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Spontaneous emission of radiation by metallic electrons in the presence

of electromagnetic fields of surface plasmon oscillations
y

Sándor Varró*, Norbert Kroó, Gyözö Farkas and Péter Dombi

Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences Budapest, Hungary

(Received 7 May 2009; final version received 30 November 2009)

The spontaneous emission of metallic electrons embedded in a high-intensity enhanced surface plasmon field is
considered analytically. The electrons are described by dressed quantum states which contain the interaction with
the plasmon field non-perturbatively. Considerable deviations from the perturbative behaviour have been found
in the intensity dependence of the emitted fundamental and the second harmonic signals, even at moderate
incoming laser intensities. The theoretical predictions deduced from the formalism are in good qualitative
agreement with the experimental results.
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1. Introduction

Surface electromagnetic radiation bound to a plane
interface separating a dielectric and a conductor
started to receive considerable attention just 100
years ago, when a paper by Sommerfeld appeared on
the effect of the Earth on the propagation of radio
waves [1,2].1 In the meantime such and similar surface
waves have received the name surface plasmon
polaritons or surface plasmon oscillations (SPO). As
is well known, these oscillatory fields are normal
modes of the electromagnetic (EM) radiation in
systems consisting of dielectrics (e.g. glass) and
conductors (e.g. metals or semiconductors) which are
separated by sharp interfaces. Already before the
1960s, the number of theoretical and experimental
studies of SPOs was growing fast, and nowadays SPO
physics is an important sub-discipline of electro-
dynamics and optics. On the early development of
this branch of research an excellent collection of papers
can be found in the books edited by Burstein and de
Martini [3] and by Maradudin et al. [4], including
many important references. For a good exposition of
the subject see also the books by Raether [5]. More
recent results are summarised e.g. in the extensive and
thoroughly written reports by Zayats and co-workers
[6,7]. Surface plasmon physics still raises many funda-
mental questions concerning radiation–matter inter-
action and optics [8–16], which are interesting in
themselves. At the same time, this rapidly growing

field of research will surely impact many branches of

science and technology [17].
One of the main characteristics of the SPOs is their

very large electromagnetic fields concentrated at the

interfaces of metals and dielectrics. To our knowledge,

such an enhancement was first discussed by Fano [18]

in 1938. Recently this phenomenon has become the

subject of extensive research, because on the basis of it

high-order nonlinear processes can be induced even at

relatively moderate intensities of an incomig radiation

which excites the SPOs [19–25]. For instance in [22] the

authors report on the observation of high-harmonic

generation (HHG) from an argon gas jet, in the

extreme ultraviolet, induced by a field of a Ti:Sapphire

laser pulse, which was resonantly enhanced through

surface plasmons within a metallic nanostructure. As

for the theory of such experimental findings, one

would think at first glance that, at least from the point

of view of the generation itself by a single atom, there

are no new elements needed to interpret this results,

because the interpretation of HHG has long received

a well-established theoretical framework [26–28].

However, in the case of surface plasmon excitation

the modal structure of the radiation near the surface is

considerably different from that in free space, and this

circumstance has to be taken into account [29] too. The

HHG process induced directly by high-intensity laser

fields on metal surfaces of thick samples has also been

a subject of extensive research earlier [30], and both
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classical and quantum mechanical [31,32] interpreta-

tions have been worked out. On the other hand, if a

thin metal layer is excited through a dielectric (say in

the Kretschmann geometry [33]), the enhanced field of

the generated surface plasmons may govern the light

emission process. The light emission can be quite

satisfactorily interpreted e.g. as resulting due to the

surface roughness, which secures the momentum con-

servation in the ‘light to SPO’ and ‘SPO to light’

conversion processes. In the quantum description there

appears an interaction Hamiltonian due to surface

roughness which already couples these two different

kinds of electromagnetic radiation [34]. Usually the

coupling is described by a phenomenological interac-

tion term, and there are several techniques to generate

SPOs through surface-geometrical effects, as is sum-

marised e.g. by Zayats et al. [7]. In our present paper

we study the quantum mechanical coupling of a strong

external plasmon field to the photon field through an

assembly of free electrons, and we do not explicitly

take into account surface roughness. According to this

description, the high-harmonic generation on thin

metal films is a result of multiple-plasmon scattering

on a free electron gas inside the metal. This may seem

to be an analogous process to the multiphoton

Compton scattering by free electrons, which has an

extensive literature (see e.g. [35] and references

therein). More precisely, the process to be considered

is spontaneous emission of photons by an electron
reflected by the metal surface in the presence of a

high-intensity SPO field. At this point let us note that

very likely several theoretical approaches, which have

long been worked out to treat nonlinear processes

taking place directly in high-intensity laser fields, could

be implemented in the recent investigations of pro-

cesses induced by the strong enhanced SPO fields. The

present paper may be considered as a contribution

belonging to this direction of the theoretical research.
In continuing our recent work on light emission by

surface plasmon oscillations [36,37], the immediate

motivation for the present study is the apparently

strange results of our experiments [38] in which we

measured the intensity dependence of light emission

(fundamental and second harmonic) generated by a

moderately intense laser radiation from a thin film of

gold on a glass prism. The measured slope of the

signal-intensity curve manifestly deviated from that

one would expect on the basis of earlier treatments,

even if one takes non-perturbatively into account the

field enhancement too. In the following we shall give

a theoretical description of the light emission process,

in the frame of which the basic features of the

above-mentioned experimental results can be

interpreted.

In Section 2 we shall briefly summarise the main
steps leading to the explicit form of the electromagnetic
fields of the SPOs, and give a physical background for
the key parameters naturally appearing in the analysis.
A particular emphasise shall be put on the clear
distinction between the scattering (evanescent) waves
of the EM radiation and the SPO fields generated at
the metal–vacuum interface. Section 3 is devoted to the
discussion of the general analytic form and physical
content of the wave functions of an electron dressed by
the surface plasmon field. In Section 4 the transition
probabilities of the spontaneous emission of photons
by an electron reflected at the metal surface in the
presence of the high-intensity SPO field are given. The
analytic results obtained shall be used in a few
numerical examples to illustrate the intensity depen-
dence, the degree of nonlinearity and the angular
distribution of the emitted light signal. In Section 5 a
brief summary closes our paper.

2. Generation of the enhanced scattering fields

and SPOs

In the present section we give a quantitative picture of
the enhanced fields appearing at plane interfaces
separating a metal layer and dielectrics. The spatial
distribution of the SPO fields in single- and
multiple-film structures and their dispersion relations
have been investigated in detail, for example, by
Economou for lossless systems [39]. Burke et al. [40]
have given a thorough analysis of propagation of
SPO-like waves guided by thin, lossy metal films, and
they have also discussed the question of wave
launching. Here we will not enter into the discussion
of this important problem, rather, we shall merely
summarise the basic ‘kinematic’ characterisation of the
fields.

In the Kretschmann geometry [33] we have to
consider the solutions of the Maxwell equations in
three regions shown in Figure 1. Region 1 (z4d ) is
filled with a dielectric, which represents e.g. a glass
prism of index of refraction n1 ¼ "

1=2
1 . The metal layer

occupies region 2 (05z5d ) of thickness d and of
(in general complex) dielectric constant "2 ¼ n22. In the
experiments region 3 (z50) is often simply air, which
can practically be considered as vacuum with the
dielectric constant "3¼ 1. The solutions of the
Maxwell equations automatically fall into two classes
of independent waves; the transverse magnetic (TM: B
is perpendicular to the x–z scattering plane) and the
transverse electric (TE: E is perpendicular to the x–z
scattering plane) waves, which are also called
p-polarised and s-polarised waves, respectively. In
each case both Ex and By have to be continuous at
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the glass–metal (z¼ d ) and the metal–air (z¼ 0)
interfaces. If we take a common pure harmonic
temporal dependence exp(�i!t) of the TM fields, then
for By the Helmholtz equation ð@2x þ @

2
z þ K2ÞBy ¼ 0

follows, where K2
� (!/c)2". In the scattering problem

under discussion the fields are usually modelled by
superpositions of plane waves of the form
exp[i(KxxþKzz)] with four unknown constant ampli-
tudes determined by the inhomogeneous set of linear
algebraic equations stemming from the boundary
conditions. In Figure 1 the capital letters F1, G2, F2

and G3 label the reflected, the first refracted, the second
reflected and the second refracted (transmitted) waves,
respectively. These waves are directly induced by the
incoming field of amplitude F0 6¼ 0, and they represent
scattering states. If the angle of incidence �0 is smaller
than the angle of total reflection �t (see below), then G3

represents a free running wave. For �0 larger than �t,
this refracted wave becomes evanescent (bound to the
metal–air interface). The small letters f1, g2, f2 and g3
denote the amplitudes characterizing the SPO eigen-
modes in the dielectric–metal–vacuum system. They are
solutions of a set of homogeneous linear algebraic
equations (F0¼ 0) whose determinant must vanish in
order to have nontrivial solutions. As is suggested in the
figure, all these latter waves are evanescent.

According to the above considerations, the com-
plex magnetic induction and the electric field strength
of a p-polarised plane wave in regions 1, 2 and 3 can be

explicitly expressed as

B¼ eyBðzÞexp½iðKxx�!tÞ�,

E¼ ðc=i!"Þ½ex@zBðzÞ� iezKxBðzÞ�exp½iðKxx�!tÞ�: ð1Þ

Here ex,y,z denote unit vectors pointing along the

corresponding positive coordinate axes. In the above

equation we can either take Kx¼K0 sin �0 with

K0� (!0/c)"1, or Kx¼ k1x, depending on whether we

are dealing with scattering waves or with the SPO

eigenmodes of wave numbers ksp� k1x(!). The bound-
ary conditions (the continuity of Ex and By at the

interfaces) are equivalent to the requirement that B(z)

and @zB(z) be continuous at both of the planes defined

by the relations z¼ d and z¼ 0. As is illustrated in

Figure 1, the scattering states are represented by the

wave functions

B0ðzÞ �

n1ðF0 expð�iK1zzÞ þ F1 expðþiK1zzÞÞ

ðz4 d Þ,

n2ðG2 expð�iK2zzÞ þ F2 expðþiK2zzÞÞ

ð05 z5 d Þ,

n3G3 expð�iK3zÞ

ðz5 0Þ,

8>>>>>><
>>>>>>:

Kð1,2,3Þz � ð!0=cÞ "ð1,2,3Þ � "1 sin
2 �0

� �1=2
¼ ið!0=cÞ "1 sin

2 �0 � "ð1,2,3Þ
� �1=2

, ð2Þ

where n1 (!0/c)sin �0¼K1x�Kx is the x-component of

the wave vector of the incoming field. If �0 is larger

than the angle of total reflection �t (defined by the

equation n3¼ n1 sin �t, and �t¼ 41.81� in our case), then

K3z¼þijK3zj is purely imaginary, and G3 corresponds

to an evanescent wave in region 3. The wave functions

given by Equation (2) represent the electromagnetic

field configuration induced by an incoming radiation

whose electric field strength reads

E0 ¼ ðex cos �0 þ ez sin �0ÞjF0j

�cos !0 t� n1
x sin �0 � z cos �0

c

� �
þ ’0

� �
, ð3Þ

where ’0 is the phase of the complex amplitude F0.
The wave functions Bsp(z) of the SPO eigenmodes

look similar to B0(z) of Equation (2), but there are also

crucial differences between them. On one hand, they do

not contain the inhomogenity term, and, on the other

hand, they are evanescent both in regions 1 and 3,

i.e. they are bound to both of the interfaces, moreover,

in general they spatially decay along the positive

x-direction. The mode function of the SPO reads

BspðzÞ �

n1f1 expð�k1zzÞ ðz4dÞ,

n2ðg2 expðk2zzÞþ f2 expð�k2zzÞÞ ð05z5dÞ,

n3g3 expðk3zzÞ ðz50Þ,

8<
:

kð1,2,3Þz¼ k21x�ð!=cÞ
2"ð1,2,3Þ

� �1=2
� ð!=cÞ "1 sin

2 �0 � "ð1,2,3Þ
� �1=2

ð4Þ

F0 F1

f1

G2&g2 F
2

& f
2

G3&g3

G3

DIELECTRIC(1)

METAL(2)
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x

z

0
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˜

Figure 1. Illustrates the TM electromagnetic field configu-
ration excited by a plane wave of amplitude F0 impinging on
the metal layer from the dielectric an angle of incidence �0.
The z-coordinate is measured in units of the skin depth �,
which is typically �22.5 nm in our experiments. The freely
propagating waves are symbolised by red arrows, and the
evanescent waves are symbolised by black arrows. For
further details see the main text. (The colour version of this
figure is included in the online version of the journal.)
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with k1x� ksp and Re[k(1,3)z]40. In Equation (4) we
have introduced the complex angle �0 by the definition
ksp� (!/c)n1 sin �

0 in order to emphasise the formal
analogy between the formulas to that of Equation (2).
From the set of four linear algebraic equations,
obtained from the boundary conditions, the ampli-
tudes F1, G2 and F2 can be expressed in terms of G3,
where

G3¼ ð4n1B=n3Þexp½iðK2z�K1zÞd �F0=D0,

D0� ðAþ1ÞðBþ1Þ� ðA�1ÞðB�1Þexpð2iK2zd Þ, ð5aÞ

F1¼ ½ðAþ1ÞðB�1Þ� ðA�1ÞðBþ1Þexpð2iK2zdÞ�

�F0 expð�2iK1zd Þ=D0,

F2¼ ðn3=2n2Þð1�AÞG3, ð5bÞ

G2 ¼ ðn3=2n2Þð1þ AÞG3,

A � ðn2K2=K2zÞðK3z=n3K3Þ,

B � ðn2K2=K2zÞðK1z=n1K1Þ: ð5cÞ

Similarly, f1, g2 and f2 can be expressed in terms of
g3, but now, in the homogeneous case we have an
indeterminate equation for g3, 0¼Dsp � g3,

Dsp� ðaþ1Þðbþ1Þ� ða�1Þðb�1Þexpð�2k2zdÞ, ð6aÞ

f1 ¼ ½ð1þ aÞ þ ð1� aÞ expð�2k2zd Þ�

� g3 expðþk2zdþ k1zd Þ,

f2 ¼ ðn3=2n2Þð1� aÞ g3, ð6bÞ

g2 ¼ ðn3=2n2Þð1þ aÞ g3,

a � ðn2k2=k2zÞðk3z=n3k3Þ,

b � ðn2k2=k2zÞðk1z=n1k1Þ: ð6cÞ

The determinants D0 and Dsp defined in Equations (5a)
and (6a), respectively, correspond to two distinct,
mathematically and physically different situations.
The scattering problem can have a physically acceptable
solution only if D0 6¼ 0 (in the expression of G3 in
Equation (5a), the denominator must not be zero). On
the other hand, the homogeneous problem (correspond-
ing to the free eigenoscillations of the dielectric–metal–
dielectric system) can have nontrivial solutions only if
the determinantDsp¼ 0 vanishes. As is well known, this
latter condition defines the propagation constant ksp(!)
of the SPO through a transcendental equation. If
jk2zd j	 1 (i.e. in the case of a relatively thick layer),
according to Equation (6a), the condition Dsp¼ 0
becomes approximately the equation a¼�1 (from
which the well known implicit dispersion relation
ksp¼ (!/c)["2"3/("2þ "3)]

1/2 can be derived). Quite sim-
ilarly, if in Equation (5a) j exp (2iK2zd )j
 1, then the
determinant D0 (and hence the denominator in the

expression forG3) gets close to zero ifA approaches�1.
If we take "2¼�"Rþ i"I, with both "R and "I positive,
and, moreover if we assume that "I
 "R, then in the
exponent we have approximately �(4�d/�0)("Rþ 1)1/2.
The factor in front of the square root is 0.711 in our
case, where d¼ 45 nm, and �0¼ 795 nm, i.e. in cases we
are interested in, the exponential factor is much less
than unity (exp[�(4�d/�0)("Rþ 1)1/2]¼ 0.025 if we take
"R¼ 25.81 for a gold layer). By varying the parameters
of the incoming field the amplitudes may undergo a
resonant change (e.g. enhancement) in the ranges where
the determinant D0 gets close to zero. The value of this
determinant is governed by the parameters A and B,
whose dependence on the angle of incidence �0 is
displayed in Figure 2 in the special case "1¼ (1.5)2,
"2(!0)¼�"Rþ i"I¼�25.82þ i1.63 and "3¼ 1. The
numerical value of "2 has been taken from Johnson
and Christy [41].

Im(A)

Im(A)Re(A)

Re(A)

Im(B)

Im(B)

–1 –1

0 20 40 60 80

–6

–4

–2

0

2

4

6

q0 (degree)

A
 (

q 0)
 a

nd
 B

 (
q 0)

Figure 2. Shows the dependence on the angle of incidence �0
of the parameters A and B defined in the second row of
Equation (5). Besides the �0-dependence, these parameters
depend on the frequency of the incoming radiation through
the permittivities. We have taken "1¼ 2.25, "2¼�25.81þ
i1.63 and "3¼ 1. We note that A and B do not depend on the
thickness d of the metal layer. The dielectric in region 1
represents a glass substrate of index of refraction n1¼ 1.5, the
metal layer in region 2 is assumed to be gold, and for region 3
we have taken vacuum. The numerical value of "2 has been
taken from [41]. The exciting radiation field comes from a
Ti:Sapphire laser of wavelength 795 nm whose photon energy
is 1.5627 eV. The curves labelled by ‘Im(A)’, ‘Re(A)’ and
‘Im(B)’ represent the imaginary and the real part of A and
the imaginary part of B, respectively. The horizontal thin line
labelled by ‘�1’ and represents the constant function ¼ �1.
At the angle of total reflection �t¼ 41.81� the parameter A
changes from almost purely imaginary to almost purely
negative real numbers, and at the critical angle
�c¼ 42.84� ¼ �tþ 1.03� its real part takes the value �1. The
parameter B is almost purely imaginary throughout the
whole angular range 0�5�0590�, which is why we have not
shown its real part. (The colour version of this figure is
included in the online version of the journal.)

Journal of Modern Optics 83

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
r
o
o
,
 
N
o
r
b
e
r
t
]
 
A
t
:
 
0
6
:
0
4
 
2
 
A
u
g
u
s
t
 
2
0
1
0



In Figure 3 we have plotted the relative modulus

squared of the amplitudes of the induced field
components as functions of the angle of incidence. At

the critical angle �c¼ 42.84� ¼ �tþ 1.03� the amplitude
F1 of the reflected wave drops practically to zero in a

narrow angular range of half width of about 0.4�. In
Figure 3(a) we see a clean example of the attenuated

total reflection (ATR) in the Kretschmann geometry in
the case of ideal plane interfaces. Figure 3(d ) shows
that around �c the transmitted intensity �jG3j

2

undergoes a considerable resonant enhancement of
magnitude �150 relative to the incoming intensity

�jF0j
2. This phenomenon is usually interpreted as a

consequence of the spatial compression at the metal–

vacuum interface of the waves impinging from the
other side onto the dielectric–metal interface and
tunneling through the thin metal layer.

For small enough frequencies (!0
!p¼plasma

frequency) the dispersion relation of the SPO approx-
imately coincides with that of a free plane wave of light

propagating in vacuum. If !�!0, then the resonance
condition D0
 1 at �0¼ �c for the determinant defined
in Equation (5) is essentially equivalent to the disper-

sion relation Dsp¼ 0 of the SPO (see Equation (6)),
provided we make the replacement ksp�Kx¼ (!0/c)�

n1 sin �c�!0/c. In this case the parameters of the SPO
approximately coincide with that of the forced oscilla-

tions, i.e. a�A and b�B (see the defining equations in
Equations (5) and (6)). As is seen in Figure 3(a), the

reflected field is practically zero, and the incoming

laser field is converted to surface plasmon oscillations

in the ATR process. In the case of 100% conversion

efficiency [7], we assume jg3j � jG3j ¼ gjF0j, where we

have introduced the enhancement factor g for the

amplitudes. We have checked that at resonance the

relative phase of G3 and F0 is zero, thus the SPO

‘inherit’ the phase of the incoming field, so we are

allowed to take g3� gF0.

3. Dressed state of a metallic electron embedded

in the enhanced field of SPOs

In the present section the SPO field is considered as a

(‘strong’) classical external field, and its effect in the

Schrödinger equation of the electron will be taken into

account non-perturbatively. In general, one can say

that in the frame of this kind of description the

transition probability amplitudes of high-order plas-

mon absorption or emission processes can be obtained

in a one-step perturbation calculation, where the

perturbation represents the effect of the other

(‘weak’) agents (e.g. as below in the next section, in

the case of light emission by the SPO, the interaction

with the quantised mode of the spontaneously emer-

ging photon will be considered as a perturbation).
First of all we have to have the explicit form of the

electric field strength of the SPO, which is to be

inserted into the interaction term in the Schrödinger

equation. From Equations (1), (4), (6b), (6c), and on

the basis of the considerations at the end of the

previous section, in the metal layer the wave numbers

and the electric field strength of the SPO can be

expressed as

k2x ¼ ksp ¼
!0

c
1þ

1

2ð"R � 1Þ
þ i

"I

2ð"R � 1Þ2

� �
,

k2z ¼
!0ð"R � 1Þ1=2

c
1þ i

"I
2ð"R � 1Þ

� �
,

ð7aÞ

Espðr, tÞ ¼ gjF0j expð�x=2LspÞ expð�z=2l2Þ

� ½ð"R � 1Þ�1ez cosð!0t
00 þ ’0Þ

� ð"R � 1Þ�1=2ex sinð!0t
00 þ ’0Þ� ð05 z5d Þ,

ð7bÞ

Lsp � j2 Im½ksp�j
�1 �

ð"R � 1Þ2

2p"I
�0, ð7cÞ

l2 �
�0

4pð"R� 1Þ1=2
t00 � t� ðn1 sin �cÞ

x

c
þ

"I

2ð"R� 1Þ1=2
z

c
:

ð7dÞ
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Figure 3. Shows the relative modulus squared of the
amplitudes of the field configuration generated by an incom-
ing plane wave as functions of the angle of incidence. Parts (a),
(b), (c) and (d ) show the intensities of the reflected, refracted,
the secondary reflected and secondary refracted (transmitted)
waves, respectively. The geometry of the scattering is
illustrated in Figure 1. The thickness d of the metal layer has
been taken to be 2� �¼ 45 nm, the other parameters used in
the calculations are the same as in Figure 1.
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The relative numerical accuracy of the above approx-
imate expressions is of order of "I/2("R� 1)2 (which is
�0.001 in our case). In Equation (7c) we have
introduced the ‘propagation length’ Lsp of the SPO
(the 1/e-length of the spatial energy distribution along
the x-axis), which is �61.6� �0¼ 49 mm for "R¼ 25.82
and "I¼ 1.63. In the ‘retarded time parameter’ t00

introduced in Equation (7d) the factor n1 sin �c� 1þ 1/
[2("R� 1)] is practically unity (the resonance angle �c
differs from the angle of total reflection �t only by
about one degree). In region 3 (in vacuum), with the
same accuracy as above, we have

k3x ¼ ksp ¼
!0

c
1þ

1

2ð"R � 1Þ
þ i

"I

2ð"R � 1Þ2

� �
,

k3z ¼
!0

cð"R � 1Þ1=2
1þ i

"I
2ð"R � 1Þ

� �
,

ð8aÞ

Espðr, tÞ¼ gjF0jexpð�x=2LspÞexpðz=2l3Þ

� ½ez cosð!0t
0 þ’0Þ� ð"R�1Þ�1=2ex sinð!0t

0 þ’0Þ�

ðz50Þ, ð8bÞ

l3�ð"R�1Þ1=2�0=4p t0 � t�ðn1 sin�cÞ
x

c
�

"I

2ð"R�1Þ3=2
z

c
:

ð8cÞ

Thus, at the metal–vacuum interface the incoming field
given by Equation (3) is transformed to SPO fields
represented by Equations (7b) and (8b). Of course,
these expressions are meant here only for positive
values of x (in the frame of our description the SPO is
generated at x¼ 0, where the electron, by scattering on
a potential irregularity, converts energy from the
enhanced evanescent wave to the surface plasmon
oscillations, securing the extra momentum needed for
the resonant coupling). We note that, according to our
approximate analytic estimate, the enhancement factor
g of the field amplitudes in Equations (7b) and (8b)
behaves like g/ exp[(2�d/�0)("Rþ 1)1/2] in the param-
eter range we are considering. We note that if we use
the Drude free electron model [49], then we obtain
g� 30 for the system under discussion.

It is seen in Equation (8b) that in vacuum the SPO
has an elliptically polarised electric field whose longi-
tudinal x-component is smaller by a factor of ("R�
1)1/2� 5 than the z-component perpendicular to the
metal surface. Inside the metal, on the other hand, the
longitudinal component is larger by this same factor
than the perpendicular one, so, this latter is smaller by a
factor of ("R� 1)� 25 compared with its value in
vacuum. The fields inside the metal exponentially
drop to their 1/e-value within the distance of �0/
31.3� 25.4 nm. In the ‘retarded time parameters’ t00

and t0 defined in Equations (7c) and (8c), respectively,

the factors of z/c are much smaller than unity, so

henceforth in the phases of the field we shall use the

common notation t0 � t� (n1 sin �c)x/c, i.e. !0t
0 ¼

!0t�Kxx. In the following we set ’0¼ 0 for the initial

phase, which means that possible carrier-envelope

phase difference effects [13] are not discussed here (in

the experiments we have used �120 fs ‘long’ pulses

containing �46 cycles).
The Schrödinger equation of an electron interact-

ing with the SPO field in the r �E-gauge

Ĥe eðr, tÞ ¼ i�h@t eðr, tÞ, Ĥe ¼
p̂2

2m
þ VðzÞ þ er � Esp,

ð9Þ

where p̂ ¼ �i�hr is the electron’s momentum operator

in coordinate representation, and the strong external

field Esp has been given in Equations (7b) and (8b). In

the present paper we use the Sommerfeld step potential

model for the metallic electrons, thus in the

Hamiltonian given by Equation (9) we take V(z)¼

V0[�(�z)� 1], i.e. V(z)¼ 0 for z50 and V(z)¼�V0

for z40. This means that we confine ourselves to the

discussion of processes taking place at the metal–

vacuum interface. The stationary solutions of the

unperturbed Schrödinger equation of an electron are

superpositions of plane waves,

 eðr, tÞ ¼ rjp
� 	

t
� ð1=LÞ exp½ði=�hÞð pxxþ pyy� EtÞ�’Ez

ðzÞ,

ð10aÞ

where E¼ExþEyþEz and Ex,y ¼ p2x,y=2m � 0. The

function ’Ez
(z) is a solution of the well known barrier

problem of scattering on a step potential of depth

V0¼EFþAw (see e.g. [42]), where EF is the Fermi

energy (¼5.51 eV for gold) and Aw is the work function

(¼4.68 eV for gold), respectively. Depending on the

energy associated with the z-motion, one has three

kinds of solutions for the function ’Ez
(z). We shall only

need the form of ’ð0ÞEz
ðzÞ for negative energies

(�V0
Ez50),

’ð0ÞEz
ðzÞ ¼

m

hp0

� �1=2
exp � i

�h p0z
� �

þ
p0�iq0
p0þiq0

exp þ i
�h p0z

� �
for z4 0,

2p0
p0þiq0

exp þ 1
�h q0z

� �
for z5 0,

8>><
>>:

ð10bÞ

p0 � 2mV0 � q20
� �1=2

,
q20
2m
� jEzj ¼ �Ez: ð10cÞ

The electron propagates freely both inside and outside

the metal (except in the negative z-direction for

energies Ez50, when its momentum is imaginary),

the interaction is limited to the z¼ 0 plane, where the

reflection and transmission may take place. In both
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regions the fundamental solutions of Equation (9) can

be taken as modulated plane waves of the form

� eðr, tÞ ¼ r� rclðt
0Þ


p� 	

t

¼ N expfði=�hÞ½p � ðr� rclðt
0ÞÞ � Et�g

� exp½�ihðt0Þ�, ð11aÞ

rclðt
0Þ � fxclðt

0Þ, 0, zclðt
0Þg

xclðt
0Þ � ag�0�� 0 sinð!0t

0Þ,

zclðt
0Þ � bg�0�� 0 cosð!0t

0Þ, ð11bÞ

a ¼ ð"R � 1Þ�1=2,

b ¼
ð"R � 1Þ�1, 05 z5 d,

1, z5 0,

(

�0 � ðeF0=mc!0Þ, �2
0 ¼ 10�18I0�

2
0, ð11cÞ

where N is a normalisation factor. The real function

h(t0) in the exponent on the right-hand side of Equation

(11a) is a simple periodic function of the retarded time

t0, which drops out from the transition matrix elements

to be calculated in the next section, so its explicit form

is not of interest here. In region 3 (z50) the

z-component of the momentum of an evanescent

electron is defined as

pz ¼ � 2mðEz �UspÞ
� �1=2

,

Usp � g2�2
0ð2mc2Þ=8 ¼ 5:14� 10�14g2I0�

2
0 ðz5 0Þ,

ð12Þ

where the ‘ponderomotive energy shift’ Usp of the

electron comes as an average effect stemming from the

SPO. This shift can play an important role in field

enhanced multiphoton photoelectric emission from

metal films [19,20]. Usp is measured in eV if on the

right-hand side of Equation (12) I0 and �0 are measured

in W cm�2 and mm, respectively. In Equation (11b) we

have introduced the components of the classical trajec-

tory rcl(t), along which the electron oscillates in the SPO

field according to the Newton equation m€rcl ¼ �eEsp.

The dimensionless ‘intensity parameter’ m0 introduced

in Equation (11b) plays a crucial role in nonlinear

processes. Its numerical value can be calculated from

the last equation in Equation (11c), where the intensity

I0 and the central wavelength �0 of the incoming laser

field are measured in Wcm�2 and mm, respectively. It is

important to note that in obtaining Equation (11a) the

x-dependence in t0 has been taken into account only

parametrically, like in the dipole approximation (where

we use mere time-dependence). Similarly, we have

considered the smooth profile functions of the ampli-

tudes, exp(�x/2Lsp) and exp(�z/2l2,3) merely as func-

tions of the parameters x and z. This is justified if the

amplitudes of the classical oscillations xcl(t) and zcl(t)

are much smaller than the wavelength �0, which can be

satisfied if gm051. Concerning the method of para-
metric substitution (see [43–45]), where it has also been
shown that the de Broglie wavelength of the free
electron has to be considerably smaller than the
wavelength of the radiation, for a reliable approxima-
tion. One can easily calculate that e.g. �dB/�0¼ �h!0/pc
�10�4 even for thermal electrons. We note that the
dressed states shown in Equation (11a) are general-
isations of the so-called Volkov states, which have been
extensively used in the theory of strong-field laser–
matter interaction phenomena from the very beginning
[46]. An analogous but, on the other hand, a special
form of these dressed states was first used by Bunkin
and Fedorov [47] in their treatment of laser-induced
cold emission (optical tunneling of electrons) from
metal surfaces.

4. Photon emission during multiple-plasmon

scattering by a metallic electron

In order to describe spontaneous light emission by the
dressed electron, we have to solve the Schrödinger
equation of the joint system of an electron interacting
with the SPO field and the quantised EM field of the
photons,

i�h@t CðtÞ


 	

¼ Ĥ CðtÞ


 	

, Ĥ¼
p̂2

2m
þVðzÞþ er �Espþ er � ÊQ,

ð13Þ

where p̂ ¼ �i�hr is the electron’s momentum operator,
and the strong external field representing the surface
plasmon oscillations, Esp has been given in Equations
(7b) and (8b). For the electric field strength ÊQ of the
spontaneously emitted radiation in vacuum we will
take the following approximate form after Elson and
Ritchie [34],

ÊQðr,tÞ ¼
X
k

ð
dkzð4�h!=L2Þ

1=2

� k̂ðckz=!Þcosðkzzþ�Þþ iezðck=!Þsinðkzzþ�Þ
h i
� âþk,kz expði!tÞ� â�k,kz expð�i!tÞ

 �

expð�ik � rÞ

ðz50Þ, ð14aÞ

k� ðkx,ky,0Þ � ðksin�Þk̂¼ ðksin�Þðcos’, sin’,0Þ,

kz¼ ð!=cÞcos�, ð14bÞ

! � c k2 þ k2z
� �1=2

,

sin � ¼
kz"R

ð"R þ 1Þðk2 þ k2z"RÞ
� �1=2 ,

½âk, kz , â
þ

k0, k0z
� ¼ �k, k0�ðkz � k0zÞ: ð14cÞ

(We show the expression only for the p-polarised
components, because – as will be proved below – the
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emission of s-polarised photons are forbidden.) The

summation and integration with respect to the wave

numbers {k, kz} of the emerging photons in Equation

(14a) is limited to k-space regions where !5!p,

because the metal layer is transparent for larger

frequencies, and the mode functions have a different

form to that given here. The form of the quantised field

in Equation (14a), given by Elson and Ritchie [34],

corresponds to the approximation in which we con-

sider a semi-infinite losslessmetal ("I¼ 0) occupying the

half-space 05z. We have checked by a couple of

numerical calculations that in the case of a finite lossy

metal layer illustrated in Figure 1, the reflection

coefficients of the quantised modes are not consider-

ably less than unity. In particular, if the polar angle �
(with respect to the negative z-axis) is close to 90�, then

the reflection coefficients are close to 100%, thus this

approximation is justified (this is also supported a

posteriori by the results obtained for the angular

distributions of the spontaneously emitted photons,

which peaks around �70�). We also note that for

higher order harmonics (n!4!p) the dielectric–metal

system is practically transparent, and then, to a good

approximation, we can work with the usual free-space

expression of the electric field strength of the quantised

radiation [35],

Êðr, tÞ ¼ i
X
k, s

esðkÞð2p�h!=L3Þ
1=2
h
âk, s exp½iðk � r� !tÞ�

� âþk, s exp½�iðk � r� !tÞ�
i
, ð15Þ

where the subscript ‘s’ refers to the two independent

linear polarisations belonging to the propagation

vector k¼ (kx, ky, kz). Concerning the mode density,

one essential difference between Equations (14a), (14b),

(14c) and (15) can be immediately seen, namely the

presence of the extra factors ckz=! ¼ kz=ðk
2 þ k2zÞ

1=2

and ck=! ¼ k=ðk2 þ k2zÞ
1=2 on the right-hand side of

Equation (14b). These factors are partly responsible

for the modification of the kinematics (in other words,

for the modification of the angular distribution) of the

spontaneous emission, due to the presence of the metal

boundary. The transition matrix elements of the

spontaneous emission can be calculated in a very

similar manner as has been done in the earlier works of

one of us [31,32]. For the initial and final states of the

electron we take dressed states of the type given in

Equation (11a)

Tfi ¼�ði=�hÞ

ð1
�1

dt � ef

� 

½e � rVðzÞ� � ei



 	
exp½ði=�hÞðE0 �EÞt�

� ðe=m!2Þð4�h!=L2Þ
1=2
ðck=!Þ

� sinðkzþ �Þexp½ið!tÞ�

¼�2pi
X
n

t
ðnÞ
fi �ðE�E0 þ n�h!0� �h!Þ, ð16Þ

where the Dirac delta expresses the conservation of

energy E0 þ �h!¼Eþ n�h!0. This means, that n plas-

mons are absorbed by the electron and the energy is

converted to the sum of the final electron energy and

the energy of the spontaneously emitted photon. If the

change in the electron’s energy is small, then

the spectrum of the emitted radiation is peaked at the

harmonic frequencies !¼ n!0. This is the case in

specular electron reflection at the metal–vacuum inter-

face. If we do not assume this specular reflection, then,

in the frame of the present description, we cannot

account for the narrow spectra measured in the

experiments. The sum with respect to n in Equation

(16) has been derived from the Fourier expansion of

the periodic modulation factors in the dressed states by

taking Equations (11a) and (11b) into account, and

using the Jacobi–Anger formula expðiz sin ’Þ ¼P1
n¼�1 JnðzÞ expðin � ’Þ, where Jn(z) denotes the ordi-

nary Bessel function of the first kind of order n [48].

From Equation (16) we immediately see that the

emission of s-polarized photons are forbidden (the

gradient of V(z) is necessarily pointing to the z-direc-

tion, so a vector e in the plane of the interface is of

course orthogonal to that). On the basis of Equation

(16) the production rates of the nth harmonic photons

can be brought to the form

dPn

dO
¼ �0	f

2ð�ÞG2ð
Þ

�





X
k

nFðunþkÞJnþk½ag�0ðc=�h!0Þð px � p0xÞ�

� Ik½ g�0ðc=�h!0Þðj pzj þ j p
0
zjÞ�






2

, ð17Þ

f ð�Þ �
2"Rðsin 2�Þ

ð"R þ 1Þðsin2 � þ "R cos2 �Þ
� �1=2 , ð17aÞ

FðunþkÞ �
1

1þ iunþk
,

unþk � 2½ px � p0x þ ðnþ kÞ�hKx � �hkx�Lsp=ðnþ kÞ�h,

ð17bÞ

Gð
Þ �
sin




, 
 � ð py � p0y � �hkyÞL=�h, ð17cÞ

where 	¼ e2/�hc ffi 1/137 is the fine structure constant,

and �0¼!0/2�. In obtaining Equation (17) we have

used the relation Jn(iz)¼ inIn(z), which connects the

ordinary Bessel functions Jn(z) and the modified Bessel

functions In(z) of the first kind of integer order. In

order to complete the calculation, the above formula for

the production rate still should be integrated with

respect to the possible initial and final electron
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momenta p and p0, respectively, by taking into account
the conservation of energy E0 þ �h!¼Eþ n�h!0 and the
corresponding Fermi distribution. This has been
approximately done in a similar case in [31], with the
conclusion that this procedure leads to a spreading in
energy of order of DE� 4� kT� 0.1 eV (at room
temperature, T¼ 293K, kT� 0.025 eV). The relative
energy spread DE/EF� 0.018 would correspond to the
spectral width D�� 0.018� �0¼ 14.3 nm, which is quite
close to the experimental value [38]. In Equation (17)
G2(
) vanishes for L!1, unless ky is zero. Thus, the

wave vector of the emitted photon lies in the x–z plane

(the scattering plane). In Equation (17) the angle

between the negative z-axis and the k-vector of the

emitted photon is denoted by �, thus its wave vector has
the form k¼ (!/c)(sin �, 0, cos �). In the rest of

the present section we give some illustrations of the

numerical results on the basis of the formula for the

differential production rates given by Equation (17).
The dashed lines in Figure 4 show that in the

intensity range we have considered the linear depen-

dence to be reproduced, which comes out when one

treats the SPO field perturbatively. The strong devia-

tion from the perturbative results are clearly seen. It is

remarkable that the enhanced signals do not saturate,

at least in this intensity range, rather, their slope

remains positive for large intensities. This behaviour

is in agreement with our measurements [38].
As is shown in Figure 5, without enhancement, the

well known perturbative results are reproduced, i.e.

S1� I for the fundamental, and S2� I2 for the second

harmonic radiation. On the other hand, the degree

of nonlinearity of the signals stemming from the

enhanced field, strongly deviates from the perturbative

results in a complicated way.
It can be shown that for low intensities of the

incoming radiation (when e.g. m0¼ 10�4 for a

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

q (degree)

(sin q)µ  |f (q) | 2

Figure 6. Shows the angular dependence of the fundamental
(red curve) and the second harmonic (blue curve) normalised
photon production rates in the low-intensity case, when
I0¼ 1010Wcm�2 has been assumed, and the enhancement
factor has been taken to be g¼ 1501/2. In the figure the
function 1.6� (sin �)jf(�)j2 has been plotted on the basis of
the defining equation, Equation (17a). For the quantitative
difference between the curves the use of the different
dielectric constants is responsible. For !¼!0 the value
"R¼ 25.82, and for !¼ 2!0 the value "R¼ 5.71 has been
taken. (The colour version of this figure is included in the
online version of the journal.)
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Figure 4. Shows the intensity dependence of the fundamental
(a) and the second harmonic (b) dimensionless production
rates (dPn/d�)/(3� 10�5	�) according to the formula given
by Equation (17) at �¼ �max. The dashed and the full lines
refer to results with no field enhancement and with
enhancement of magnitude g2¼ 150. Because the enhanced
signals are much larger than the signals with no enhance-
ment, we have divided their value by 1500 for the funda-
mental and by 1450 for the second harmonics, respectively.
The dashed lines show that in the intensity range we have
considered the linear dependence is reproduced, which comes
out when one treats the SPO field perturbatively, though the
second harmonic also shows almost linear behaviour. This is
because the interference terms in Equation (17) are playing
an important role. The strong deviation from the perturba-
tive results are clearly seen. (The colour version of this figure
is included in the online version of the journal.)
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Figure 5. In this we show the dependence of the ‘degree of
nonlinearity’, @ logS/@ log I, where S stands for the signal
intensity. The labelling of the curves are the same as in Figure
4. In the case of no enhancement, the slope of the signals
gives a perturbative dependence. The dashed lines show that
(a) @ log S1/@ log Iffi 1 and (b) @ log S2/@ log Iffi 2 in the whole
intensity range. This corresponds to the well known pertur-
bative results, S1� I for the fundamental radiation, and
S2� I2 for the second harmonic. The degree of nonlinearity
of the enhanced signals strongly deviate from the perturba-
tive results in a complicated way. (The colour version of this
figure is included in the online version of the journal.)
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Ti:Sapphire laser of intensity I0¼ 1010Wcm�2), even by
taking into account the field enhancement, the angular
distribution of the emitted light is essentially governed
by the function f(�) defined in Equation (17a). This
function does not depend on the intensity, but it is
sensitive to the frequency through the frequency-
dependent permittivity "2(!). In Figure 6 we have
plotted the angular distributions of the fundamental
("R¼ 25.82) and of the second harmonic ("R¼ 5.71)
signals, by using exclusively the function f(�).

According to this Figure 6, the distribution of the
fundamental radiation is peaked around �ð1Þmax ¼ 70�,
and the second harmonic has a maximum at about
�ð2Þmax ¼ 60�, and this latter is broader than the former
one. For the detailed discussion of the angular distri-
bution for larger incoming intensities than
�1010W cm�2 we have to thoroughly investigate the
numerical behaviour of the sum of the products of the
Bessel functions in the formula of the production rates
given by Equation (17). This will be one of the subjects
of our future work concerning non-linear surface
plasmonics.

5. Summary

In the present paper we have given a theoretical
analysis of the enhanced surface-plasmon-assisted
spontaneous radiation of a metallic electron. First, in
Section 2 we have discussed the kinematics of the
generation of the occasionally very high-intensity
evanescent electromagnetic fields and surface plasmon
oscillations at the metal–vacuum interface of a dielec-
tric–metal–vacuum system. We have determined the
spatial distribution and the amplitude of this field, and
have given a couple of numerical examples which are
relevant in our recent experiments. In Section 3, after
having determined the interaction term to be put into
the Schrödinger equation, the dressed quantum states
of the electrons embedded into the high-intensity SPO
field have been derived. In Section 4, on the basis of
these dressed states, we have determined in a one-step
perturbation calculation the transition matrix elements
of the multiple-plasmon-assisted spontaneous emission
of photons in the SPO environment. Here we have
given a general formula for the absolute production
rates of the harmonic components for arbitrary high
order. As a first result, it follows from our theory that
the emitted radiation must exclusively be p-polarised,
in agreement with the experiments. We have made an
estimate on the relative bandwidth of the radiation,
and illustrated the unusual characteristics of the
emitted radiation with the help of some typical
numerical examples, as applications of our analytic
results. It has turned out that, due to the large

enhancement of the exciting laser fields in the vicinity
of the interfaces, a considerable distortion of the
intensity distribution of the signal appears, like in our
recent experiments. Finally, we have given a special
example, relevant only in the low-intensity case, for the
angular distribution of the emitted fundamental and
second harmonic radiation. In general, we have found
a good qualitative agreement between the predictions
of the present theory and our recent experimental
findings on enhanced and nonlinear light emission at
metal surfaces. According to the apparent harmony
between theory and experiment, we conjecture that the
light signals measured in our recent experiment are
stemming from multiple SPO conversion during the
scattering on the free electrons which are reflected
specularly at the metal surface.

We think that the theoretical method presented
here may also find applications in analysing other
plasmon-induced nonlinear processes, like for instance
high-order electron emission from thin metal films.

Acknowledgements

This work has been supported by the Hungarian National
Scientific Research Foundation OTKA, Grant No. K73728.
The authors thank the unknown referees for the constructive
critics and for many valuable suggestions made by them,
most of which have been taken into account in the final
version of the present paper.

Note

1. Stratton [1] writes at the beginning of Section 9.28 of his
book that ‘The classical investigation of the effect of
a finitely conducting plane upon the radiation of an
oscillating dipole was published by Arnold Sommerfeld
in 1909. Since that time an enormous amount of work
has appeared on the subject and it may be fairly said no
aspect of the problem of radio wave propagation has
received more careful attention.’ On pp. 584–585 a brief
summary of the early history of electromagnetic surface
waves is given, and in Section 9.28 a detailed discussion
of the problem is presented. Section 11 of Sommerfeld’s
fundamental paper [2] is devoted to the discussion of
the analogies between the propagation of radio waves
and optical waves in the vicinity of a plane interface
separating a dielectrics and a conducting medium
(metal). This was the first hint that surface waves may
play an important role in the visible part of the
electromagnetic spectrum.
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