straight cell Cylindrical cell

Optical (surface) Figs. 2 and 3 Figs. 4 and 8
MRI (bulk) Figs. 5, 6, and 8
CT (bulk) Figs. 7 and 8
Model (bulk, cross section) Figs. 3, 4, and 9–12

III. EXPERIMENTAL RESULTS

A. Surface measurements

First we demonstrate the basic features of the evolution
of the system by experimental data taken in the straight cell.
Three displacement profiles obtained by our PIV algorithm at
the surface of the sample are shown in Fig. 2.

Two data sets correspond to the transient, while the third
one was taken during the stationary state. As seen, the shear
zone is considerably wider at the beginning of the process
(slider displacements x = 0d and x = 5d) when compared to
the stationary state (x = 50d). To quantify the width of the
zone we fit the normalized displacement data by the following
function:

D(y) = 1

2

(
1 + erf

y − y0√
2 w

)
, (1)

where y is the coordinate along the direction of the shear
gradient.

The resulting zone width w is then calculated by the above
procedure at every shear step during the experiment. We also
calculate the local deformation of the material at every instant
and define the strain γ by averaging the local strain within
the region corresponding to the final (stationary) zone width,
i.e., between the dotted lines in Fig. 2. Finally, to quantify the
evolution of the zone width, w is plotted as a function of γ .
These curves are shown in Fig. 3 for glass beads and sand
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FIG. 2. (Color online) Normalized grain displacement profiles
observed at the surface of the sample in the straight shear cell at three
stages of the process, at total slider displacements xslider = 0, 5d , and
50d , respectively. Each profile is obtained by a small displacement
dx of one L-shaped slider, and normalized by dx. Two data sets
correspond to the transient, while the third one describes the stationary
state. The data sets were fitted with Eq. (1) (thin solid lines). The fits
yielded the zone widths w, which are marked with dashed lines for
all three cases. Experiments were done with spherical glass beads of
d = 0.25 mm starting with a random initial configuration setup and
filling height H = 68d .
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FIG. 3. (Color online) (a) The zone width w and (b) the nor-
malized zone width w/wstationary as a function of strain γ in the
straight cell. Experiments were done with a randomly packed
initial configuration both for spherical beads of d = 0.25 mm and
sand particles with equivalent diameter d = 0.25 mm. Each curve
corresponds to the average of three measurements with filling height
of H = 68d . The dashed lines are obtained by the numerical model,
as described in Sec. IV B.

particles with d = 0.25 mm, obtained in the straight cell. Each
curve is the average of three measurements.

Similar measurements have been carried out in the cylindri-
cal cell. This geometry has a strong advantage over the straight
cell, as there is no limitation for the shear displacement, thus
it is easier to do longer measurements. As a consequence,
one can also simply test the system’s response to reversing
the direction of shearing. In Fig. 4 we directly compare the
system’s evolution starting from a random configuration (a)
and (b), and after reversing the shear direction (c) and (d)
for the case of silica gel beads, corundum particles, and
glass rods with L/d = 3.5. Our random configuration was
generated by pouring the material into the container. In this
cylindrical geometry each curve was obtained by averaging
100 measurements, therefore the resulting evolution of w is
even more accurate compared to the data obtained with the
straight cell.

1. Random initial configuration

Let us first focus on the case of initially random configura-
tion [Figs. 3, 4(a) and 4(b)]. Generally, we observe that the zone
width w considerably decreases as a result of the transient.
This process starts when the strain reached about γ ≈ 0.1
and stops when γ reaches unity. This stage of the evolution
corresponds to the formation of new contacts between the
grains and the development of an anisotropic force network
from the initially random state. Looking at the details of the
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FIG. 4. (Color online) The zone width as a function of strain γ for three materials, with two initial conditions. The continuous lines
correspond to experiments performed in the cylindrical cell. Each curve is the average of 100 measurements with filling height of H = 28 mm,
corresponding to H/d = 15.6 for silica gel beads and corundum and H/d = 14.7 for the glass rods. The experimental data were fitted with
results of the fluctuating narrow band model using refresh probabilities defined in Eq. (3) (+) and Eq. (5) (×).

data obtained with spherical particles (glass and silica gel
beads) and irregular grains (sand particles and corundum) the
following observations should be noted:

(1) The decrease of the shear zone width w is more
pronounced for irregular grains than for spheres. The ratio
of the initial and stationary zone width was about 1.4 times
larger for sand than for spherical glass beads at a filling height
of H/d = 68 [see Fig. 3(b)], while this ratio was 1.1 when
comparing the cases of corundum and silica gel beads at a
filling height of H/d = 15.6 [see Fig. 4(b)].

(2) The strain γ needed for contraction of the shear zone
width w is larger for irregular grains. The zone width starts
decreasing when the amplitude of the strain γ ≈ 0.1 and
stops decreasing around γ reaches unity. These numbers are
approximately a factor of 2 smaller for the case of spherical
beads compared to irregular grains [see Fig. 4(b)].

(3) The stationary value of w (in grain diameter units) is
about 30% larger for the case of spherical beads (glass or
silica gel) than for irregular particles (sand or corundum) [see
Figs. 3(a) and 4(a)].

(4) The rapid decrease of w is followed by a slight increase
on a longer time scale.

The case of elongated particles with aspect ratio of L/d =
3.5 (glass rods) is somewhat more complex, as it involves the
development of orientational ordering of the grains due to the

shear flow ([28–30]). This has several effects on the evolution
of the zone width w:

(1) The zone width w slightly increases before it starts to
decrease rapidly. This slight increase in w can be connected to
the apparent lateral extent of the particles.

(2) The shear strain needed for the decrease of w is
significantly (3–6 times) larger than for the other two materials
(corundum and silica gel beads).

(3) The stationary value of w (measured in units of d) is
in between the two values measured for spheres and irregular
grains [Fig. 4(a)].

(4) The rapid decrease of w is followed by a significant
increase on a longer time scale.

2. Reversing the shear direction

The initial condition for these experiments is prepared by
continuous shear. Starting from the asymptotic configuration,
opposite shear is applied and the subsequent evolution of the
system is recorded. As seen in Figs. 4(c) and 4(d), reversing
the shear direction leads to an instantaneous increase of the
zone width for all three materials. Interestingly, w jumps
up to a value which is larger than its initial value for the
random starting condition. This is connected to the fact that
the particle contacts and the force network built up during
forward shear weaken immediately after the shear direction
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FIG. 5. (Color online) (a) The zone profile in the cross section
at different total displacements, for rape seed particles obtained with
MRI using the straight cell. The actual total strain for the curves from
green (light gray) to black (right to left) are γ = 0.01, 0.07, 0.17,
0.3, 0.47, 0.68, 1.34, and 2.06, respectively. (b) The normalized zone
profile in the stationary state, and the expected curve according to
Ries et al. [22].

is reversed. In other words, the particles can easily move
backwards into the voids which were created behind them
during shearing. This process is finished by the time the
strain reaches γ ≈ 0.1. At this point the zone width stops
decreasing (for the case of glass rods it even increases) until
γ reaches about 0.5. This stage of the evolution is probably
connected to the establishment of a new force network, where
the dominant contacts will be approximately perpendicular to
the former ones [24]. In the final stage, w continues shrinking
until it reaches its stationary value.

B. Bulk measurements

1. MRI measurements in the straight cell

In the MR tomography experiments, the whole cell was
placed into a Bruker BioSpec 47/20 magnetic resonance imag-
ing (MRI) scanner operating at 200-MHz proton resonance
frequency (4.7 T) at the Leibniz Institute for Neurobiology,
Magdeburg. The cross section of our experimental apparatus
was optimized for the geometry of this device which has an
internal coil diameter of 7 cm. The best contrast is obtained
with seeds containing oil, therefore we used rape seeds with
diameter d = 1.8 mm. Horizontal slices were obtained with
interslice distances of 0.8 mm and an in-plane resolution
of 0.156 mm/pixel. The slider was displaced by 1.92 mm
(equivalent of 1.07d) between subsequent MRI scans. The
experiment presented here involved 25 displacement steps,
yielding a total displacement of 4.7 cm (26d). The total
measurement took about 4 h. The displacement profile was
measured in each step for each horizontal slice, similarly to
the optical measurements presented above, and the zone width
w was determined by the same approach as presented in Fig. 2.

The evolution of the zone width w inside the sample,
as detected by this procedure, is shown in Fig. 5(a). In
accordance with the data obtained for silica gel beads with
similar size and filling height [Figs. 4(a) and 4(b)], we find for
the nearly spherical rape seeds that the zone width considerably
decreased and reached a stationary value. When we compare
the two cases quantitatively, we find the same characteristic
strain scales, i.e., the stationary state is reached at γ ≈ 0.5.

−5 0 5
y/d

0.9

0.95

1

re
la

ti
ve

 d
en

si
ty

0.01 0.1 1
γ

0.95

1

re
la

ti
ve

 d
en

si
ty

0

2

4

6

8

w
/d

(a)

(b)

γ = 0.0

γ = 0.05

γ = 0.14
γ > 0.93

FIG. 6. (Color online) (a) Relative average density as a function
of the lateral coordinate y for rape seeds. Data taken from the same
measurement as in Fig. 5; the averaging was obtained for the upper
part (above 8d) of the sample. The curves correspond to four different
values of strain γ = 0, 0.05, 0.14, and the stationary state 0.93 < γ <

2.22. (b) Evolution of the relative density (•) and the zone width (×).
The relative density data represent the average in the middle part of
the cell for the range of −2d < y < 2d as indicated with vertical
dashed lines in panel (a).

For the stationary state, numerical simulations predicted
that the normalized zone profile z(w/wtop)/Hfill is a quarter
of a circle [22,31]. Figure 5(b) shows that the experimentally
obtained curve (solid line) nicely matches the expected form
(dashed line).

The transient during which the zone width converges
towards its stationary value also involves a shear-induced
dilation of the sample. We quantified the evolution of the
density by averaging the local intensity of the tomographic
image for the upper part of the sample (height level above 8d)
over a distance of x = 22d and normalizing the data using the
first tomogram. The resulting lateral density profiles are shown
in Fig. 6(a). Here the four curves correspond to γ = 0, 0.05,
0.14 and the stationary state 0.93 < γ < 2.22. The central part
of the lateral density profiles has been averaged [between the
dashed lines in Fig. 6(a)] and the resulting data are presented as
a function of strain γ in Fig. 6(b), together with the evolution
of the zone width w. As it is seen, the density gradually
decreases and in the middle of the sample it reaches about
95% of its initial value. The lines correspond to exponential
fits, which give the characteristic strain scales. They turn out
to be somewhat smaller for the evolution of w (γ = 0.15)
compared to the case of the density decrease (γ = 0.22).

2. X-ray CT measurements in the cylindrical geometry

The evolution of the system in the cylindrical geometry
was tracked using x-ray computed tomography (CT). We used
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the robot-based flat panel x-ray C-arm system Siemens Artis
zeego of the INKA laboratory, Otto von Guericke University,
Magdeburg. The recorded volume was 25.2 cm × 25.2 cm
× 19 cm with a spatial resolution of 2.03 pixel/mm. The
scanner can record large enough volumes to enable us to use
the cylindrical geometry. The time evolutions of three samples
consisting of elongated particles with aspect ratios: L/d = 2.0,
3.3, and 5.0, respectively, have been measured, by recording
about 200 scans in each case. A control measurement with
peas has also been carried out with a comparable number of
scans.

The advantage of the x-ray CT technique is that it provides
detailed information about the system, similarly to the MRI
measurements, but about 10 times faster. Here we can compare
the typical time scales describing the evolution of four
important quantities: packing density, zone width w, order
parameter S, and the average alignment angle �av. Here, the
order parameter S is defined as the largest eigenvalue of the
order tensor, where S = 0 corresponds to the random isotropic
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FIG. 7. (Color online) Packing density, zone width w, average
orientational angle �av, and order parameter S as a function of strain
for four materials: cylinders with aspect ratio L/d = 2, 3.3, and 5,
respectively, and peas. Measurements were performed with x-ray CT
using the cylindrical geometry, with filling height H/d = 11.
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FIG. 8. (Color online) Characteristic strain γ describing the evo-
lution of the packing density, zone width w, average orientational
angle �av, and order parameter S as a function of the aspect ratio
L/d of the particles. The strain scales corresponding to w and S are
both systematically increasing with L/d , while those describing the
evolution of the packing density and �av are independent of L/d . The
majority of the measurements were taken with x-ray CT for peas and
pegs (•). For comparison, data obtained by MRI for rape seeds (�),
and by optical detection (surface measurements) for silica gel beads
(♦) and glass rods with L/d = 3.5 (×) are included.

state, while S = 1 describes the perfectly aligned system [30].
The average alignment angle �av measures the deviation of
the average orientation of the particles with respect to the
streamlines.

The density in the shear band rapidly decreases with γ [see
Fig. 7(a)] similarly to the MRI measurements. The width of the
shear zone also decreased, similarly to the other measurements
presented above. The w(γ ) curves obtained by x-ray CT
[Fig. 7(b)] are noisier than the corresponding data obtained by
the optical method [Fig. 4(a)], since the comparably expensive
CT technique does not allow one to collect similar amounts
of data as the optical detection (1 vs 100 measurements,
respectively). The shear-induced ordering is manifested by
an increasing order parameter S [Fig. 7(d)] [30], while the
average alignment angle �av decreases and converges towards
a stationary value [Fig. 7(c)].

The characteristic strain scale γ corresponding to the
evolution of the above quantities has been determined by
fitting exponential decay functions to these curves. This is
shown in Fig. 8 as a function of the aspect ratio L/d of the
particles. As it is seen, it is the packing density which converges
fastest to its stationary value, while the slowest process is the
evolution of the average alignment angle �av. Both processes
are independent of the aspect ratio. The characteristic strain
scales needed for the establishment of the stationary zone
width w and the order parameter S both systematically increase
with increasing L/d. Thus, the development of shear-induced
ordering appears to be correlated with the change in the zone
thickness w. Figure 8 also includes the zone width data for rape
seeds obtained by MRI (�) and for silica gel beads (♦) and
glass rods with L/d = 3.5 (×) obtained by optical detection
(surface measurements), all of which are in good agreement
with the data obtained by CT.
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IV. NUMERICAL MODEL

A. Description of the fluctuating band model

In order to model the experimental system, numerical simu-
lations have been performed using the fluctuating band model
(see Refs. [16,17]). Here we summarize the main ingredients
of the model, which is based on the following assumptions:
During quasistatic shear the stress is increased slowly, which
first is only accompanied by elastic deformations. At some
point when the system cannot sustain the stress any more,
a plastic event occurs. The system fails along a path which
complies with the boundary conditions and has the smallest
shear force or torque among all possible paths.

The plastic event rearranges the material and changes its
properties in the vicinity of the yielding path. The accumulated
stress is released and the whole process starts again. The
observed velocity profile is the ensemble average displacement
field resulting from these subsequent yielding events. This
is a self-organized process: the rearrangement along the
yielding path (corresponding to the minimal force) modifies
the potential, which is then used to determine the location
of the next plastic event. The above mentioned fundamental
features of nonlocality and self-organization can also be found
in other models: e.g., the models of elastic [32], kinetic
elasto-plastic [14,33], and shear transformation zone [34]
theory.

Here, we implement the fluctuating band model in a
discretized way [16,17]. Let a be the length scale of the coarse
graining [17]. We assume perfect translational symmetry along
the shear direction so we project the whole system to a plane
normal to the shear direction. Thus our system is discretized
on a two-dimensional lattice. The minimal path is a continuous
line initiated at the bottom at the split and it ends at the top
surface. In the present implementation, we allowed for nearest
and next nearest neighbor connections.

For simplicity, we consider the straight shear cell. The
cylindrical shear cell in this model differs only in a r2 factor for
the torque which is not important for the transient properties.

The shear force can be calculated using Coulomb friction
as

F = L

∫
path

μeff(y,z)p(z)dl, (2)

where L is the length of the system in the flow (x) direction,
the integral runs along the path from the bottom split to the
surface, μeff(y,z) is the effective friction coefficient which
has spatial fluctuations, and p(z) is the pressure, which we
assume to be the hydrostatic: p(z) = ρg(H − z). This is a
good approximation far from the walls. The system is thus
characterized by a single scalar field μeff(y,z).

The value μeff is known to have relatively wide distribu-
tions [35], which are not the same for the preparation and
for the self-organized restructuring. Therefore, we define two
probability distributions Pp(μeff) and Pr (μeff) for the prepara-
tion and the refresh, respectively. We chose the distributions
to be Gaussian with the restriction μeff � 0:

Pi(μeff) = Gi(mi,σi) = Ci exp

(−(μeff − mi)2

2σ 2
i

)
, (3)

where i = {p,r}, and Ci are normalization factors.
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FIG. 9. (Color online) Scaled plot of the time evolution of the
width of the shear zone on the surface of the numerical model system.
The preparation and refresh probabilities were Pp = Gp(1.5,0.85)
and Pr = Gr (0.8,0.2), respectively, which are illustrated on the inset
panel. The filled triangles show the case where the preparation
probability distribution was the same as the refresh one.

Thus in the discretized coarse grained system we have a
regular square lattice of height H̃ = H/a, where each site is
characterized by a single scalar μeff(y,z).

We chose the initial distribution of μeff to match the results
of [35]: mp = 1.5 and σp = 0.85. By this choice we are left
with three parameters H̃ , mr , and σr to fit the experimental
results.

This simple model describes the material by a scalar
variable which cannot incorporate the orientation of the
particles. Therefore, we will restrict the study of this model
at this point to spherical particles and grains with only small
shape anisotropy (e.g., sand).

B. Model results

In the numerical simulations the initially random system
is updated step by step in order to mimic the experimental
procedure. At each wall displacement step the minimization
gives us an instantaneous path which divides the system into
two moving blocks. The displacement at each position was
recorded for every step and averaged for many independent
realizations. The resulting surface displacement fields were
fitted the same way as in the experiments, from which the
transient evolution of the reduced shear zone width w̃ = w/a

can be calculated.
The numerical procedure involves a length factor H̃ =

H/a. In Fig. 9 we show the results of several runs using
the same Pr = Gr (0.8,0.2) but different H̃ . The curves are
collapsed on top of each other with the following scaling
relations:

w∗ = w̃/H̃ α, γ ∗ = γ /H̃ β. (4)
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BALÁZS SZABÓ et al. PHYSICAL REVIEW E 90, 032205 (2014)

The scaling exponents were found to be α = 0.6 and β =
1.0. The first exponent is in agreement with the results of
Jagla [32] obtained for the stationary zone width. Thus, in our
model the functional form of the curve describing the evolution
of the shear zone width in scaled variables is independent of
the length factor.

This result has two important implications: (i) In order to
fit the functional form of the evolution of the width of the
shear zone we have only two independent parameters left
(mr , σr ), and (ii) once the functional form is found, the length
factor H̃ and the coarse graining factor a can be determined;
converting back to unscaled variables the width of the shear
zone is w̃a, and the height of the system is H̃a. The values of
a and H̃ are determined using the stationary values of w and
H from the experiments.

In Fig. 9 we have included another curve in which we
changed the preparation distribution Pp of μeff to make it co-
incide to the refresh distribution Pr . As expected, the stationary
state has the same width as in the previous case but the transient
is different. The width of the shear zone at the beginning is
larger than in the stationary state but the local minimum is not
present. This result is independent of the actual value of the
distribution; if Pp = Pr we always see the same behavior.

The fact that the width of the shear zone decreases can be
best understood through the one-dimensional version of the
fluctuating band model which is the Bak-Sneppen model of
evolution [36]. In that model, a one-dimensional lattice is filled
with uniform random numbers between 0 and 1. The smallest
is chosen along with its two neighbors, and they are refreshed
from the same random distribution. The stationary state is
characterized by avalanchelike dynamics of the minimal site,
and the inactive sites have values distributed between 0.66
and 1. Thus even if the refreshing distribution is the same as
the initial one, the resulting potential will be different from
the original and it will be composed of larger values than the
mean of the refreshing distribution.

This is also the case here. The average values of μeff in
the stationary state in the shear zone can be measured. Using
the previous examples for the case of Pr = Gr (0.8,0.2), the
stationary average value is 〈μeff〉 = 0.83 instead of ∼0.8 with
standard deviation of 0.058 instead of 0.2. So after the initial
transient the actual field of μeff(y,z) has larger values with
narrower distribution than the mean of Pr , which pushes the
minimal paths towards shorter length. This narrows the zone,
and explains the initial decrease of the width of the shear zone.

In Fig. 10, two sets of curves are shown for different
combinations of mr and σr . All of them are for the same
system size. The curves fall on top of each other (apart from
a tiny shift in shear strain) if σr/mr is kept constant. This is a
surprising result for which we have no theoretical explanation.
Thus for fitting the scaled w/wstationary curves we are left with
only one parameter: σr/mr .

Now let us consider the minimum of the zone width during
its evolution. In Fig. 11 we plot several curves showing the
evolution of the zone width, where only mr is varied. As
mentioned before, if mr = mp there is no minimum, but as mr

decreases the minimum appears and becomes more and more
pronounced. This happens because after the initial decrease
of the width, many contacts remain with high effective
friction coefficients (originating from the initial preparation),
enforcing a narrow zone. After the minimum of the width is
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FIG. 10. (Color online) Evolution of surface width obtained by
numerical simulations for different parameters mr and σr of the
refresh probability distribution. For filled symbols σr/mr = 0.5 while
for open symbols σr/mr = 0.25. The preparation distribution was
Pp = Gp(1.5,0.85).

reached the minimal path continues to fluctuate and gradually
erases the preparation state. This can be seen in Fig. 11, as the
stationary state is reached at the same point at around γ � 8.

This scenario can be followed on a selected example shown
in Fig. 12 which was created using Pp = Gp(1.5,0.85) and
Pr = Gr (0.8,0.2). The dotted lines show the shape of the shear
zone in the stationary state. The first snapshot corresponds
to the preparation state. One can already spot the yellow
(bright) patch at the top of the sample at around y = 12
where the first path will be formed (right branch on the
second snapshot), which is relatively far from the center. These
types of fluctuations account for the large initial width of the
zone as calculated from the ensemble of many realizations.
The path then moves inwards as seen on the third snapshot
corresponding to the moment when w(γ ) takes its minimum.
The last panel shows the stationary state where the preparation
state has been erased in a wider region. It is also interesting
that the width of the shear zone is much smaller than the
actual space explored by the fluctuating path. This fact was
also observed in a previous study [20].
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FIG. 11. (Color online) Evolution of surface width obtained by
numerical simulations for different mr , with Pp = Gp(0.8,0.7) and
Pr = Gr (mr,0.7).
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FIG. 12. (Color online) Snapshots of μeff in the numerical model
system at γ values of 0, 0.5, 2.5, and 450. The height of the system was
H = 100, and the probability distributions were Pp = Gp(1.5,0.85)
and Pr = Gr (0.8,0.2), as for the data set presented with 	 in Fig. 10.
The black dashed lines show the actual width of the shear zone.

The experimental data were fitted taking into account the
above described features of the model. This approach fits
only the data for the silica gel beads reasonably, as shown
in Fig. 4(a). The parameters are a = 3.1, σr/mr = 0.38. For
corundum, the initial decrease of the width could be recovered
but not the slow evolution of the minimum. The model has
only one internal strain scale, while real systems appear to
have two: one for the initial decrease of the zone width and
another one for the later evolution, when the fluctuating path
erases the preparation state. This can be easily incorporated
into the model by adding a new strain scale γ0 in the following
way. At each step the local effective friction coefficient is
generated [for each (y,z) site] using a probability:

Pr (γ ) = Gr + (Gp − Gr )eγ/γ0 . (5)

This means, that instead of an abrupt change, we allow
for an exponential decay from the preparation to the refresh
distribution depending on the local shear strain. This way,
the experimentally observed evolution of the zone width for
corundum can be reproduced using the exponential constant of
γ0 = 1, which is illustrated in Fig. 4(b). The other parameters
are σr/mr = 0.33 and a = 1.95.

The resulting σr/mr factor is close to the the value obtained
with the silica gel beads; the difference is only 15%. The
coarse-graining length is larger by 50% for beads than for
irregular shaped corundum, which is in accordance with other
observations [37] that smoother grains have larger length
scales in the system.

To summarize the numerical results, we have shown that the
fluctuating band model has only two important independent
parameters from which the coarse-graining length a can be
fitted by the stationary width of the shear zone. The second
parameter σr/mr accounts for the transient behavior of the
model. The initial decrease of the width of the shear zone is
the result of the shear band removing the easily deformable
parts of the system. The refreshing-probability distribution
for the effective friction coefficient is narrower than that of the
initially prepared ensemble, resulting in a minimum in the zone
width due to remaining large values of the preparation effective
friction coefficients. This is later erased by the fluctuating path.
The results show that the refreshing probability appears to de-
pend locally on the shear strain. It introduces another time scale
that describes the evolution of the zone in the second stage.

V. SUMMARY

The evolution of the shear zone was investigated exper-
imentally using surface (optical) and bulk (x-ray CT and
MRI) measurements for various dry granular materials placed
in straight and cylindrical split bottom shear cells. The
behavior of materials consisting of beads, irregular grains,
such as sand, and elongated particles have been compared.
The experimental findings have been fitted with the results
of numerical simulations based on a fluctuating band model.
When an initially random sample is sheared the width of
the shear zone significantly decreases in the first stage of
the process. The characteristic strain associated with this
decrease is about γ = 1, and is systematically increasing with
increasing shape anisotropy, i.e., when the grain shape changes
from spherical to irregular (e.g., sand) and becomes elongated
(pegs). For rods, both the characteristic strain necessary for
the evolution of the zone width and the shear-induced order
parameter increase with increasing particle aspect ratio L/d,
while the characteristic strain corresponding to the evolution
of packing density and shear alignment direction appears to be
independent of L/d. The shrinking of the shear zone observed
in the first stage of the process is followed by a slight widening,
which is more pronounced for rodlike particles than for grains
with smaller shape anisotropy (spherical beads or irregular
particles). The final zone width is significantly smaller for
irregular grains when compared to the case of spherical beads.

The results obtained for spherical particles and grains with
only small shape anisotropy (e.g., sand) can be recovered using
the fluctuating band model with only two parameters: the ratio
of the two variables σr/mr of the distribution of the effective
friction coefficient in the stationary state and a strain scale
γ0. The initial evolution of the width of the shear zone in this
numerical model is a result of self-organized modifications of
the local effective friction coefficient by the fluctuating path
which may favor narrower or wider shear zones.
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