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Abstract: Coherent control calculations are presented for a spherically symmetric box potential for non-resonant two
photon transition probabilities. With the help of a genetic algorithm (GA), the population of the excited
states are maximized and minimized. The external driving field is a superposition of three intensive
extreme ultraviolet (XUV) linearly polarized laser pulses with different frequencies in the femtosecond
duration range. We solved the quantum mechanical problem within the dipole approximation. Our
investigation clearly shows that the dynamics of the electron current has a strong correlation with the
optimized and neutralizing pulse shape.
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1. Introduction

Coherent control has become a routine procedure, inphysics and chemistry, to optimize and govern light-matterinteraction processes in atomic and molecular systems[1, 2]. The original and most commonly known coher-ent control methods are realized by envelope and phaseshaping of visible or near-IR femtosecond laser pulses.Thereby the corresponding electronic transitions, inducedby these pulses, can be controlled and enhanced in a verypowerful manner.
∗E-mail: barnai@sunserv.k	i.hu

There is enormous future potential in this method out-side the traditional scope of femtochemistry. It is wellknown that schemes for the generation of extreme ultra-violet (XUV) radiation, by the process of high harmonicgeneration (HHG), are suitable for the production of lightpulses with a duration of less than a femtosecond. As aresult, attosecond metrology and spectroscopy based onHHG sources are becoming more and more widespreadmethods in atomic physics [3, 4]. The first attosecondexperiments used light pulses from the HHG gas jet asthey emerged, sometimes after some dispersion control, toattempt to preserve the original shape of the XUV pulse[3, 4]. As a more sophisticated form of phase shaping, XUVradiation chirped multilayer structures were recently con-sidered and used for XUV pulse optimization [5–7]. How-
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ever, these efforts are only aimed at compensating for thechirp of the XUV pulses, thus making the XUV pulse du-ration shorter. Such passive methods are satisfying untilone demands to achieve, for a given spectrum, the shortestpossible attosecond pulses. If one wants to use coherentcontrol methods at these wavelengths more complex phasecontrol schemes are needed.
Several groups have become engaged in transforming co-herent control schemes to XUV light-matter interactionsin recent years. Since standard methods involving con-trol of the spectral intensities and/or phases (by the useof spatial light modulators, acousto-optic programmabledispersive filters) are not directly applicable in the XUVspectral domain other methods have emerged. i) It seemedstraightforward to perform phase and amplitude shapingon the infrared laser pulse with standard coherent controlsetups first. The spectral and temporal properties of theHHG radiation generated by this pulse can thus be influ-enced. This option has mainly been exploited to maximizeharmonic conversion efficiency and to enhance conversionto a given harmonic [8–10]. More recently, as a furtherstep towards XUV coherent control, Pfeifer et al. haverealized control of the branching ratio of the dissociativephotoionization of sulfur hexafluoride by adaptive shapingof the HHG generating infrared field [11]. ii) Other groupsuse wavefront or fiber mode shaping methods to enhanceharmonic yield, for a given harmonic, in the HHG process[12–15]. This does not involve temporal shaping of thepulse to first order, however, it proved to be powerful forenhancing the harmonic yield. iii) It is less straightforwardto achieve phase shaping of the XUV beam, after the highharmonic generation process, to realize the desired tempo-ral shaping effect. However, very recently, Strasser et al.managed to construct such a scheme and thereby controlthe coherent transients in a He atom[16]. Another optionfor direct adaptive phase modulation in the XUV spectraldomain would be the application of deformable mirrorsknown from visible/near IR technology. To our knowledge,efforts involving such technology have not been published.
XUV radiation sources other than HHG also have to beconsidered. Free electron laser beam-lines also openup new horizons in femtosecond X-ray research by tar-geting parameter regimes currently unavailable to laser-driven XUV/X-ray sources [17–19]. Unfortunately, thesesources are not particularly suitable for coherent con-trol applications due to their limited temporal coherence1.Prompted by these developments more general, purelytheoretical, studies on coherent control in the XUV do-
1 DESY homepage, http://xfel.desy.de/technical_informa-
tion/photon_beam_parameter.

main also emerged [20, 21]. One of us has also tried toanswer related questions by theoretically investigating anon-resonant two-photon transition in He (1s1s) - (1s3s)with shaped XUV pulses [20]. These calculations, however,lacked insight into the fundamental physical backgroundof the control process. Therefore, in this paper, we in-vestigate the control process further with numerical toolsfor a more simple model system, a spherical box potential,and a simplified ansatz for the genetic algorithm. Themotion of an electron was investigated in a sphericallysymmetric square well potential driven by a linearly po-larized XUV laser pulse. We solved the time-dependentSchrödinger equation with our simplified coupled-channelmethod which was successfully applied for more complexlaser-atom interaction problems [22]. We chose spectralintensities and phases as the optimization parameters forcoherent control. Even though a corresponding experi-mental scheme does not yet exist, our approach providesa very general treatment of the problem. As a next step,we apply the genetic algorithm (GA)2 as the optimizationprocedure to create the best interacting, or most indiffer-ent pulses (we call it neutralization), for state selectiveexcitation. A detailed analysis about the evolutionary al-gorithms in optimal control studies was presented in [23].Further exhausted details about different learning algo-rithms can be found in [24]. Our results show that thewave packet dynamic, the center-of-mass of the electroncurrent, is strongly correlated with the shape of the laserpulse. This gives us a physical interpretation for the con-trol mechanism for this model potential problem. Section 2shortly outlines the theoretical background of our model,followed by a compact description of the GA. Section 3presents our results with an explanation. Atomic units[a.u.] are used through the paper unless otherwise indi-cated.

2. Theory

We solve the general time-dependent problem with oursimplified coupled-channel approach to describe con-trolled laser driven excitation processes in the sphericallysymmetric box potential. The original method can be foundin our former studies3 [22, 25]. For the expansion coeffi-cients of the time-dependent wavefunction the following
2 D.L. Carroll, Free Genetic Algorithm Driver
http://cuaerospace.com/carroll/ga.html.3 http://geb.uni-giessen.de/geb/volltexte/2003/1036
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differential equation system holds
dak (t)
dt = −i N∑

j=1 Vkj (t)ei(Ek−Ej )taj (t), (k = 1, ..., N), (1)
where Ek and Ei are the eigenvalues of the box potential,and will be specified later. The coupling matrix elements

Vkj (t) = 〈Φk |V̂ (t)|Φj〉. (2)
are taken with the well known eigenfunctions of the boxpotential. The probabilities for transitions into final ex-cited states j after the pulse are simply given by

Pj = |aj (t = T )|2, (3)
where T is the duration of the pulse. To get the totalexcitation probability the corresponding channels Pj mustbe summed up. When a state selective excitation proba-bility is controlled, then only the corresponding channelis considered. We have to mention that the box potentialalso has a continuous spectra, this can be interpreted asthe ionization spectra. In the following we concentrateon non-resonant two-photon excitation processes and ne-glect three-photon ionization yields which have negligiblecontributions in similar atomic systems [20]. We restrictourselves to linearly polarized laser pulses parallel to thez-axis. The length gauge within the dipole approximationis applied

V (t) = −E(t) · r. (4)
To understand the control mechanism we took a simplemodel and investigated the three-dimensional, sphericallysymmetric, square-well potential. With the help of thewidth ’b’ and the depth ’-V0’ (which are the only two pa-rameters of this potential) the number of bound states canbe fixed. We tune these parameters in such a way (b = 5a.u., V0= 5 a.u.) that only four bound states exist. Thefour states have different angular momenta from zero upto three. A detailed analysis of the problem can be foundin any textbook [26]. The wave functions inside the boxpotential are the well known spherical Bessel functionsand the energies can be found as solutions of differenttranscendental equations. The four bound states havethe following energies: E`=0 = −3.6 a.u., E`=1 = −1.85a.u., E`=2 = −0.36 a.u., E`=3 = −0.05 a.u.For the external driving field strength, we add three dif-ferent frequencies and use a sin2 envelope,

~E(t) = En · sin2 (πt
T

) [a1 sin(ω1t + δ1)+
a2 sin(ω2t + δ2) + a3 sin(ω3t + δ3)] ~ez , (5)

where the frequencies are fixed and the three amplitudes
a1,2,3 and phases δ1,2,3 are the free parameters optimizedthrough the GA [21].Here we choose spectral intensities and phases as the op-timization parameters for coherent control, thus followingstandard schemes used for coherent control with visiblelight pulses. This would imply that a spatial light modula-tor, or a similar device, exists that is capable of controllingthe spectral phases and intensities of the XUV beam ina setup similar to the standard 4f-scheme. Even thoughsuch a device does not exist currently, our method pro-vides a much more general approach than just optimizingchirp parameters. Using this methodology, more complexpulse shapes can be simulated than provided by low-orderchirps and more general conclusions can be drawn thatwill be useful for planning future experimental schemes.For ω1 we took a quasi resonant two-photon frequency:(E`=2 − E`=0)/2 ≈ ω1 = 1.52 a.u. The resonant frequencyis 1.62 a.u., therefore when ω1 is closer to resonance, allpulses excite the system with a large probability (P2 >ten percent range) and the electron dynamics between theoptimized and neutralized cases have the same properties.On the other hand, if ω1 is much further from resonance,then the optimization can not give us enough excitation,and the system practically remains in the ground state.For the two other frequencies we took ω2 = 1.40 a.u.and ω3 = 1.85 a.u. The GA freely varies the phases
|δ1,2,3| ≤ π and the amplitudes |a1,2,3| ≤ 2. This approachpermits combinations where the contribution of the quasiresonant frequency is suppressed, letting the off-resonantfrequencies to evolve their effect. Contrary to the widelyused phase modulation, this pulse fabrication mechanismdoes not conserve pulse energy, and this is why all pulseshave to be renormalized to a reference pulse∫ T

0 |~E(t)|2dt = 25.13 a.u. (6)
For the reference pulse we took the quasi resonant fre-quency only, ω = 1.52 a.u., with a large field strength
E0 = 0.6 a.u. and a T = 400.53 a.u. pulse duration;
En is the normalization constant Eq. (5). This parameterset gives us the massive excitation probabilities which arerequired for further investigation.For time propagation we use a Runge-Kutta-Fehlbergmethod of fifth order embedding an automatic time stepregulation. Despite the non-unitarity of the Runge-Kutta-Fehlberg method, the adaptive step-size correction cansuppress the numerical error to less than 10−8 during thetime propagation [25, 27].As an optimization procedure we used the celebrated ge-netic algorithm which works in the following way. TheGA represents each possible solution, or individual, with
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a string of bits, termed a chromosome. For example twopossible phases are represented as [01101101]. (For thesake of clarity we assume that each parameter can onlytake 23 = 8 values in this example.) The first generationof individuals is selected randomly. Typically, we use apopulation of size of 20 which is about a factor of threelarger than the number of the optimisable variables. Foreach generation, the following steps are carried out: (i)all the individuals are evaluated and assigned a fitnessvalue. In our case it means that we calculate the ioniza-tion or state selective excitation probability resulting fromeach parameter configuration and call it the fitness valuefor that configuration. The next generation of individualsis chosen by applying three GA operators: selection, mu-tation and crossover. (ii) The selection operator chooseswhich of the individuals from the present generation willbe transfered to the next generation. The individuals areranked according to their fitness, and then selected ran-domly with a certain probability based on the fitness. Avery fit individual thus receives a high probability and canbe selected many times, while low-fitness individuals maynot be selected at all. (iii) The mutation operator, which isused very seldomly, selects a few individuals and replacesone (randomly selected) bit in a chromosome randomly by0 or 1 (e.g. creating the chromosomes [11010100] from[11000000].) (iv) The crossover operator takes two individ-uals at a time and exchanges part of their chromosomes.For example two chromosomes [01101000] and [01001110]can create the chromosomes [01101110] and [01001000].The use of the mutation and crossover operators ensuresthat the GA does not became fixed in a local minimum ormaximum. The fittest individuals, however, always surviveto the next generation in what is called elitism. Steps(i)-(iv) are repeated until no new solutions appear be-tween two consecutive generations. In the optimizationspresented in this work, the GA typically converges after40-70 generations.
3. Results

The laser field has six free parameters that have to beoptimized through the control process. The GA also needsfurther technical parameters [21]. We used 20 differentpulses per generation (population size) and let the processrun through 60 generations to achieve convergence. Thismeans that 20× 60 = 1200 different pulses were checkedto find the most favorable. Using permutation probability(≈ 1/population size ) = 0.05, crossover probability = 0.4and creeping probability = 0.12 gave us good convergenceand gain, matching the commendation of the routine [21].We found the algorithm stable and robust against slight

Figure 1. The electric field strength E(t) of the optimized pulse
(dashed line) with the corresponding center of mass of
the electron current rcm(t) solid line)

parameter variations. Further slight “blind-changing” ofthese parameters may give some extra 10-15 percent gain,but the identified mechanism will not be changed.The GA makes it possible to carry out two differentkinds of optimization calculations, first the maximizationof the excitation probabilities (we call it optimization) andsecondly minimization (we call it neutralization) whenthe transition probabilities are minimized. To interpretthe control mechanism, both of these calculations hadto be done. The neutralization calculation may attractlarge interest in future FEL experiments where on oneside the maximal field strength is used but on the otherside the field must not interact with the resonator caus-ing any damage. The optimized P2 transition probabil-ity for the pulse given above is 2.3 × 10−3, comparedto the neutralized probability of 2.8 × 10−5, which is afactor of 82 smaller. The parameters of the optimizedpulse are: a1,2,3 [1.57, 0.68, 1.38] δ1,2,3[0.45, −0.88, 0.52]and for the neutralizing pulse: a1,2,3[1.17, 1.68, 0.82],
δ1,2,3[−0.52, 0.66, 0.12]. Note that these pulses are notthe absolute best or darkest pulses, but optimized enoughto show the feature of the coherent control mechanism. Tofind some physical interpretation for our control results,we investigated the dynamics of the electron wave packet.We calculated the time-dependent current of the electronthrough the following formula:

j(r, t) = Ψ(r, t)∗ ~∇Ψ(r, t), (7)
for the time-dependent wave function we used the usualform: Ψ(r, t) = 3∑

`=0 a` (t)Φ` (r)e−iE` , (8)
where Φ` (r) = ( π2r) 12 · J`+ 12 (rk)Y`,0(θ, φ). (9)
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The radial part √π/2rJ`+0.5(rk) is the spherical Besselfunction of the first kind, (usually noted j` (rk), howeverthis may lead to miss-understanding when using the sameletter for electron current) J`+ 12 (rk) is the ordinary Besselfunctions of half-odd-integer order and Y`,0(θ, φ) is theusual spherical harmonic.The current is a complicated quick oscillating function,so it is difficult to observe its correlation with the laserfield, thus we introduce the center-of-mass coordinate ofthe electron current
rcm(t) = ∫

j(r, t) · rdr∫
j(r, t)dr , (10)

which is a pure time-dependent number. We concentrateon the radial current component only, skipping the vec-tor notation. It is easy to see that the center-of-mass ofthe current is a bound function of time. Before the laserpulse, without any external field, the system is in the ` = 0ground state with a wave function proportional to sin(rk)
rk .This function is maximal at zero and has a strong decay,hence the center-of-mass coordinate is close to zero. Onthe other hand the wave functions of the excited states arehigher order Bessel functions having a zero at the originand maximum at r = 5.0 a.u. Inside a laser pulse the elec-tron is in a mixed quantum state. With a linear scaling,we may identify the minimum of the current with zero andthe maximum to a number comparable with the peak fieldintensity. Fig. 1 shows the electric field strength of theoptimized pulse together with the corresponding electroncurrent function. Beyond the sin2 envelope shape and thecarrier oscillation, an extra modulation can be found witha quasi periodic time of τ ≈ 14 a.u. This property ofthe pulse is a beat phenomena. The well-known additiontheorem says:

sin(α) + sin(β) = 2 sin(α + β2
) cos(α − β2

)
, (11)

which means that adding two different frequencies withthe same amplitude and the same phase gives us a com-pletely new amplitude modulated signal with the beat timeof: τbeat = π
|α−β|/2 . By checking the parameters of theoptimized pulse, we found that ω2 and ω3 have approxi-mately the same amplitude and the same phase, giving us

τ = 13.96 a.u. The amplitude modulation is not maximaldue to the existence of ω1.Let’s investigate the current now. It is clear to see that,for t > 150 a.u., the current continously gains betweentwo neighboring beat oscillation minima and has a shortplateau at the vicinity of the minima. This behavior canbe explained as a resonance phenomenon, where the elec-tron absorbs energy from the laser pulse at each intensity

growth. The time-dependent center-of-mass of the elec-tron current shows two kinds of oscillations. The sloweroscillation follows the envelope of the pulse (we call itenvelope oscillation) and a much quicker, but smaller, os-cillation follows the carrier of the pulse (we call it carrieroscillation). The work of Kosloff et al.[28] proves that thereis a π/2 phase shift between the optimal pulse and thetime dependent wave function overlap. Fig. 2 shows amagnified part of the field strength of the optimized pulse,together with the overlap of the time-dependent groundstate wave function and the ` = 2 wave function throughthe dipole operator.
O(t) = i〈Ψ`=2(r, t)|d̂|Ψ`=0(r, t)〉. (12)

We optimized to a two photon transition, thus the overlapfunction has double periodicity. The vertical line betweenthe field strength and the overlap shows a π/2 phase shift.When the electric filed strength has a local minimum, ormaximum, then the overlap function’s carrier oscillationhas a zero transition crossing the envelope function. Dueto the different time, the amplitude scale of the envelopeand the carrier oscillation, this effect is hard to see.Finally, Fig. 3 presents the electric field strength of theneutralizing pulse together with the corresponding elec-tron current function. Contrary to the optimized pulse, thecurrent has local maximum when the envelope reaches itsminimum and vice versa. The system decays with grow-ing field strength. This property of the current can beexplained as a fucntion of off-resonant dynamics, fieldstrength and electron movement. The beat oscillationcomes into play again τbeat ≈ 50/3 ≈ 16.6 a.u., thisis hard to identify because τω1−ω3 = 19.03 a.u. and
τω2−ω3 = 13.96 a.u. No unambiguous correlation could befound between the second quick oscillation of the currentand the laser field. It is important to mention that differentoptimized and neutralizing pulses, and their correspond-ing currents, were examined from the last generation andall showed the same properties as analyzed above.
4. Summary and outlook
We presented coherent control calculations for the spheri-cally symmetric box potential in short intensive XUV laserpulses. With the help of a GA we maximized and mini-mized two-photon non-resonant probabilities. We foundthat the center-of-mass of the electron current is highlycorrelated with the envelope of the exciting laser pulse.The field of optimized laser pulses force the quiver motionon the electron wave packet to be in-phase with the en-velope of the pulse. However, neutralized pulses force the
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Figure 2. The π/2 phase shift between the optimized time-
dependent wave function overlap O(t) (solid line) and the
electric field strength E(t) of the laser pulse (dashed line)

Figure 3. The electric field strength E(t) of the neutralized pulse
(dashed line) with the corresponding center of mass of
the electron current rcm(t) solid line)

electron to follow a motion which is out-of-phase relativeto the envelope.It is basically possible to implement our method, for many-electron atoms, to investigate and control ionization pro-cesses. Such works are in progress. Experimental co-herent control experiments are carried out with visibleor infrared lights nowadays. Our calculations were donein the hope that the rapid development of laser technol-ogy will make such schemes realizable in the near future.Some results of the first pioneering experiments are al-ready available [16] with tabletop laser systems, moreoversuch control schemes are also applicable in free-electron-laser beam-lines delivering femtosecond XUV pulses.
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