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PACS. 61.30.Gd – Orientational order of liquid crystals; electric and magnetic field effects on
order.

PACS. 61.72.Cc – Kinetics of defect formation and annealing.
PACS. 61.72.Ff – Direct observation of dislocations and other defects (etch pits, decoration,

electron microscopy, X-ray topography, etc.).

Abstract. – In homeotropically aligned nematics with negative dielectric anisotropy the
electrohydrodynamic instability occurs above a bend Fréedericksz transition. In the presence
of a magnetic field �H parallel to the liquid crystal slab, ordered roll patterns with a well-
defined uniform wave vector �kid appear above the onset of convection. By rotating the cell
around an axis perpendicular to the slab by a small angle α, one can manipulate the system
into a state with wave vector �k = �kid + ∆�k, where ∆�k is roughly perpendicular to �kid. We
have studied experimentally the motion of defects, which then move essentially perpendicular
to the rolls. The direction as well as the magnitude of the velocity as a function of ∆�k agrees
with predictions of the weakly nonlinear theory. In particular, we obtain evidence for the
nonanalyticity for ∆�k → 0.

Introduction. – The structure and dynamics of topological defects in quasi–two-
dimensional dissipative systems undergoing a transition to a spontaneous, stationary, periodic
stripe (or roll) pattern has attracted much attention over the years [1, 2]. Here the defects
are dislocations where a periodic unit (roll pair) ends or begins (positive/negative topological
charge). Generally one expects the defects to move easily along the rolls (“climb”), since the
(ideal, infinite) system has a continuous translational symmetry along this axis. In this way
a roll pair is either added or eliminated from the system. Thus motion of defects represents a
mechanism for change, and possibly selection of the wavelength, which can typically take on
values within a band bounded by secondary instabilities.

Similarly, motion of defects perpendicular to the rolls (“glide”) changes the orientation of
the roll pattern. Thus, such motion can provide a mechanism for selection of the orientation.
This, however, is relevant only in systems with an externally imposed anisotropy. Also, since
the displacement of a defect across the rolls does not correspond to a continuous translational
symmetry of the system, the orientation selection is not necessarily perfect, i.e. the pattern
provides some pinning against glide.

Near the threshold of the primary instability leading to the periodic pattern (we assume
a supercritical bifurcation) these general concepts can be made explicit by using the weakly
c© EDP Sciences
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nonlinear description in terms of universal amplitude equations. In anisotropic situations
this is the (real) Ginzburg-Landau equation (GLe), which can be derived from a minimizing
potential [3]. Also, in this regime, the selection of the orientation is expected to become
essentially perfect because spatial variations of the amplitude then become slow on the scale
of the wavelength of the pattern, which eliminates pinning. Accordingly, at given value(s)
of the control parameter(s) one has an ideal (“background”) wave vector �kid corresponding
to the potential minimum where isolated defects do not move (“band center”). For nonzero
background wave vector mismatch ∆�k = �k−�kid, defects are expected to move perpendicular to
∆�k in a way that |∆�k| decreases. The relation of the velocity v vs. |∆�k| obtained from the GLe
is nonlinear. In particular, it involves a weak (logarithmic) nonanalyticity for ∆k → 0 [2,4,5].

Electroconvection (EC) in planarly aligned nematic liquid crystals (LCs) is the prime
example for anisotropic convection [6]. Here the preferred axis is fixed by the direction of
surface anchoring of the director n̂ describing the average molecular orientation of the LC.
In the normal-roll regime �kid ‖ n̂. The predictions described above regarding the direction
of motion and the order of magnitude of the speed were verified in early experiments with
the background wave vector controlled (within some limits) by structured electrodes [7]. At
the same time, good overall semi-quantitative agreement was found in experiments on the
same system with the wave number controlled by making use of the frequency dependence of
the critical wave number [8, 9]. This method limited the accessible mismatch to changes of
the background wavelength, i.e. ∆�k ‖ �kid, which only induces climb. Also, large negative
mismatch of the wave number was excluded. Most importantly, the region of small ∆k
could not be resolved accurately, presumably because of the presence of other defects, which
introduce a cutoff of the singularity. Thus, the nonanalytic behavior for ∆k → 0 could not be
verified. In fact, the results could not discriminate against a theory presented in [8] where an
ad hoc gauge field was introduced to provide a cutoff for the nonanalyticity. This limitation
was overcome in recent work by introducing controlled creation of defect pairs by a laser
beam [10]. The resulting velocity curves gave evidence for the nonanalytic behavior.

Homeotropically aligned nematic LCs, on the other hand, where EC appears above a bend
Fréedericksz transition, offer the possibility to control the anisotropy by an additional planar
magnetic field �H [11]. In fact, the preferred axis can be varied by rotating �H with respect to
the sample after the pattern has formed. Thus a mismatch leading predominantly to glide can
be introduced in a very convenient and accurate way. In this paper we present experiments
in this system, which, for the first time, give quantitative results on glide. The results clearly
exhibit the curvature of v(|∆�k|) demonstrating the logarithmic nonanalyticity for ∆k → 0 for
the case of glide motion.

Experimental setup. – Two of the usual capacitor-type cells were used with a thin slab of
nematic (x-y plane) sandwiched between two glass plates coated with transparent electrodes
(ITO). The plates were separated by spacers, which determined the thickness of the LC layer
d as 27µm (cell c1) and 79.5µm (cell c2), respectively. The area of the cell was of the order
of 1 cm × 1 cm. Homeotropic anchoring of the director was achieved by coating the inner
surfaces of the plates with a layer of the surfactant dimethyloctadecyl [3-(trimethoxysilyl)-
propyl]ammonium chloride. The cells were filled, respectively, with the nematic materials
Phase 5A (Merck) (c1) and MBBA mixed with 0.16% wt. of a blue anthraquinone dye (D16
from BDH) (c2). For the parameters of the LC materials, see [12]. The cells have been sealed
in order to avoid aging effects in the LC materials. In fact, their conductivity remained fairly
constant during the experiments.

An ac voltage (rms voltage V , frequency f) was applied across the LC slab (‖ z) by a PC-
driven function generator. Additionally, a magnetic field �H was applied in the x-direction,
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which tends to align the director parallel to it. The value of the magnetic induction was
103mT, which corresponds to 0.27HF (where HF is the magnetic bend Fréedericksz threshold)
in the case of c1 and to 0.88HF in that of c2. The cell was mounted on a holder, which could
be rotated by a stepper motor around the z-direction by 1.54◦ per step.

The temperature of the LC cell was stabilized at 25.0 ± 0.1 ◦C by a thermostated water
circuit.

An area of the cell up to 1mm2 was observed by means of a long-range microscope with
working distance of about 30 cm. The convection pattern was visualized by the shadowgraph
method [13] in light polarized parallel to �H passing the cell in the z-direction. A CCD camera
was mounted onto the microscope and connected to a frame grabber card that digitized the
images with a spatial resolution of 512 × 512 pixels and 256 gray scales.

The measurements of the defect motion were performed at 850Hz, 8.17V (ε = V 2/V 2
c −1 =

0.031) for cell c1 and at 1050Hz, 14.05V (ε = 0.028) for cell c2. This was well within the
range of stable normal rolls, which towards low frequencies is bounded by the Lifshitz point
fL, VL (crossover to oblique rolls at threshold) and towards high frequencies by the crossover
to the dielectric range at fcr, Vcr [6]. We had fL = 645Hz, VL = 7.48V and fcr = 1952Hz,
Vcr = 62.41V for cell c1, and fL = 875Hz, VL = 11.77V, fcr

∼= 2500Hz, Vcr
∼= 100V for

cell c2. By increasing the voltage the transition to abnormal rolls [14] sets in at 8.35V, i.e.
ε = 0.077 (c1), and 14.6V, i.e. ε = 0.11 (c2), respectively.

Experimental methods. – Initial states with well-isolated defects in a rotated cell were
created by two methods:

i) A voltage jump from a negative ε to a positive value into the defect turbulent range
(ε ≈ 0.2) led to the creation of a large number of defects. This was followed by another jump
to the measuring voltage, where defects annihilated. We waited until one defect was found
near the rotation axis of the cell, separated from other defects by at least 500µm. Then the
cell was rotated. This method was applied to c1 as well as to c2.

ii) Exclusively in cell c2 another method was also applied, which created only one pair of
defects at a chosen position [10]. The beam of a He-Ne laser of 0.1mW power was focussed
to the middle of the cell heating up the LC locally without disturbing the observation of the
patterns. The spot size was of about the period of the pattern (a roll pair). The blue dye
enhanced the absorption of the beam energy which could be regulated by filters. Heating
reduces Vc, thus ε was increased locally, which quickly led to the creation of a pair of defects,
see fig. 1(a). The laser was switched off and after the rotation the defects started to move in
opposite direction, if |α| was large enough and the appropriate sense of rotation was chosen.
In case the desired mismatch was too small to drive the two defects apart, initially a larger
α was applied in order to separate the defects; subsequently the cell was rotated back to the
chosen angle for the measurement.

After the rotation the system relaxed rapidly to a state with the adjusted background
wave vector �k away from �kid ‖ �H, which induced the defect motion as a mechanism to reduce
the mismatch. Relaxation of the defect into its final constant-velocity configuration is slower.
The procedure was carried out for defects of both topological charges and rotations in both
senses by angles |α| = n × 1.54◦ with 0 < n ≤ nf . The upper limit nf can be associated
with the Eckhaus stability limit of the patterns (see below). It was 6 and 9 for cells c1 and
c2, respectively. Exceeding this limit slightly led rapidly to a spontaneous creation of defects.
Also within the Eckhaus stable range [15,16] there was a slow relaxation towards �kid, which we
attribute to the creation of defects at inhomogeneities. Although for larger n the relaxation
was faster, there remained, for n < nf , a time window for measuring the defect velocity. Figure
1(b) shows a defect after the rotation of the cell. Also shown is �kid together with the actual
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Fig. 1 – Snapshots of c2 (different magnifications). a) Creation of a defect pair (encircled) by a laser
beam (bright spot); b) single defect after rotation of the cell; c) extracting the position of a defect
from the phase φ of the demodulated complex amplitude Ad. Equiphase lines are superposed on the
underlying pattern; white lines: Re(Ad) = 0; black lines: Im(Ad) = 0; region 1: 0 < φ < π/2,
region 2: π/2 < φ < π, region 3: π < φ < 3/2π, region 4: 3/2π < φ < 2π. The defect is located
where the white and the black lines cross.

wave vector �k and the expected direction of the velocity �v of the defect perpendicular to the
mismatch ∆�k. One has |∆�k| = 2|�kid| sin (α/2).

The location of the defect was determined by a demodulation method described in [17] (see
fig. 1(c)), which is an extension of the method used in [8–10] to two dimensions, for a sequence
of times separated by intervals ∆t chosen between 40 and 15000 ms. The measurement was
stopped when the direction of the rolls as determined from a two-dimensional FFT with an
accuracy of 0.95◦ for c1 and 1.32◦ for c2, was detected to have changed or other defects came
too near. Figure 2(a) shows examples of trajectories of defects with positive charge for three
angles α (x-axis parallel to �H). The motion of the defects is (on average) mostly glide (note
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Fig. 2 – a) Examples of defect trajectories with linear fits for cell c2. Circles: α = 3.08◦, ∆t = 20 s;
triangles: α = 6.16◦, ∆t = 10 s; crosses: α = 10.78◦, ∆t = 10 s; b) average direction of motion of the
defect as determined from linear fits. Triangles: cell c1; circles: cell c2. The solid line denotes the
relation between α1 and α corresponding to �v ⊥ ∆�k; the dashed line denotes simple glide motion.
Insert: the displacement 〈D〉 of a defect vs. time averaged over many runs for cell c2, α = 3.08◦.
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Fig. 3 – Determination of the parameters of the GLe for cell c2. a) Demodulated normalized amplitude

|Ad| of a defect parallel (circles) and perpendicular (squares) to �k. The fit curves provide ξ‖ and ξ⊥.
b) Decay of contrast for εf = −0.1 with an exponential fit exp[σt]. Insert: decay rates σ vs. εf giving
τ−1
0 = σ/εf (dashed line: cell c1, solid line: cell c2).

the different scales for x and y). The velocity �v obtained by dividing the displacements by ∆t
exhibits a modulation which results from the defects crossing the roll pattern in their glide
motion. To remove this modulation, the speed |�v| was averaged over the trajectory. The mean
direction of �v was estimated by fitting to the discretized trajectory (actually, a linear fit turned
out to be sufficient) defining an angle α1 with respect to �H. In this way averaged values for |�v|
and α1 for a run with fixed ∆�k were determined. This whole procedure was repeated at least
ten times with averaging over subsequent runs (altogether at least 300 space-time coordinates
contributed to the determination of the velocity for each ∆�k). This was necessary in order to
smooth out the inherent modulation of the velocity due to pinning to the roll pattern (see fig.
2(a)). The efficiency of this technique is illustrated in the insert in fig. 2(b) which shows the
time evolution of the distance 〈D〉 of a defect from its initial position averaged over several
runs. Since pinning is absent in the case of pure climb, trajectories are smoother and this
kind of averaging over many runs was not necessary there [8–10]. The error bars shown in the
results below represent the rms standard deviations of the different runs.

Results and discussion. – The angle α1 which defines the (averaged) direction of motion
of the defects with respect to �H is plotted against α in fig. 2(b). The direction of the motion
was found to be perpendicular to ∆�k, as expected from the theory. For given α defects of
opposite charge moved in opposite directions.

The theoretical prediction for the absolute value of the velocity vs. mismatch as obtained
from the GLe is given by [4,5]

Vln(V0/V) = 2K(1 − 0.35K2) , (1)

with the scaled velocity V = τ0√
ε

√
(v2

x/ξ2
‖ + v2

y/ξ2
⊥), mismatch K = 1√

ε

√
(∆k2

xξ2
‖ + ∆k2

yξ2
⊥),

and V0 = 3.29. Note the logarithmic singularity at K = 0.
In order to compare with the experiments, it is necessary to determine the coherence

lengths ξ‖ and ξ⊥ of the pattern as well as the correlation time τ0 (extrapolated to ε = 1).
The first were determined by a fit of the demodulated amplitude |Ad| for a static defect
(α = 0) to a corresponding numerical solution of the GLe [4] (see fig. 3(a)). The values of the
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Fig. 4 – a) Comparison between experiment (symbols) and theory (lines) of the velocity v vs. mismatch
∆k for defects with positive and negative charge (empty and full symbols, respectively) in cell c1
(triangles/dashed lines) and c2 (circles/solid lines). b) Same data, but average of absolute value for
positive and negative defects in dimensionless units. The theory (eq. (1)) is given by the solid curve.
The other curves are obtained from eq. (1) with altered values of V0 (dashed: V0 = 4.1, dotted
V0 = 2.9).

coherence lengths averaged over ten defects were ξ‖/d = 0.17±0.03 and ξ⊥/d = 0.09±0.02 for
c1, and ξ‖/d = 0.12±0.02 and ξ⊥/d = 0.07±0.02 for c2. The correlation time was determined
by recording the decay of the contrast of the pattern at band center after a jump from a small
positive ε (≤ 0.02) to various negative values εf and fitting it to the function exp[σt] with
σ = εf/τ0. Figure 3(b) shows an example of this fit and plots (insert) of σ vs. εf for both cells
(performing the fit with the full decay function of the GLe leads to insignificant corrections).
We obtain τ0 = 0.191 ± 0.021 s for c1 and τ0 = 0.717 ± 0.075 s for c2. The parameters are
near to the theoretical results given in ref. [12] for planar MBBA for a comparable frequency,
namely ξ‖ = 0.25, ξ⊥ = 0.13, and τ0/d2 = 0.11ms/(µm)2.

The final results are shown in fig. 4. In fig. 4(a) v is plotted vs. the magnitude of ∆�k
for both cells distinguishing between the two topological charges. The theoretical curves were
calculated from eq. (1) using the measured parameters ξ‖, ξ⊥, and τ0. Finally, in fig. 4(b),
all data are plotted in the dimensionless units, where they collapse —within error— to a
single curve. Clearly the theoretical curve provides a much better fit (in particular for small
|∆�k|) than a linear relation between velocity and wave vector mismatch. In order to assess
the quality of the comparison between the experiment and the theory, we have included two
curves obtained from eq. (1) with the theoretical value 3.29 of V0 replaced by 4.1 (dashed)
and 2.9 (dotted), respectively.

This then is a strong indication for the existence of the logarithmic nonanalyticity at
∆k → 0 (as found also for climb in planar cells [10]). The logarithmic singularity is a signature
of the long-range deformation field surrounding a defect resulting from the diffusive behavior
of the phase in 2D. Its appearance is not restricted to the weakly nonlinear regime. The
results provide experimental evidence against the ad hoc theory presented in [8]. A cutoff of
the singularity is introduced by the system size or the distance to other defects.

Concluding remarks. – With the experiments presented here it was possible to measure
the velocity vs. wave vector mismatch curve in the full Eckhaus stable range for predominant
glide motion. Though modulations of the velocity, which arise from the motion across the
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underlying patterns were clearly detected, the averaged velocities behaved according to the
predictions of the weakly nonlinear theory. Particularly good resolution could be achieved by
using a relatively thick cell, which made it possible to demonstrate the nonlinear dependence
of the velocity on the mismatch.
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[12] Bodenschatz E., Zimmermann W. and Kramer L., J. Phys. (Paris), 49 (1988) 1875;
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