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Abstract: Coherent control calculations are presented for a spherically symmetric box potential for non-resonant two
photon transition probabilities. With the help of a genetic algorithm (GA), the population of the excited
states are maximized and minimized. The external driving field is a superposition of three intensive
extreme ultraviolet (XUV) linearly polarized laser pulses with different frequencies in the femtosecond
duration range. We solved the quantum mechanical problem within the dipole approximation. Our
investigation clearly shows that the dynamics of the electron current has a strong correlation with the
optimized and neutralizing pulse shape.
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1. |ntr0ducti0n There is enormous future potential in this method out-
side the traditional scope of femtochemistry. It is well
known that schemes for the generation of extreme ultra-
violet (XUV) radiation, by the process of high harmonic

Coherent control has become a routine procedure, in generation (HHQ), are suitable for the production of light
physics and chemistry, to optimize and govern light-matter  pulses with a duration of less than a femtosecond. As a
interaction processes in atomic and molecular systems result, attosecond metrology and spectroscopy based on
[1. 2] The original and most commonly known coher-  HHG sources are becoming more and more widespread
ent control methods are realized by envelope and phase methods in atomic physics [3, 4] The first attosecond
shaping of visible or near-IR femtosecond laser pulses. experiments used light pulses from the HHG gas jet as
Thereby the corresponding electronic transitions, induced they emerged, sometimes after some dispersion control, to
by these pulses, can be controlled and enhanced in a very  attempt to preserve the original shape of the XUV pulse
powerful manner. [3, 4] As a more sophisticated form of phase shaping, XUV

radiation chirped multilayer structures were recently con-

sidered and used for XUV pulse optimization [5-7]. How-
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ever, these efforts are only aimed at compensating for the
chirp of the XUV pulses, thus making the XUV pulse du-
ration shorter. Such passive methods are satisfying until
one demands to achieve, for a given spectrum, the shortest
possible attosecond pulses. If one wants to use coherent
control methods at these wavelengths more complex phase
control schemes are needed.

Several groups have become engaged in transforming co-
herent control schemes to XUV light-matter interactions
in recent years. Since standard methods involving con-
trol of the spectral intensities and/or phases (by the use
of spatial light modulators, acousto-optic programmable
dispersive filters) are not directly applicable in the XUV
spectral domain other methods have emerged. i) It seemed
straightforward to perform phase and amplitude shaping
on the infrared laser pulse with standard coherent control
setups first. The spectral and temporal properties of the
HHG radiation generated by this pulse can thus be influ-
enced. This option has mainly been exploited to maximize
harmonic conversion efficiency and to enhance conversion
to a given harmonic [8-10]. More recently, as a further
step towards XUV coherent control, Pfeifer et al. have
realized control of the branching ratio of the dissociative
photoionization of sulfur hexafluoride by adaptive shaping
of the HHG generating infrared field [11]. ii) Other groups
use wavefront or fiber mode shaping methods to enhance
harmonic yield, for a given harmonic, in the HHG process
[12-15]. This does not involve temporal shaping of the
pulse to first order, however, it proved to be powerful for
enhancing the harmonic yield. iii) It is less straightforward
to achieve phase shaping of the XUV beam, after the high
harmonic generation process, to realize the desired tempo-
ral shaping effect. However, very recently, Strasser et al.
managed to construct such a scheme and thereby control
the coherent transients in a He atom[16]. Another option
for direct adaptive phase modulation in the XUV spectral
domain would be the application of deformable mirrors
known from visible/near IR technology. To our knowledge,
efforts involving such technology have not been published.

XUV radiation sources other than HHG also have to be
considered. Free electron laser beam-lines also open
up new horizons in femtosecond X-ray research by tar-
geting parameter regimes currently unavailable to laser-
driven XUV/X-ray sources [17-19]. Unfortunately, these
sources are not particularly suitable for coherent con-
trol applications due to their limited temporal coherence’.
Prompted by these developments more general, purely
theoretical, studies on coherent control in the XUV do-

main also emerged [20, 21]. One of us has also tried to
answer related questions by theoretically investigating a
non-resonant two-photon transition in He (1s1s) - (1s3s)
with shaped XUV pulses [20]. These calculations, however,
lacked insight into the fundamental physical background
of the control process. Therefore, in this paper, we in-
vestigate the control process further with numerical tools
for a more simple model system, a spherical box potential,
and a simplified ansatz for the genetic algorithm. The
motion of an electron was investigated in a spherically
symmetric square well potential driven by a linearly po-
larized XUV laser pulse. We solved the time-dependent
Schrédinger equation with our simplified coupled-channel
method which was successfully applied for more complex
laser-atom interaction problems [22]. We chose spectral
intensities and phases as the optimization parameters for
coherent control. Even though a corresponding experi-
mental scheme does not yet exist, our approach provides
a very general treatment of the problem. As a next step,
we apply the genetic algorithm (GA)? as the optimization
procedure to create the best interacting, or most indiffer-
ent pulses (we call it neutralization), for state selective
excitation. A detailed analysis about the evolutionary al-
gorithms in optimal control studies was presented in [23].
Further exhausted details about different learning algo-
rithms can be found in [24]. Our results show that the
wave packet dynamic, the center-of-mass of the electron
current, is strongly correlated with the shape of the laser
pulse. This gives us a physical interpretation for the con-
trol mechanism for this model potential problem. Section 2
shortly outlines the theoretical background of our model,
followed by a compact description of the GA. Section 3
presents our results with an explanation. Atomic units
[a.u.] are used through the paper unless otherwise indi-
cated.

2. Theory

We solve the general time-dependent problem with our
simplified coupled-channel approach to describe con-
trolled laser driven excitation processes in the spherically
symmetric box potential. The original method can be found
in our former studies® [22, 25]. For the expansion coeffi-
cients of the time-dependent wavefunction the following

' DESY homepage, http://xfel.desy.de/technical_informa-
tion/photon_beam_parameter.

2 DL Carroll, Free Genetic Algorithm Driver

http://cuaerospace.com/carroll/ga.html.
3 http://geb.uni-giessen.de/geb/volltexte/2003/1036
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differential equation system holds

d N ,
‘;kt(t) =—iy V()" Ela(t), (k=1,..,N), (1)

j=1

where E; and E; are the eigenvalues of the box potential,
and will be specified later. The coupling matrix elements

Vig(t) = (D] V(8)|®)). (2)

are taken with the well known eigenfunctions of the box
potential. The probabilities for transitions into final ex-
cited states j after the pulse are simply given by

Py = laj(t =T)I, )

where T is the duration of the pulse. To get the total
excitation probability the corresponding channels P; must
be summed up. When a state selective excitation proba-
bility is controlled, then only the corresponding channel
is considered. We have to mention that the box potential
also has a continuous spectra, this can be interpreted as
the ionization spectra. In the following we concentrate
on non-resonant two-photon excitation processes and ne-
glect three-photon ionization yields which have negligible
contributions in similar atomic systems [20]. We restrict
ourselves to linearly polarized laser pulses parallel to the
z-axis. The length gauge within the dipole approximation
is applied

V(t) = —E(t) -r. 4

To understand the control mechanism we took a simple
model and investigated the three-dimensional, spherically
symmetric, square-well potential. With the help of the
width 'b" and the depth '-V4' (which are the only two pa-
rameters of this potential) the number of bound states can
be fixed. We tune these parameters in such a way (b =5
a.u., Vo= 5 a.wu.) that only four bound states exist. The
four states have different angular momenta from zero up
to three. A detailed analysis of the problem can be found
in any textbook [26]. The wave functions inside the box
potential are the well known spherical Bessel functions
and the energies can be found as solutions of different
transcendental equations. The four bound states have
the following energies: Ey_g = —3.6 a.u,, Ep-q = —1.85
au, Eypp=-036au, E,.3=-0.05a.u.

For the external driving field strength, we add three dif-

ferent frequencies and use a sin® envelope,

E(t) = E, - sin’ (ﬂ?t) [arsin(wit + 01)+

az sin(wyt + 07) + as sin(wst + 03)] €, (5)

where the frequencies are fixed and the three amplitudes
a3 and phases 01,3 are the free parameters optimized
through the GA [21].

Here we choose spectral intensities and phases as the op-
timization parameters for coherent control, thus following
standard schemes used for coherent control with visible
light pulses. This would imply that a spatial light modula-
tor, or a similar device, exists that is capable of controlling
the spectral phases and intensities of the XUV beam in
a setup similar to the standard 4f-scheme. Even though
such a device does not exist currently, our method pro-
vides a much more general approach than just optimizing
chirp parameters. Using this methodology, more complex
pulse shapes can be simulated than provided by low-order
chirps and more general conclusions can be drawn that
will be useful for planning future experimental schemes.
For w; we took a quasi resonant two-photon frequency:
(Eo=a — E¢—0)/2 = w1 = 1.52 a.u. The resonant frequency
is 1.62 a.u., therefore when w; is closer to resonance, all
pulses excite the system with a large probability (P, >
ten percent range) and the electron dynamics between the
optimized and neutralized cases have the same properties.
On the other hand, if w; is much further from resonance,
then the optimization can not give us enough excitation,
and the system practically remains in the ground state.
For the two other frequencies we took w, = 1.40 a.u.
and w3 = 1.85 a.u. The GA freely varies the phases
|0123] < 7 and the amplitudes |aq23| < 2. This approach
permits combinations where the contribution of the quasi
resonant frequency is suppressed, letting the off-resonant
frequencies to evolve their effect. Contrary to the widely
used phase modulation, this pulse fabrication mechanism
does not conserve pulse energy, and this is why all pulses
have to be renormalized to a reference pulse

.
/ |E(t)?dt = 2513 a.u. (6)
0

For the reference pulse we took the quasi resonant fre-
quency only, w = 1.52 a.u, with a large field strength
Ey = 0.6 au. and a T = 400.53 a.u. pulse duration;
E, is the normalization constant Eq. (5). This parameter
set gives us the massive excitation probabilities which are
required for further investigation.

For time propagation we use a Runge-Kutta-Fehlberg
method of fifth order embedding an automatic time step
requlation. Despite the non-unitarity of the Runge-Kutta-
Fehlberg method, the adaptive step-size correction can
suppress the numerical error to less than 1078 during the
time propagation [25, 27].

As an optimization procedure we used the celebrated ge-
netic algorithm which works in the following way. The
GA represents each possible solution, or individual, with
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a string of bits, termed a chromosome. For example two
possible phases are represented as [01101101]. (For the
sake of clarity we assume that each parameter can only
take 23 = 8 values in this example.) The first generation
of individuals is selected randomly. Typically, we use a
population of size of 20 which is about a factor of three
larger than the number of the optimisable variables. For
each generation, the following steps are carried out: (i)
all the individuals are evaluated and assigned a fitness
value. In our case it means that we calculate the ioniza-
tion or state selective excitation probability resulting from
each parameter configuration and call it the fitness value
for that configuration. The next generation of individuals
is chosen by applying three GA operators: selection, mu-
tation and crossover. (ii) The selection operator chooses
which of the individuals from the present generation will
be transfered to the next generation. The individuals are
ranked according to their fitness, and then selected ran-
domly with a certain probability based on the fitness. A
very fit individual thus receives a high probability and can
be selected many times, while low-fitness individuals may
not be selected at all. (iii) The mutation operator, which is
used very seldomly, selects a few individuals and replaces
one (randomly selected) bit in a chromosome randomly by
0 or 1 (e.g. creating the chromosomes [11010100] from
[11000000].) (iv) The crossover operator takes two individ-
uals at a time and exchanges part of their chromosomes.
For example two chromosomes [01101000] and [01001110]
can create the chromosomes [01101110] and [01001000].
The use of the mutation and crossover operators ensures
that the GA does not became fixed in a local minimum or
maximum. The fittest individuals, however, always survive
to the next generation in what is called elitism. Steps
(i)-(iv) are repeated until no new solutions appear be-
tween two consecutive generations. In the optimizations
presented in this work, the GA typically converges after
40-70 generations.

3. Results

The laser field has six free parameters that have to be
optimized through the control process. The GA also needs
further technical parameters [21]. We used 20 different
pulses per generation (population size) and let the process
run through 60 generations to achieve convergence. This
means that 20 x 60 = 1200 different pulses were checked
to find the most favorable. Using permutation probability
(=~ 1/population size ) = 0.05, crossover probability = 0.4
and creeping probability = 0.12 gave us good convergence
and gain, matching the commendation of the routine [21].
We found the algorithm stable and robust against slight

(t) [arb. unit]
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Figure 1. The electric field strength E(t) of the optimized pulse
(dashed line) with the corresponding center of mass of
the electron current r., (t) solid line)

parameter variations. Further slight “blind-changing” of
these parameters may give some extra 10-15 percent gain,
but the identified mechanism will not be changed.

The GA makes it possible to carry out two different
kinds of optimization calculations, first the maximization
of the excitation probabilities (we call it optimization) and
secondly minimization (we call it neutralization) when
the transition probabilities are minimized. To interpret
the control mechanism, both of these calculations had
to be done. The neutralization calculation may attract
large interest in future FEL experiments where on one
side the maximal field strength is used but on the other
side the field must not interact with the resonator caus-
ing any damage. The optimized P, transition probabil-
ity for the pulse given above is 2.3 x 1073, compared
to the neutralized probability of 2.8 x 1075, which is a
factor of 82 smaller. The parameters of the optimized
pulse are: aq,3 [1.57,0.68,1.38] 0;,5[0.45, —0.88,0.52]
and for the neutralizing pulse: aq23[1.17,1.68,0.82],
0123[—0.52,0.66,0.12]. Note that these pulses are not
the absolute best or darkest pulses, but optimized enough
to show the feature of the coherent control mechanism. To
find some physical interpretation for our control results,
we investigated the dynamics of the electron wave packet.
We calculated the time-dependent current of the electron
through the following formula:

i(r, 1) = W(r, 1) VY(r, 1), (7)

for the time-dependent wave function we used the usual

form:
3
Wir 1) =) ao(t)Pe(r)e ", 8)
=0
where 1
@elr) = (5] Sy (7K Veol6. ). )
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The radial part \/7/2r/e.05(rk) is the spherical Bessel
function of the first kind, (usually noted je(rk), however
this may lead to miss-understanding when using the same
letter for electron current) /H%(rk) is the ordinary Bessel
functions of half-odd-integer order and Yy (0, ¢) is the
usual spherical harmonic.

The current is a complicated quick oscillating function,
so it is difficult to observe its correlation with the laser
field, thus we introduce the center-of-mass coordinate of
the electron current

[j(r,t)-rdr

renll) = T far

(10)

which is a pure time-dependent number. We concentrate
on the radial current component only, skipping the vec-
tor notation. It is easy to see that the center-of-mass of
the current is a bound function of time. Before the laser
pulse, without any external field, the system is in the £ = 0
ground state with a wave function proportional to %
This function is maximal at zero and has a strong decay,
hence the center-of-mass coordinate is close to zero. On
the other hand the wave functions of the excited states are
higher order Bessel functions having a zero at the origin
and maximum at r = 5.0 a.u. Inside a laser pulse the elec-
tron is in a mixed quantum state. With a linear scaling,
we may identify the minimum of the current with zero and
the maximum to a number comparable with the peak field
intensity. Fig. 1 shows the electric field strength of the
optimized pulse together with the corresponding electron
current function. Beyond the sin? envelope shape and the
carrier oscillation, an extra modulation can be found with
a quasi periodic time of T &~ 14 a.u. This property of
the pulse is a beat phenomena. The well-known addition
theorem says:

sin(a) + sin(B) = 2sin ( a—;B) cos ( O(EB) . (1)
which means that adding two different frequencies with
the same amplitude and the same phase gives us a com-
pletely new amplitude modulated signal with the beat time
of: Tpeat = ﬁ By checking the parameters of the
optimized pulse, we found that w, and w; have approxi-
mately the same amplitude and the same phase, giving us
T = 13.96 a.u. The amplitude modulation is not maximal
due to the existence of w;.

Let's investigate the current now. It is clear to see that,
for t > 150 a.u., the current continously gains between
two neighboring beat oscillation minima and has a short
plateau at the vicinity of the minima. This behavior can
be explained as a resonance phenomenon, where the elec-
tron absorbs energy from the laser pulse at each intensity

growth. The time-dependent center-of-mass of the elec-
tron current shows two kinds of oscillations. The slower
oscillation follows the envelope of the pulse (we call it
envelope oscillation) and a much quicker, but smaller, os-
cillation follows the carrier of the pulse (we call it carrier
oscillation). The work of Kosloff et al[28] proves that there
is a m/2 phase shift between the optimal pulse and the
time dependent wave function overlap. Fig. 2 shows a
magnified part of the field strength of the optimized pulse,
together with the overlap of the time-dependent ground
state wave function and the ¢ = 2 wave function through
the dipole operator.

O(t) = i{(Weoa(r, 1)|d|Wro(r, t)). (12)

We optimized to a two photon transition, thus the overlap
function has double periodicity. The vertical line between
the field strength and the overlap shows a 71/2 phase shift.
When the electric filed strength has a local minimum, or
maximum, then the overlap function’s carrier oscillation
has a zero transition crossing the envelope function. Due
to the different time, the amplitude scale of the envelope
and the carrier oscillation, this effect is hard to see.

Finally, Fig. 3 presents the electric field strength of the
neutralizing pulse together with the corresponding elec-
tron current function. Contrary to the optimized pulse, the
current has local maximum when the envelope reaches its
minimum and vice versa. The system decays with grow-
ing field strength. This property of the current can be
explained as a fucntion of off-resonant dynamics, field
strength and electron movement. The beat oscillation
comes into play again Tpesr = 50/3 = 16.6 a.u., this
is hard to identify because t,,_,, = 19.03 au. and
Tuy—w; = 13.96 a.u. No unambiguous correlation could be
found between the second quick oscillation of the current
and the laser field. It is important to mention that different
optimized and neutralizing pulses, and their correspond-
ing currents, were examined from the last generation and
all showed the same properties as analyzed above.

4. Summary and outlook

We presented coherent control calculations for the spheri-
cally symmetric box potential in short intensive XUV laser
pulses. With the help of a GA we maximized and mini-
mized two-photon non-resonant probabilities. We found
that the center-of-mass of the electron current is highly
correlated with the envelope of the exciting laser pulse.
The field of optimized laser pulses force the quiver motion
on the electron wave packet to be in-phase with the en-
velope of the pulse. However, neutralized pulses force the
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Figure 2. The n/2 phase shift between the optimized time-
dependent wave function overlap O(t) (solid line) and the
electric field strength E(t) of the laser pulse (dashed line)
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Figure 3. The electric field strength E(t) of the neutralized pulse
(dashed line) with the corresponding center of mass of
the electron current r., (t) solid line)

electron to follow a motion which is out-of-phase relative
to the envelope.

It is basically possible to implement our method, for many-
electron atoms, to investigate and control ionization pro-
cesses. Such works are in progress. Experimental co-
herent control experiments are carried out with visible
or infrared lights nowadays. Our calculations were done
in the hope that the rapid development of laser technol-
ogy will make such schemes realizable in the near future.
Some results of the first pioneering experiments are al-
ready available [16] with tabletop laser systems, moreover
such control schemes are also applicable in free-electron-
laser beam-Llines delivering femtosecond XUV pulses.

Acknowledgments

We thank Prof. A. Becker and Prof. J.M. Rost for fruitful
discussions and constructive ideas. We acknowledge sup-
port from the Hungarian Scientific Research Fund (OTKA
Project F60256). P. D. was also supported by the Bolyat
Fellowship of the Hungarian Academy of Sciences.

References

[1] AM. Weiner, Prog. Quant. Electr. 19, 161 (1995)

[2] T. Brixner, N.H. Darmrauer, G. Gerber, Advances in
Atomic, Molecular, And Atomic Physics 46, 1 (2001)

[3] P. Agostini, L. DiMauro, Rep. Prog. Phys. 76 813
(2004) and references therein.

[4] P.B. Corkum, F. Krausz, Nature Phys. 3, 381 (2007)

and references therein.

[5] A'S. Morlens et al,, Opt. Lett. 31, 1558 (2006)

[6] E. Gustafsson et al., Opt. Lett. 32, 1353 (2007)

[7] M. Schultze et al,, New . Phys. 9, 243 (2007)

[8] R. Bartels et al., Nature 406, 164 (2000)

[9] D.H. Reitze et al.,, Opt. Lett. 29, 86 (2000)

[10] T. Pfeifer et al,, Appl. Phys. B 80, 277 (2005)

[11] T. Pfeifer et al, Opt. Express 15, 3409 (2007)

[12] C. Altucci et al,, Phys. Rev. A 61, 021801 (2000)

[13] P. Villoresi et al., Opt. Lett. 29, 207 (2004)

[14] D. Yoshitomi et al., Appl. Phys. B 78, 275 (2004)

[15] D. Walter et al., Opt. Express 14, 3433 (2006)

[16] D. Strasser et al,, Phys. Rev. A 73, 021805(R) (2006)

[17] H. Wabnitz et al, Nature 420, 482 (2002)

[18] R. Santra, C.H. Greene, Phys. Rev. Lett. 91, 233401
(2003)

[19] E.L. Saldin, E.A. Schneidmiller, MV. Yurkov, Phys.
Rev. Spec. Top—~Ac. 9, 050702 (2006)

[20] I.F. Barna, Eur. Phys. J. D 33, 307 (2005)

[21] J.J. Carrera, S. Chu, Phys. Rev. A 75, 033807 (2007)

[22] I.F. Barna, J. Wang, |. Burgdorfer, Phys. Rev. A 73,
023402 (2006)

[23] D. Zeidler, S. Frey, K.-L. Kompa, M. Motzkus, Phys.
Rev. A 64, 023420 (2001)

[24] P. Mars, J.R. Chen, R. Nambair, Learning Algorithms
(CRS Press Inc., 1996)

[25] I.F. Barna, lonization of helium in relativistic heavy-
ion collisions, Doctoral thesis (University Giessen,
Giessen, Germany, 2002)

[26] L.I. Schiff, Quantum Mechanics (McGraw-Hill, 1955)
76

[27] I.F. Barna, N. Griin, W. Scheid, Eur. Phys. J. D 25,
239 (2003)

[28] R. Kosloff et al., Chem. Phys. 139, 201 (1989)



	Introduction
	Theory
	Results
	Summary and outlook
	Acknowledgments
	References

