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Abstract

Free growth properties of the smectic B liquid crystalline phase into the supercooled nematic have been
investigated in quasi-two-dimensional geometry. Di!erent orientation combinations of the two phases have
been achieved experimentally and the interfacial patterns have been studied and analysed as a function of
undercooling. The angular dependence of the surface tension has been deduced from the shape of the
interface in thermal equilibrium. The experimentally determined surface tension anisotropy has been
incorporated into computer simulations based on the phase-"eld model. The simulations have reproduced
qualitatively the rich variety of morphologies (extending from the faceted shape to fully developed dendrites)
observed in the experiments for a given set of undercoolings in three geometries. Anisotropic heat di!usion
on the nematic side, relevant to our experimental system has also been introduced. Both in the experiments
and in the simulations we "nd that the growth is faster in the lower heat di!usion direction. ( 2000 Elsevier
Science B.V. All rights reserved.

PACS: 05.45.!a

1. Introduction

Interfacial patterns in the process of solidi"cation (see e.g. Refs. [1}4]) under typical experi-
mental conditions possess characteristical length scales of 10}100lm. On this scale the solid
and liquid phases can be treated as continuous media separated by a sharp interface. One has
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a "rst-order phase transition with latent heat (¸) released and conducted away from the interface.
We here deal with a thin layer geometry, and in the further discussion we will restrict ourselves to
two dimensions. In one-component crystal}melt systems one only has to consider the temperature
"eld. If one neglects the convection, the released heat will be transported by di!usion

D+ 2¹"

R¹
Rt , (1)

where D is the heat di!usion coe$cient (assumed to be the same in the two phases), and ¹ is the
temperature (variable in space and time).

From the energy conservation across the interface one has that the latent heat released at the
interface must be equal to the sum of the heat #ows from and to the interface i.e.,
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The location of the interface is determined by an extra boundary condition, which describes the

local thermodynamic equilibrium of the front and takes into account the Gibbs}Thomson relation
and (linear) kinetic e!ects:
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where ¹
*
(s, t)"the temperature of the interface, s"s(x, y)"the equation of the interface,

i(x, t)"the curvature of the interface, and

dI
0
(h)"p8 (h)/¸"[p(h)#pA(h)]/¸ , (4)

is the capillary length (p(h) } surface tension, h } angle enclosed by the normal of the interface and
an arbitrary direction).

According to the Gibbs}Thomson correction of the phase transition temperature, a circular
interface (isotropic surface tension) with radius R is in thermal equilibrium with its melt at the
temperature ¹"¹

.
(1!dI

0
/R). In general, when the surface tension is anisotropic, the so called

surface sti!ness p8 (h) appears in the Gibbs}Thomson relation (see e.g. [5,6]).
The last term in Eq. (3) describes the kinetics of the interface, where: 1/k8 (h)'0 is the kinetic

coe$cient, v
/

the normal velocity of the interface. In general, the front kinetics is also dependent on
orientation, because particles (atoms, molecules) can be attached to the crystal from the melt with
di!erent e$ciency from di!erent directions.

The anisotropy of the surface tension plays an important role in the selection of the growth
morphology of the interface (see e.g. [4]). A great number of experiments were done on traditional
solid}liquid systems [7}11], most of which have relatively small anisotropy
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Fig. 1. Schematic illustration of the nematic (N) and smectic-B (Sm-B) phases, and the director n.

(only few %) in the surface tension. In contrast, liquid crystalline (LC) systems, as has been shown
for the smectic-A (Sm-A)}smectic-B (Sm-B) [12] and for the nematic (N)}Sm-B [13] phase
transitions, can have much larger ep with clear facets in the equilibrium shape of the interface.
Moreover, in these systems ep can di!er by an order of magnitude in di!erent planes of observa-
tions with respect to the symmetry axes of the LC phases.

The N}Sm-B phase transition, we studied has a latent heat of typically ¸"4}8 kJ/mol [15], and
can be considered as the liquid crystalline analogy of solidi"cation of a pure substance. The
N phase is characterized only by the orientational order (described by the director n), while the
centers of mass of the molecules are distributed randomly as shown in Fig. 1 (see e.g. [14]). The
crystalline Sm-B phase (see e.g. [15,16]) has in addition a layered structure (layers are perpendicu-
lar to n), with a hexagonal packing of the molecules inside the layers. Positional order on large
length scales exists both inside and between the layers } see Fig. 1.

Liquid crystals di!er from the isotropic melt}crystal systems in the heat di!usion too. The heat
di!usion coe$cient D is anisotropic both for the nematic (which plays the role of the melt in our
observations) and for the smectic phases:
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where D
,

and D
M

are the di!usion coe$cients parallel and perpendicular to n, respectively.
Analysing experimental data of D for a number of LC materials, we can assume some general

features of the heat transport:

f D
!
'0 for nematics. It remains positive also in smectic phases [17], contrary to the mass and

electric transport processes, where the anisotropy changes sign at the nematic}smectic
transition.

f The magnitude of the average heat di!usion coe$cient D and that of D
!

in the Sm-B phase do
not di!er signi"cantly from those in the N phase } see for example [18}20].

f The contribution of the rigid central core of the molecule to the thermal di!usivity is more
important than that of the aliphatic end chain [20]. The increase of the alkyl-chain length by one
or two carbon atoms does not a!ect the magnitude of D signi"cantly [18,19].
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f D
!

depends strongly on the molecular shape. At "xed molecular width, it increases with
molecular length. D

!
depends primarily on the length of the rigid core [17], but the increase of

the alkyl-chain length by one or two carbon atoms increases D
!

also [18}20].

2. Experimental system

Di!erent liquid crystalline substances were used for observations. Each of them has a "rst-order
phase transition N to Sm-B at ¹

NS

m"3}CCH3, ¹
NS

"56.33C,
m"4}CCH4, ¹

NS
"53.13C,

m"5}CCH5, ¹
NS

"51.23C,

3OCF3, ¹
NS

"77.03C,

BCBA, ¹
NS

"87.43C.

Samples of both surface alignments of the nematic phase } planar (P, n E with the bounding glass
plates) and homeotropic (H, n o to the bounding glass plates) } were prepared in cells of
dimensions +20]20mm2 and of thickness d"10lm. For planar orientation of the nematic
phase we used commercial liquid crystal cells manufactured by E.H.C. Co., Ltd. (Japan). For
making cells with homeotropic orientation the glass plates with SnO

2
coating have been used.

A thin layer of octadecyl-triethoxy-silane, transferred onto the inner surfaces by polymerization,
assured the homeotropic alignment.

The sample temperature was controlled in a hot stage with accuracy of 0.0023C. The hot stage
was mounted on a polarizing microscope equipped with CCD video camera. The recorded images
were fed into a PC for digital analysis, with spatial resolution of 512]512 and 256 grey scaling for
each pixel. With 6.3] objective the scale factors of 1.35$0.01lm/pixel in the x direction and
0.95$0.01lm/pixel in the y direction were determined, so the calculated area of the pixel is
1.28$0.02lm2.

In the experiments both P and H orientations of the Sm-B phase could be assured, thus di!erent
director con"gurations of the two phases could be investigated. For easier characterization of the
system, we introduced symbols. Thus, for example in case of planarly oriented smectic germ in
homeotropic nematic surrounding, we used designation P(in H), etc.
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3. The phase-5eld model

Numerical treatment of the sharp interface model of solidi"cation as described in the introduc-
tion is di$cult. It involves either the direct solution of the di!usion equation with the boundary
conditions at the moving interface, or the projection of the dynamics onto the interface, which
results in a integro-di!erential equation that is usually solved in the frame of a quasistatic
approximation.

In the last years phase xeld models have increasingly been used as an alternative approach to deal
with solidi"cation and other free-boundary problems. In these models a nonconserved scalar order
parameter or phase "eld / is introduced, whose time evolution equation is coupled with the heat
(or impurity) di!usion equation through a source term in order to take into account the boundary
conditions at the interface. When the equations are integrated the system is treated as a whole and
no distinction is made between the interface and the bulk. The phase "eld / takes distinct values in
each of the bulk phases, and it changes continuously between them over a transition layer. The
interfacial thickness is then controlled by a dimensionless parameter e (see below). This interface
width can be related with the actual thickness of the interface of the real system, but in the usual
approach it is simply a small parameter that controls the convergence of the model to the
sharp-interface equations. The main computational advantage of phase "eld models is that no
boundary condition has to be explicitely applied at the interface.

Phase "eld models are a variation of model C of critical dynamics [21]. The earliest formulations
of a phase "eld model were done by Fix [22] and Langer [23]. A similar model was introduced
by Collins and Levine [24], who provided the "rst link of the phase "eld model with the
sharp-interface model with a kinetic term. Following its introduction, analytical properties of
Langer's phase "eld equations have been studied in detail [25}31]. Penrose and Fife [32,33]
provided a framework from which the phase "eld equations can be derived in a thermo-
dynamically consistent manner from a single entropy functional, rather than from a free energy
functional, which made the model applicable to nonisothermal situations. Recently, some
additional properties of the solidi"cation front in a supercooled liquid were derived using a phase
"eld model [34].

Early numerical computations of phase "eld models were performed in one dimension (straight
fronts) [35}37], since the method requires quite large computing resources. However, simulations
of the model introduced by Kobayashi [38] for dendritic growth of an undercooled melt in two
[39] and three [40,41] dimensions showed the capabilities of phase "eld models for dealing with
complex structures. Since then a large amount of simulations have been performed. In the case of
solidi"cation problems several phase "eld models have been developed and tested for realistic
situations [42}54]. Some work has also been devoted to the aspect of optimization of the phase
"eld simulations. Specially demanding cases are those with very slow growth, such as the case of
small undercooling, or with computationally large systems such as simulations in three dimensions.
Karma and Rappel have improved the understanding of the thin interface limit (small but not zero
interface width) of the phase "eld equations [55}57]. This results in a more e$cient use of
simulations. Moreover, their results allow to deal with arbitrary values of the kinetic coe$cient.
Further sophistications of the algorithms have also been introduced to improve the quantitative
capabilities of the model. These include for instance, the use of rotated lattices, which permit to
treat the case of vanishing anisotropy [58], or more recently, the adaptive grid methods [59,60].

T. To& th-Katona et al. / Physics Reports 337 (2000) 37}65 41



In our simulations we used the thermodynamically consistent phase "eld model derived in Ref.
[43]. The explicit expressions for the anisotropies of the surface tension were taken from our
experimental results in liquid crystals using the Wul! construction and are given in the following
sections. In addition we have included into the model a heat di!usion tensor, which models the
anisotropic transport properties of our liquid crystals. The pair of coupled equations for the phase
"eld /(r, t) and the dimensionless temperature "eld

u(r, t)"
¹!¹
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are as follows [54]:
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The values /"1 and 0 correspond to the liquid and solid phases, respectively. Lengths are scaled
in an arbitrarily chosen length u, while times are scaled in u2/D

M
. The parameter e"d/u is the

dimensionless interface width.
The dimensionless undercooling is
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The anisotropies of the surface tension and the kinetic term are introduced as [44]
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The local orientation of the front is given by

tan h"(R//Ry)/(R//Rx) (15)
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The dimensionless parameter b is
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Finally, the dimensionless heat di!usion tensor is de"ned by
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4. Nematic}Smectic-B interface in thermal equilibrium

Slowly heating up the Sm-B and approaching¹
NS

one can achieve a state where only a few Sm-B
islands surrounded by the N phase are left and they are separated (usually far) from each other so
that no interaction between them is present. Choosing one of these smectic germs for further
observation and controlling the temperature (with corrections on the mK scale) in order to keep
the size of the germ constant one can approach the thermal equilibrium state of this system. After
a few hours of equilibration the shape of the N}Sm-B interface is stabilized. Similar equilibration
time (&1 h) has been found in the solvent of organic substance HET [61].

From the shape of the interface in thermal equilibrium we have derived the angle dependence of
the normalised surface tension g(h) by the Wul! construction [62]. This is a geometrical construc-
tion based on the fact that the equilibrium shape minimizes the surface free energy } for more
details see in the appendix.

4.1. Diwerent orientations of the two phases

The shape of the N}Sm-B interface has been determined in thermal equilibrium with di!erent
orientation combinations of the two phases: P(in P), P(in H), H(in H) and H(in P) [63,64].

A faceted, rectangle like, elongated shape (Fig. 2(a) and (b)) has been found for the planar Sm-B.
The longer, faceted edges are parallel to the smectic layers (perpendicular to the director) indicating
that the Sm-B phase consists of sti! planes (contrary to the Sm-A phase). We point out here that
when a facet is present at the melt}crystal interface, it is known (see e.g. [6]) that the advance of
the facet can be stuck and might happen that the experimentally determined steady shape of the
interface does not re#ect the real equilibrium morphology. In such cases a special care should be
taken in the process of equilibration, allowing the interface to `breathea.

For the shape anisotropy (R
.!9

!R
.*/

)/(R
.!9

#R
.*/

) (R } distance of the germ perimeter from
its nucleation point), which coincides with the surface tension anisotropy ep [65], in P(in P)
geometry for CCH3 a value of ep2"0.68 has been measured (number 2 in the subscript denotes
the twofold symmetry). In the P(in H) con"guration of CCH3 a somewhat smaller value of
e (ep2"0.49) has been found, due to an additional contribution to the surface energy coming from
the elastic deformation of the nematic near the interface which is of splay-bend type along the long
edges and mainly twisted along the short ones [63]. On the basis of the experiments, the
reproducibility of the ratio R

.!9
/R

.*/
has been estimated to be below 20% [66]. These values of

ep are extremely large compared to that measured in the isotropic melt}crystal systems of other
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Fig. 2. The shape of the N}Sm-B interface in thermal equilibrium for CCH3. (a) P(in P), (b) P(in H), (c) H(in H). The
director orientations are indicated in both phases.

organic substances (e.g. ep4"0.005 for succinonitrile [9,67], from ep4"0.006 to ep4"0.05 for
pivalic acid [9,67}69], ep4"0.03 for camphene [70] or ep6"0.003 for HET [71]). A similarly
large value of ep2 has been found for the Sm-A}Sm-B interface in buthyloxybenzilidene octylany-
line [12], where ep2+0.5 has been measured.

With the Wul! construction we determined g(h) (where h describes the interface orientation) by
a simple polynomial "t. In case of planar Sm-B for h"0 we have chosen the orientation parallel
with the smectic layers (perpendicular to the smectic director n(S)). In CCH3 the following
functions have been determined [72,52]:

for P(in P):g(h)"1.000!0.352h2#0.008h4

for P(in H):g(h)"1.037!0.0278h2!0.022h4,

in the range DhD41
2
p (further angle segments can be obtained by continuing g symmetrically and

periodically). Clearly g(h) has cusps at h"$1
2
p that are associated with the facets.

A totally di!erent equilibrium morphology of the interface has been found in H(in H) con"gura-
tion, where the shape of the interface was nearly circular with a small hexagonal modulation,
re#ecting the sixfold symmetry inside the Sm-B layers. The value of ep640.03 has been measured
in this con"guration for CCH3 (Fig. 2(c)) [72], and ep640.005 for CCH5 [64] and these values are
essentially equal with the amplitude of the basic Fourier mode cos(6h).

In the H(in P) con"guration, which has been studied for CCH5, the additional contribution to
surface energy coming from the elastic deformations leads to the superposition of a twofold
anisotropy of the surface tension onto the sixfold symmetry of the interface. This results in a slightly
oval equilibrium shape. The analysis of the equilibrium shape by Wul! construction gives a value
for this twofold anisotropy ep2 in the range between 0.01 and 0.03 [64].

4.2. Diwerent substances

A similar equilibrium shape of the interface (faceted long sides and convex short ones) has been
found like that in CCH3 (Fig. 2(a)) for substances 3OCF3 and BCBA in the P(in P) con"guration,
though their molecular structure di!er from that of CCH3. Moreover, the shape anisotropies were
similar to that in CCH3 (within the scattering described in the Section IV.A.). For 3OCF3 a value
of ep2"0.66 has been measured, while in BCBA: ep2"0.59 [66].
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Fig. 3. The shape of the N}Sm-B interface in thermal equilibrium (P(in P) con"guration) for: (a) CCH3, (b) CCH4,
(c) CCH5. The arrows show the director orientation in the nematic phase.

In contrast, the shape anisotropy of the interface in thermal equilibrium is unexpectedly di!erent
for the three homologues of the CCHm (m"3, 4, 5) series. Much larger values of ep2"0.89 and
0.94 have been found for CCH4 and CCH5, respectively, compared to that in CCH3 (ep2"0.68)
[53] } see Fig. 3. These considerable di!erences in ep2 for the three homologues have been
interpreted by di!erences in the molecular packing of the Sm-B phase [53]. According to the
interpretation (based on the X-ray di!raction investigations [73]), the faceted part of the interface
is more rough on the molecular scale in the CCH5 compared to that in CCH4 and in CCH3
especially. Because of this roughness the packing between the N and Sm-B phases is presumably
better for CCH5, which leads to a smaller surface tension on the faceted sides, and consequently to
higher anisotropy in the surface tension.

The Wul!-construction gave for g(h) in P(in P) geometry, the following "tting functions
(direction corresponding to h"0 has been chosen parallel to the smectic layers again):

in CCH3: g(h)"1.000!0.352h2#0.008h4 [52],
in CCH4: g(h)"1.000!0.445h2#0.026h4 [52],
in CCH5: g(h)"1.00!0.47h2#0.03h4 [53],
in the range DhD41

2
p.

On the basis of the analysis of the equilibrium shape of the N}Sm-B interface, the connection of the
faceted long sides to the convex short ones seems to be continuous, without any cusps in all
investigated substances. It means that all surface orientations occur (no `forbiddena directions) and
the surface sti!ness p(h)#pA(h) is positive everywhere (see e.g. [74]) (the only exception might be
CCH5, where the extremely large anisotropy makes it di$cult to analyse the Wul! 's plot at the
critical regions). In contrast, the Sm-B}Sm-A interface was found to be cusped at the short ends
[12]. The question whether this qualitatively di!erent behaviour of the surface tension in the two
systems has some fundamental relevance is still open.

5. Growth at lower undercoolings

For small undercoolings *¹(0.23C no nucleation of the Sm-B phase occurred on time scales of
hours. Thus, for such small undercoolings and for precise quantitative measurements we used
a previously prepared Sm-B germ during several cooling-heating cycles. The procedure of obtain-
ing the germ was similar to that described in Section 4 for thermal equilibration. In order to assure
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similar initial conditions, the size of the germ was "xed (always 400}500lm2) before applying the
actual undercooling. The proper experimental procedure (described in [65]) allowed us to get
a Sm-B seed with homeotropic orientation besides the planar one.

In the following subsections we describe morphological transitions depending on *¹. In general,
three growth regimes have been found as a function of *¹, for both P(in P) and H(in H)
con"guration. These regimes could be distinguished in the morphology and in the growth
dynamics. These growth regimes will be presented in the following subsections for the P(in P) and
H(in H) con"gurations, while the H(in P) case is discussed in the Section 7.

We also give a comparison between the experiments and the phase-"eld model simulations. The
phase-"eld model Eqs. (7) and (8) have been solved numerically on a rectangular lattice. Both
equations have been discretized spatially using "rst-order "nite di!erences on a uniform grid mesh
spacing *x. An explicit time-di!erencing scheme has been employed for Eq. (7) and the time step *t
has been adjusted in each case in order to avoid numerical instability. Eq. (8) has been solved by the
alternating-direction implicit method (ADI), which is unconditionally stable [45]. We have
simulated the experimental system by locating the initial Sm-B seed (/"0, u"0) either in the
lower left corner or in the center of the mesh. In the rest of the system /"1, u"!1 have been set
initially. In absence of experimental data about (1/k(h)), for P(in P) con"guration we have taken

q(h)"ng(h) , (18)

where n"const, which implies that the kinetic term remains isotropic (see Eq. (12)).
For simulations in H(in H) con"guration, a sixfold anisotropy in the kinetic coe$cient

1
k(h)

"

1
k
0

(1#ek6 cos(6h)) , (19)

has been taken into account, with ek6"!0.003. This value has been obtained by careful
adjustment of ep6 (in the range of ep640.005 in accordance to the experiments) and of the ek6 in
numerical simulations until all the experimentally observed growth morphologies at di!erent
undercoolings are reproduced [64]. This implies that parameter q(h) in H(in H) con"guration has
the form:

q(h)"q
0
g(h)[1#ek6 cos(6h)] . (20)

In all simulations the relevant, experimentally determined functions g(h) have been used. In the
simulations presented in Sections 5 and 6 an isotropic heat di!usion has been taken, while in those
discussed in Section 7 the D

!
of the nematic phase is taken into account. Other details of the

simulation procedure are given elsewhere [52].

5.1. Quasi-equilibrium growth regime

In a narrow range of undercoolings, typically *¹40.063C for planar and *¹(0.13C for
homeotropic Sm-B, a slow growth of the interface has been observed. Its shape has been found not
much di!erent from that in thermal equilibrium (the interface is stabilized by the surface tension in
this growth regime).

In case of a planar Sm-B the long sides of the interface stay faceted, till the radius of curvature at
the short (convex) sides becomes larger than in thermal equilibrium (compare Figs. 4(a) and 2(a))
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Fig. 4. Qualitative comparison of the experimental and phase-"eld simulation results for CCH3 in quasi-equilibrium
growth regime } P(in P) con"guration. The "gure shows a quarter of the experimental microscopic images and
simulation of the Sm-B}N interface shown by plotting the contours of the patterns taken at subsequent times on top of
each other. (a) Experiment, *¹"0.083C, t"11.7; 83.7; 414.7; 608.1 s. (b) Simulation, 300]300 grid points,
e"0.005, *x"0.005, b"350, n"20, *t"10~4, *"0.05, t"0.14; 0.42; 0.70; 0.98.

Fig. 5. The same as Fig. 4 for CCH4. (a) Experiment, *¹"0.043C, t"20; 85; 180; 220 s. (b) Simulation, 300]300 grid
points, e"0.005, *x"0.003, b"350, n"20, *t"1.2]10~5, D"0.075, t"0.03; 0.09; 0.15; 0.21.

Fig. 6. The same as Fig. 4 for CCH5. (a) Experiment, *¹"0.083C, t"20; 120; 332.7 s. (b) Simulation, 300]300 grid
points, e"0.005, *x"0.005, b"350, n"20, *t"9]10~6, D"0.11, t"0.036; 0.090; 0.144.

with cusps at the locations where the convex sides connect with the facets. Such properties of the
interface growth have been observed in all investigated substances (see Figs. 4, 5 and 6(a)), and
con"rmed by the computer simulations (Figs. 4(b)}6(b)). The shape anisotropy of the interface
increases in time (the growth velocity of the facets is smaller than that of the convex part of the
interface) in both experiments and simulations. The increment of the shape anisotropy shows that
the expansion of the already existing smectic layers is more favourable than the creation of new
ones. The propagation of the facets in CCH5 could be even stopped (see Fig. 6).

In the quasi-equilibrium growth regime the H(in H) pattern at the beginning has a nearly circular
shape with a small hexagonal modulation (see Fig. 7(a)) and in the later stage of the growth it
becomes irregular } `puddle shapeda. The simulation (Fig. 7(b)) qualitatively reproduces the
experiment again. Note that in the simulation presented in Fig. 7(b), as well as for all simulations in
H(in H) con"guration, a sixfold anisotropy in the kinetic coe$cient has been taken into account,
with ek6"!0.003 [64].
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Fig. 7. Qualitative comparison of the experimental and phase-"eld simulation results for CCH5 in quasi-equilibrium
growth regime } H(in H) con"guration. (a) Experiment, *¹"0.053C. (b) Simulation, 800]800 grid points, e"0.005,
*x"0.005, b"350, *t"10~4, t"8, D"0.1, q

0
"20.

The dynamics of the interface in this quasi-equilibrium growth regime can be understood by
di!usive slowing down of a compact interface which leads to the time dependent growth velocity
decreasing with t~C where C"1

2
} see e.g. [3]. We have measured the spatially averaged growth

velocity (dJA/dt), where A is the area of the Sm-B germ. In CCH3, at the undercoolings of
*¹"0.043C (P(in P) con"guration), *¹"0.053C (P(in H)) and *¹"0.053C (H (in H)) the values
of C"0.59, C"0.52 and C"0.56 have been determined, respectively. For the simulation
presented in Fig. 4(b) the value of C"0.46 has been found [66].

5.2. Intermediate growth regime

In the next range of undercooling i.e., for the planar Sm-B typically 0.063C(*¹40.13C and
for the homeotropic Sm-B in the range of 0.13C4*¹(0.23C, a change in the growth morpho-
logy has been observed.

The short sides of the planar Sm-B germ become concave, but the facets still persist parallel to
the Sm-B layers (Fig. 8(a)). The destabilization of the interface is observable in this regime: four
main branches are formed which grow parallel to the Sm-B layers.

In the H(in H) geometry tips are formed and a petal shaped morphology of the interface appears
(Fig. 9(a)) similarly to the experiments on the hexagonal columnar phases [75,76]. The tips re#ect
the hexagonal symmetry of the Sm-B layers. For 0.13C(*¹(0.23C the tips split up, but for
*¹"0.23C six stable dendritic tips are formed in CCH5 (see Fig. 9(c)). More or less expressed
dendrites have been observed in the range of undercooling between 0.15 and 0.33C for CCH5.

For the dynamics of the interface in case of CCH3 we found (dJA/dt)"const both in P(in P)
and H(in H) con"gurations [72]. The growth rate of the perturbation has also been found constant
in time for both con"gurations [66].

The simulations have reproduced the "rst destabilization of the interface for both P(in P) }
Fig. 8(b), and H(in H) } Fig. 9(b) con"gurations. Moreover, for larger undercoolings the dendritic
growth in the H(in H) case was also observed (Fig. 9(d)).
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Fig. 8. The same as Fig. 4, for CCH3 in the intermediate growth regime } P(in P) con"guration. (a) Experiment,
*¹"0.13C, t"32.8; 113.0; 253.3 s. (b) Simulation, 300]300 grid points, e"0.005, *x"0.005, b"350, n"20,
*t"10~4, D"0.09, t"0.08; 0.32; 0.56; 0.80.

Fig. 9. The same as Fig. 7, for CCH5 in the intermediate growth regime } H(in H) con"guration. (a) Experiment,
*¹"0.13C. (b) Simulation, 800]800 grid points, e"0.005, *x"0.005, b"350, *t"10~4, t"2.8, D"0.2, q

0
"20.

(c) Experiment, *¹"0.23C. (d) Simulation, 800]800 grid points, e"0.005, *x"0.005, b"350, *t"10~4,
t"0.42, D"0.5, q

0
"20.

5.3. Fast growth regime

With further increase of the undercooling, for the planar Sm-B typically *¹'0.13C, and for the
homeotropic Sm-B typically *¹'0.23C, a new growth regime appears.

The morphology of the planar Sm-B changes continuously with *¹. The facets disappear and
the interface roughens up } see Fig. 10(a). The four main branches do not grow parallel to the Sm-B
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Fig. 10. The same as Fig. 4, for CCH3 in the fast growth regime } P(in P) con"guration. (a) Experiment,
*¹"0.123C, t"8.3; 17.1; 23.4; 28.1 s. (b) Simulation, 300]300 grid points, e"0.005, *x"0.005, b"350, n"20,
*t"10~4, D"0.2, t"0.06; 0.12; 0.18; 0.24.

Fig. 11. Same as Fig. 7, for CCH5 in the fast growth regime } H(in H) con"guration. (a) Experiment, *¹"0.353C.
(b) Simulation, 800]800 grid points, e"0.005, *x"0.005, b"350, *t"10~4, t"0.25, D"0.6, q

0
"20.

layers (as in Fig. 8), but make an angle with each other which increases in time for CCH
3
,

(the growth direction of the tips changes in time). For *¹50.53C one gets a dendritic growth with
steady growth direction and with four main branches that enclose an angle +903 for CCH3. For
such undercoolings the morphology of the interface is not much di!erent from that discussed in
Section 6.1.

For the H(in H) con"guration in CCH
5
, the dendritic growth presented in Fig. 9(c) becomes less

expressed with increasing undercooling, and "nally for large enough *¹ one gets the dense-
branching morphology (see Fig. 11(a)). The enveloping curve of the interface preserves the
hexagonal shape having the same orientation of the maxima (R

.!9
) as in the quasi-equilibrium

growth regime (i.e., an analogous angular dependence of the kinetic coe$cient should be assumed
to that of the surface sti!ness which means if ep6'0 one needs ek6(0). This is in contrast with the
observations made on columnar hexagonal phase [77], where the hexagonal shape of the crystal at
low (surface tension controlled regime) and at high (kinetic regime) undercoolings was rotated by
303 with respect to each other. On the other hand, the experimentally observed morphological
transition: compact interface } petal shape } dendritic growth } dense-branching morphology
as a function of *¹ is in a good agreement with the morphological phase diagrams predicted
in [78,79].

50 T. To& th-Katona et al. / Physics Reports 337 (2000) 37}65



Fig. 12. Notations used for the characterization of the Sm-B growth morphologies: n
6
(S) and n

6
(N) } is the director of the

Sm-B and N phase, respectively; c the angle between the directors of the two phases; a the (smaller) angle between the two
dendritic main branches; v

1
and v

2
the growth velocities of the dendritic tips.

The results of the computer simulations clearly show the destabilization of the facets (Fig. 10(b))
for planar Sm-B and the appearance of the dense-branching morphology with a sixfold symmetry
for the homeotropic Sm-B (Fig. 11(b)), as observed in the experiments.

For both, planar and homeotropic Sm-B of CCH3, (dJA/dt) asymptotically tends to a constant
value determined by *¹ [72], which is in agreement with the generic feature of growth phenomena
after the equilibrium morphology has become unstable [79,80].

Finally, one should mention that comparison of the numerical calculations with the experi-
mental results can be made only on the qualitative level due to the limitations of the phase "eld
model described in [55]. However, the model turned out to be quite sensitive to the anisotropies
ep and ek . For example the change of one of the anisotropies in H(in H) geometry by a factor of
2 results in a pronounced modi"cation of the growth shape, or even induces a morphological phase
transition for some undercoolings [81].

6. Nucleation and growth at higher undercoolings

The growth of the Sm-B phase in the undercooled N initiates with nucleation (on some
impurities, orientational defects of the director or defects on the bounding glass plates). For small
undercoolings (*¹(0.23C) no heterogeneous nucleation occurred on the time scale of hours. For
large enough *¹, the fast dendritic growth of the Sm-B phase has been observed, always with
planar director, independently from the orientation (planar or homeotropic) of the N environment
and typically with four main dendritic branches. The growth velocity v of the dendritic tips has
been found constant in time and of course undercooling dependent. The only exception is the
BCBA for which v(t)Oconst and which is described in [13].

Contrary to the previous section, where the morphological transition depending on *¹ has been
described, in this section we compare di!erent substances ("rst of all for the CCHm homologues) at
the same undercooling *¹"1.03C in P(in P) con"guration.

For quantitative characterization of the growing smectic structure the following labels were used
(see Fig. 12): a is the angle between the two closer main branches of the dendrite, which coincides
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Fig. 13. Qualitative comparison of the experimental and phase-"eld simulation results for CCH3. (a) Experiment, D"

1.03C, t"0.2; 0.4; 0.6 s. (b) Simulation, 500]500 grid points, e"0.003, *x"0.005, b"450, n"14, *t"9]10~6,
D"0.7, t"0.033; 0.066; 0.099.

with the angle between a main branch and its side branches; c is the angle between the directors
n(N) and n(S); v

1
and v

2
the growth velocities of the dendritic tips.

6.1. Dendritic growth in CCH3

In the case of CCH3 we got dendritic growth with four-fold symmetry and parabolic tips.
a+903 was found for all germs observed. Strong and symmetric side branching activity, even of
second and third generation (see Fig. 13(a)) was observed. The director of the nucleated Sm-B was
parallel to the director of the surrounding nematic (c+0). In 93% of the 270 germs considered,
c was found below 53 and in the remaining 7% it was between 53 and 93.

In the simulation based on the phase "eld model (Fig. 13(b)) a fast moving dendrite grew forming
a well-de"ned angle a between the main branches. Side branches appeared on both sides of the
main branch enclosing also angle a with it. Some tertiary side arm activity could be observed
similarly to experiments, but to reproduce that a large amount of computational time was required.
The main discrepancy between the experiments and simulations is that in the latter the angle a has
been found noticeably smaller than 903. In order to improve the situation we should "rst of all
incorporate the anisotropy of the kinetic term on a proper way, because computer simulations [52]
showed that the angle a is very sensitive to the angular dependence of the kinetic coe$cient.

6.2. Dendritic-like growth in CCH4

For CCH4 we get dendritic-like growth, which means that the four main branches are still
observable with intensive side branching, but the tips and the length of the side branches are not
symmetric with respect to the direction of the normal growth velocity of the tip (see Fig. 14(a)). The
angle between the main branches is in the range of 034a4603 and varies from germ to germ, but
it does not seem to depend on the undercooling. The angle between the "rst generation of side
branches and the main branch is always a. The angle between the nematic and smectic directors (c)
covers also a wide range: 034c4803. The distribution of c obtained for 270 germs has been
presented in [53]. A large part (&37%) of the germs is still oriented parallel to the n(N), c"0, but
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Fig. 14. Qualitative comparison of the experimental and phase "eld simulation results for CCH4. (a) Experiment,
D"1.03C, t"0.5; 0.9; 1.3; 1.8 s. (b) Simulation, 500]500 grid points, e"*x"0.005, b"350, n"20, *t"5]10~6,
D"0.5, t"0.104; 0.182; 0.260.

the rest is `disaligneda with respect to the nematic director, thus c reaches values up to 803. No
germs were found with extremely large disalignment in the range of 803(c(903.

No correlation between a, c and v was found, moreover a and c did not show any dependence on
the undercooling *¹. In general, the properties of each germ (a, c and v) are reproducible in
successive experiments provided the sample does not crystallize. But these properties can change at
the same location if the sample gets into the crystalline phase and is heated up again.

The morphology obtained by simulations (Fig. 14(b)) corresponds to the one observed experi-
mentally. Again there is a single angle a that characterizes the direction of the main branches, and
the same angle can be measured between the main and the "rst generation of the side branches. The
asymmetric side branching with respect to the direction of the normal growth velocity of the main
tip has also been reproduced.

6.3. Needle-like growth in CCH5

For CCH5 the growing Sm-B germ has a faceted shape at any undercooling reminding its
equilibrium shape, di!ering only at the short sides which become unstable (see Fig. 15(a)). Such
a morphology can be considered as a limit a"03. The directors of the N and Sm-B phases show
even weaker correlation than for CCH4. Though the distribution of c is in the same angular range
for di!erent nucleation centers (034c4803) as in CCH4, but germs with larger c nucleate more
often in CCH5 than in CCH4 i.e., the distribution of the N(c) (N is the number of the Sm-B germs)
is smoother. The c and v of the nucleated Sm-B germ at the same location in the sample might
change after crystallization in the same way as it was described above for CCH4.

The growth morphology in CCH5 has been computationally reproduced using the parameters
indicated in the caption of Fig. 15(b). Faceted edges and unstable short sides are present in the
growth shape as it was found in the experiments.

The large variety in the growth morphologies of the N}Sm-B interface observed experimentally
and con"rmed by computer simulations in CCHm homologous series has been explained by the
large di!erence in the surface tension anisotropy [53]. Presumably for CCH5 the surface tension
anisotropy is so large (and the cusp in the angular dependence of the surface tension is so deep),
that it does not allow the destabilization of the faceted sides (it would involve the appearance of the
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Fig. 15. Qualitative comparison of the experimental and phase-"eld simulation results for CCH5. (a) Experiment,
D"1.03C, t"0.4; 0.9; 1.3 s. (b) Simulation, 300]300 grid points, e"*x"0.005, b"350, n"20, *t"8]10~6,
D"0.16, t"0.035; 0.070; 0.105.

orientations that are energetically unfavoured). Only the short rough sides are destabilized as it was
seen in experiments (Fig. 15(a)) and also in simulations (Fig. 15(b)), contrary to the CCH4 and
especially to the CCH3, where the values of ep2 are smaller. This idea is supported by the
experiments on the 3OCF3 and BCBA which have similar ep2 to that of CCH3 (see in Section 4.2).
In 3OCF3 a+803 has been measured [66], while in BCBA a+903 [13] with intensive side-
branching activity for both substances.

The asymmetry of the side-branching activity with respect to the growth direction of the main tip
in case of CCH4 (see Fig. 14), which has been observed both experimentally and by computer
simulation, could be understood by taking into account the angle between the Sm-B director and
the normal to the interface. In the vicinity of the tip on that part of the interface where its normal
encloses a smaller angle with the smectic director (external side } see Fig. 12) the interface is more
stable against the perturbations than on the other (internal) side. This is due to the fact that the
coincidence of the surface normal and the director corresponds to the minimum in the angular
dependent surface tension. Thus, at this part of the interface the roughening is less expressed (any
perturbation involves signi"cant increase of the surface free energy because of large ep2), compared
to other parts where the angle between the surface normal and the director is larger. This is also
noticeable in Figs. 12 and 14. where on the external side of the dendritic tip the side branches
became easily faceted, with facets parallel to the smectic layers. These phenomena are in accord-
ance with the observation that in the process of the smecti"cation the expansion of the already
existing smectic layers is preferred instead of the creation of new ones.

7. E4ect of the anisotropy of the nematic phase on the growth patterns

The anisotropy of the nematic phase gives rise to new (relatively weak) e!ects, that superimpose
on the (usually stronger) e!ects coming from the anisotropy of the smectic phase:

(i) The most interesting phenomena arise due to the anisotropic heat di!usion in the nematic
phase. It usually alters the shape of the growing smectic domain if the nematic director is planar.

(ii) We have already shown (Fig. 2(b)) that if the director of the nematic and smectic phases do
not coincide, a thin reorientation zone builds up in the nematic phase near the interface.
The corresponding elastic deformation usually gives an anisotropic contribution to the surface
energy, which depends on the actual con"guration and the (anisotropic) elastic properties of the
nematic phase.
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(iii) The nematic phase may also modify the phase transformation kinetics. Unfortunately, no
experimental information is available for this e!ect.

To analyse the e!ects coming from the anisotropy of the nematic phase the H(in P) and P(in P)
con"gurations have been taken.

The advantage of the P(in P) con"guration is that in this case e!ect (ii) is absent and the heat
di!usion anisotropy dominates (e!ect (i)). However, one should note that in this con"guration the
anisotropy in surface tension coming from the structure of the smectic phase is large.

The advantage of the H(in P) con"guration is, that the anisotropy of the surface tension is small
in the plane of the smectic layers. Thus in this con"guration the e!ects deriving from the smectic
anisotropy do not suppress the e!ects due to the anisotropy of the nematic phase as much as in the
P(in P) case. One must add however, that in this con"guration all three of the above mentioned
e!ects are present making the analysis di$cult.

Let us start with the analysis of the e!ects caused by the heat di!usion anisotropy. It has been
shown in [64,82] that by properly rescaling the coordinate system, and transforming a system with
anisotropic heat di!usion into a system with isotropic di!usion, not only the heat di!usion
equation (1) will be transformed back to the case of an isotropic system, but also the balance of heat
(2). In this representation the heat di!usion anisotropy enters only the Gibbs}Thomson relation as
an additional (angular dependent) modulation of the surface sti!ness and the kinetic term. In this
way, it can be shown that a system with initially isotropic surface tension and kinetic term will
develop growing crystals elongated in the direction of the lower heat di!usion (when scaled back to
the original coordinate system). This interesting result has also been demonstrated in numerical
simulations [54,64].

In the case of CCH4 in the P(in P) geometry the growth shapes re#ect strikingly the e!ect of the
anisotropic heat di!usion. Here, as was mentioned in the previous section, a large variety of growth
morphologies could be experimentally observed in the range of angles 04c4803 and 04a4603
(see Fig. 12. for notations). In these cases, when cO0 and 903, a nonre#ection symmetry appeared
in the growth shape (except the case of a"0). Thus the pair of main branches which have a larger
angle with the n(N), have larger growth velocity Dv

1
D than the other pair (Dv

2
D) } see Fig. 12 for

notations. Therefore the tip's growth is preferred in the direction of the lowest heat di!usion
(direction o to n(N)).

The observed relative di!erence in the growth velocities dv"(Dv
1
D!Dv

2
D)/Dv

1
D reached the value 0.2

in some cases. A nonmonotonous angular dependence dv(c) has been experimentally observed and
reported in [54] with a maximum around c"453. Taking into consideration the uniaxial nature of
the nematic phase, a behaviour is expected with dv"0 for c"0 and 903 as seen in the experiments.

In order to reproduce the growth morphologies observed in CCH4 for cO0 (see Fig. 16(a)), the
experimentally determined g(h) function has been rotated in the simulation by c in the (x, y)-plane
and the anisotropy in the heat di!usion coe$cient has been added. On the basis of the heat
di!usion anisotropy measurements [17}19] we estimated D

!
in CCHm (m"3, 4, 5) homologues

[53]. The estimated value of D
!
has been included into simulations based on phase "eld model } see

Eqs. (9), (12) and (17). Preliminary measurements [83] carried out very recently on CCH5 show
that the value of D

!
is even larger from that estimated in [53].

As Fig. 16(b) shows, the re#ection symmetry has been broken by including the anisotropic heat
di!usion only (previous simulations with rotated surface tension function and isotropic D did not
show the asymmetry in the growth velocities).
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Fig. 16. Qualitative comparison of the experimental and phase "eld simulation results for CCH4 with the in#uence of the
anisotropic heat di!usion coe$cient which causes a growth with nonre#ection symmetry in P(in P) con"guration. (a)
Experiment, *¹"1.03C, c"583. (b) Simulation, 600]600 grid points, e"0.005, *x"0.005, b"850, D"0.5, n"20,
*t"2]10~6, t"0.06, D

!
"0.5.

Remaining in the P(in P) geometry in the experiments with CCH3 and CCH5 the in#uence of
D

!
O0 on the pattern formation could not be detected directly. As we reported in [53] for CCH3

the germs nucleate with c+0, which means that the four main branches grow symmetrically with
respect to the fastest heat di!usion direction determined by n(N). For CCH5 despite of cO0 the
observed a"0 makes di$cult the direct detection of the in#uence of D

!
on the pattern formation.

The in#uence of the anisotropy of the nematic phase in H(in P) con"guration is a combination of
three e!ects observed for the substance CCH5 (see Fig. 17(a)) and analysed in numerical simula-
tions [64]:

(i) The heat di!usion anisotropy also induces an elongation of the germ and the formation of
dendritic tips perpendicular to n(N) [64]. The experimentally observed shape presented on
Fig. 17(a) has been compared with numerical simulation including the anisotropy of D only
(D

!
"0.2) } see Fig. 17(b).

(ii) In this con"guration, where a homeotropic Sm-B seed is surrounded by a planar N phase, an
additional elastic energy is accumulated at the interface between the two phases which involves
a deformation zone in the nematic where the planar n(N) changes continuously to the homeotropic
n(S). This additional contribution is similar to that mentioned in Section 4.1 for the P(in H)
con"guration, and involves a twofold anisotropy of the surface tension that superposes onto the
sixfold symmetry of the interface given by the hexagonal lattice inside the Sm-B layers. The surface
tension function now has the form

p(h)"p
0
(1#ep2 cos(2h)#ep6 cos(6h)), (21)

where ep6 corresponds to the anisotropy determined for H(in H) con"guration and described in
Section 4.1. The analysis of the equilibrium shape by Wul! construction gave for the anisotropy
ep2 a value in the range between !0.01 and !0.03 [64]. It has been shown that the twofold
anisotropy ep2 causes elongation of the growing Sm-B germ in the direction parallel to n(N) at
undercoolings investigated in [64]. Since the experimentally observed shapes of the interface show
elongation perpendicular to n(N) (see Fig. 17(a)), obviously a di!erent mechanism is responsible for
the e!ect.
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Fig. 17. Qualitative comparison of the experimental and phase "eld simulation results for CCH5 in } H(in P)
con"guration. (a) Experiment, *¹"0.153C. (b) Simulation, 800]800 grid points, e"0.005, *x"0.005, b"350,
*t"10~4, t"0.36, D"0.5, q"20, D

!
"0.2.

(iii) In H(in P) con"guration the attachment kinetics of the molecules is supposed to depend on
the angle enclosed by the surface normal and n(N). On the part of the interface, where the surface
normal is perpendicular to n(N), the reorientation of the director from planar to homeotropic
involves twist deformation and the kinetics should be faster than on the other parts of the interface,
where the reorientation involves splay deformation mainly. This appears indeed plausible because
the evolution of a twist distortion involves no back#ow, in contrast to the evolution of splay [84].
Alternatively, on the molecular level, one might argue, that on the part of the interface, where the
surface normal is perpendicular to n(N) the molecules should only rotate in order to achieve the
H orientation. On the other part of the interface, where the surface normal is parallel with n(N), in
addition to the rotation the mass centre of the molecules should be translated, since the length of
the molecules is more than 3 times larger than their diameter [73]. This e!ect can be described by
including a twofold anisotropy ek2 in Eq. (19), similarly to that in the surface tension (Eq. (21)) and
will induce an elongation of the growth shape perpendicular to n(N) as it has been shown in [64].

8. Dendrites regularized by spatially homogeneous time-periodic forcing

The side branching structure of dendritic growth (presented in Fig. 12 for example), roughly
de"nes the microstructure of the emerging solid phase and implicitly in#uences its mechanical,
thermal, chemical, and other properties. Therefore, the control of the dendritic side branching
besides of academic aspects has practical importance too in designing materials.

A spatially inhomogeneous controlling of dendritic side-branching has already been achieved by
periodic local heating of the dendrite tip by laser beam [89}91], or by oscillatory #ow "eld [92].
On the other hand, in many respects it is more suitable to control the side branching by non-local,
spatially homogeneous time-periodic forcing. In [93] we propose two methods by pressure
oscillations and by uniform periodic heating in the volume. Periodic pressure modulations
induce oscillations of the phase transition temperature homogeneously and instantaneously in
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Fig. 18. E!ect of pressure oscillations on the Sm-B dendrite growing in undercooled N phase. (a) Experiment, no
pressure oscillations, *¹"1.03C. (b) Experiment, *¹"1.03C, p

%
"2 bar, m"0.2. (c) Simulation, no pressure oscilla-

tions, D"0.55, 1000]1000 grid points, e"0.005, *x"0.005, b"350, *t"10~4, t"0.24, q"20, ep4"0.06,
ek4"0.12. (d) Simulation, pressure oscillations with frequency l"60, amplitude a

0
"0.2 and m"0.3. Other parameters

as in (c).

large volumes according to the Clausius}Clapeyron relationship, while periodic heating of the
sample induces an oscillation in the temperature of the undercooled melt.

In the experiments CCH3 has been used in P(in P) geometry. The setup described in Section 2
has been slightly modi"ed. For pressure modulation the liquid crystal cell was placed into
a hermetically closed brass box surrounded by the hot stage. The gas pressure in the brass box has
been regulated by a computer controlled valve system that switches o! and on the excess pressure
p
%

preset between 0 and 2 bar. The modulated heat release in the bulk has been realized by
periodically transmitting an AC electric current through the LC layer. Square-wave oscillations of
both pressure and electric current have been applied with "lling coe$cient m"t

0/
/t
0
, where t

0
is

the period of the oscillations and t
0/

stands for the pulse length. Measurements have shown that
under well de"ned conditions both types of oscillatory perturbations can be used to control the
side-branching process. This is illustrated in Fig. 18(a) and (b) for undercooling *¹"1.03C.
Fig. 18(a) shows a snapshot of the growing Sm-B dendrite without imposed oscillations, while the
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regular resonance pattern in Fig. 18(b) has been achieved by pressure oscillations p
%
"2 bar with

m"0.2. Similar resonance patterns to that in Fig. 18(b) appeared when electric current oscillations
have been applied with a period averaged heating power of about 0.6]10~4W/cm2 at *¹"1.03C.
Pressure oscillations of p

e
"2 bar modulate the phase transition temperature by about 0.073C (the

pressure coe$cient of the phase transition temperature has been found about 0.0353C/bar), while
a period averaged heating power of 0.6]10~4 W/cm2 causes temperature variations of 0.1}0.23C
in the melt (that is an overestimate).

The experimentally observed resonance patterns have been reproduced by phase "eld equations
(8) and (9) with modi"cations described in [93]. Here, we summarize the essence of these
modi"cations only. To avoid di$culties when introducing an oscillatory melting point, u is related
to a reference temperature ¹

3
instead of the melting point ¹

.
. For pressure modulations

a time-dependent term A(t)"a
0
f (t) has been incorporated into Eq. (8), while periodic heating was

represented by a source term B(t)"b
0
f (t) in the heat transport equation (9).

Numerical calculations without perturbations (A(t)"0 and B(t)"0) result in dendritic growth
with essentially random side-branching [Fig. 18(c)] similarly to the experiments [Fig. 18(a)].
Pressure oscillations (A(t)O0) or heating modulations (B(t)O0) produce regular resonance
patterns [see e.g. Fig. 18(d)] as seen in the experiments [Fig. 18(b)]. The formation of the side
branches and the tip velocity show a strict correlation with pressure (undercooling) pulses both in
simulations and in experiments.

Finally, one can investigate the parameter space that de"nes the range of conditions under which
pressure (or undercooling) oscillations dominate the pattern formation. This parameter space
consists of the amplitude and the frequency of oscillations, the undercooling, and the anisotropy
(both in the surface tension and in the kinetic term). Results of these investigations can be
summarized as follows. The increase of the amplitude a

0
(or b

0
) of the oscillations naturally

enhances the response of the system } more regular patterns appear. Oscillation dominated
patterns [as in Figs. 18(b) and (d)] have been observed in a broad range of modulation frequencies
[93], but as the frequency increases further, the uncorrelated thermal side branching similar to
those in Figs. 18(a) and (c) reappears. Increasing the undercooling the tendency for spontaneous
side branching becomes more pronounced and the external perturbations need only to regulate
them. Consequently, with increase of D, smaller amplitudes are su$cient to obtain oscillation
driven side branching. Numerical calculations have also shown that decreasing the anisotropy of
the system, the regularity of the patterns also decreases.

9. Concluding remarks

We have presented an extended experimental investigation of the N}Sm-B interface in thermal
equilibrium as well as that of the non-equilibrium growth of the free interface. The experimental
results were reproduced qualitatively by computer simulations based on the phase "eld model
using the experimentally determined function g(h).

The fact that in thermal equilibrium the hexagonal order within the Sm-B layers does not lead to
faceting of the interface in the H(in H) con"guration (see Fig. 2(c)) is consistent with general
principles excluding faceting in two-dimensional crystals with short-range interaction, see e.g.,
[85,86]. This is presumably applicable here because the correlation of the hexagonal ordering
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between layers is weak. By contrast, the faceting along the Sm-B layers in P(in P) con"guration (see
Figs. 2(a), (b) and 3) is not excluded because the extension of the facets is much larger than the
molecular dimensions.

A sequence of morphological transitions: compact interface with facets (Figs. 4(a)}6(a) and 8(a))
} `butter#ya morphology (Fig. 10(a)) } dendrites (Figs. 12}14(a)) has been observed in the P(in P)
and P(in H) con"gurations as a function of *¹. In H(in H) con"guration the observed morphologi-
cal transition sequence was: compact interface (Fig. 7(a)) } petal shape (Fig. 9(a)) } dendrites
(Fig. 9(c)) } dense-branching morphology (Fig. 11(a)).

All the basic growth morphologies have been reproduced by computer simulations based on
phase "eld model. Although the set of parameters used in the computer simulations might di!er
from the real material constants (except the g(h)), the qualitative resemblance is remarkably good.
This resemblance shows that the phase "eld model is able to handle strongly anisotropic interfaces
with facets in a rather simple way. Furthermore, the results show that the surface tension
anisotropy is the most dominant factor in determining the morphologies in the complex growth
processes observed in the experiments. Note that computer simulations involving only the surface
tension anisotropy (with isotropic heat di!usion and kinetic coe$cient) have reproduced com-
pletely the qualitative picture of the experimental situation for all investigated substances. This
qualitative agreement between experiments and simulations is not complete for CCH3 (which has
the lowest surface tension anisotropy among all the investigated substances) at large undercoolings
only (see Fig. 13). However, details of the interface shapes at larger undercoolings depend on the
kinetic term. As it was mentioned in Section 6, computer simulations [52] showed that the
morphology reacts sensitively to the angular dependence of the 1/k(h) at larger *¹. A direct
measurement of the kinetic coe$cient would be desirable, but it would involve measuring the
growth velocity at much larger undercooling than was reachable experimentally. Measurements
based on the interference techniques [94] are in the progress. The kinetic coe$cient, including its
anisotropy, has been measured for mass transport controlled growth of a hexagonal columnar
mesophase [77]. Another concern about the way kinetic e!ects are incorporated in the model
relates to the fact that, when facets are present, the dependence of the kinetic term in Eq. (3) may
not be strictly linear in the normal velocity. Other forms have been discussed in the literature, see,
e.g. [5,87,88]. In contrast to the anisotropy of the kinetic e!ects, a nonlinear dependence on the
velocity cannot be handled by the phase "eld model in its present form, and more drastic
modi"cations should be introduced to properly incorporate such e!ects. However, in view of the
qualitative agreement with the experiments, these e!ects do not seem to a!ect the basic features. On
the other hand the inherent anisotropy of the transport coe$cients of liquid crystals have in certain
situations a!ected the growth morphologies. Namely the breaking of the re#ection symmetry
occurring in shapes grown on CCH4 germs in P(in P) con"guration, and the dendrites appearing in
H(in P) con"guration of CCH5, have been explained in terms of the anisotropy of the heat di!usion
coe$cient.
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Appendix

A.1. From the equilibrium shape to the angular dependence of the surface tension } the Wulw
construction

The shape of the crystal in thermodynamic equilibrium with its melt is determined by the free
energy per unit area, needed for the formation of the interface. Based on this fact Wul! [62] gave
a geometrical construction that relates the surface free energy (or surface tension) p(h) and the
equilibrium shape of the crystal. According to this construction, the distance measured from the
center to the boundary of the crystal is proportional to the surface free energy per unit area in
a given direction.

Let us consider an arbitrary equilibrium shape of the interface restricting ourselves to two
dimensions (2D). In 2D the phase boundary (Cr) of the crystal is described by the vector r(u)
originating from O. The ds element of the phase boundary at the point A has a normal unit vector
u that encloses an angle h with the direction Ox (see Fig. 19). The tangent D(h) of the curve (Cr) at
A is also characterized by u or by a parallel vector h that originates from O and ends at the point
B of the tangent D(h), while hoD(h). Vector h(h) related to r(u) as described above determines the
curve (P) } the so-called pedal of (Cr).

One can write down the parametric equation of the curve (Cr) with h(h) as (see e.g. in [74])

x"h(h) cos h!h@(h) sin h

y"h(h) sin h#h@(h) cos h . (A.1)
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Since ds"(dx2#dy2)1@2"(x@2#y@2)1@2dh, the surface free energy of the crystal is given by

F
S
"P

2p

0

p(h)(x@2#y@2)1@2dh , (A.2)

where p(h) is the surface free energy (or surface tension) per unit length of the element
ds, x@"dx/dh and y@"dy/dh. On the other hand, integrating over the contour (Cr) one can obtain
the area A of the crystal

A"

1
2Q

C3

(xdy!y dx)"
1
2P(xy@!yx@) dh . (A.3)

Using (A.1) Eqs. (A.2) and (A.3) become

F
S
"Pp(h) ) [h(h)#hA(h)] dh , (A.4)

A"

1
2Ph(h)[h(h)#hA(h)] dh , (A.5)

where hA(h)"(d2h(h)/dh2).
For the equilibrium shape with the centre of symmetry in origin O (see Fig. 19) the minimaliz-

ation of F
S

with the constrain of A"const gives a result (see in [74]):

p(h)
h(h)

"const , (A.6)

i.e., p(h) is proportional to the pedal (P) described by h(h).
Let us consider some singularities of the p-plot. First, suppose that the equilibrium shape has

a facet (as in Fig. 19). When r(u) describes this facet, di!erent values of u give the same image h
0

(h
0
"903 in Fig. 19). In other words, the facet in the equilibrium form has a unique surface tension

p(h
0
) and produces singularity (cusp) in p(h) as it is shown in Fig. 19 for h

0
"903.

If the equilibrium form (Cr) has a convex corner at an angle u
0

the tangent of the interface
is not de"ned at that point. Consequently, the value of p(h) corresponding to the corner
in (Cr) cannot be determined uniquely } forbidden directions appear in p(h) (for more details see
e.g. [74]).

Finally, let us consider a curved part of the convex equilibrium form when r(u) has a maximum
at u

0
. In this case h

0
"u

0
and p(h

0
)"r(u

0
) (see, e.g. in [74]) and consequently, the function p(h)

touches the equilibrium form (Cr) of the crystal at r(u
0
) } see in Fig. 19 for u

0
"h

0
"0.

When a facet appears in the equilibrium shape of the crystal it can be connected with
the adjacent, curved part of the phase boundary on two di!erent ways: (I.) tangentially, when
there is no discontinuity of the tangents along the equilibrium form, but there is a discontinuity of
second order given by the radius of curvature, or (II.) forming a cusp (forbidden directions in p(h)
} see above). Geometrical construction of the so called critical circle has been proposed in [95]
in order to determine the type of the connection } for the more detailed study of the problem see,
e.g. [74].
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