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Detailed analysis is given of the electromechanical effect in planar S liquid crystals. Experimental data
are presented for the amplitude of the vibration as a function of the frequency, applied voltage and
temperature. The existence and the frequency dependence of the linear electromechanical effect is
explained within the framework of a continuum theory.

INTRODUCTION

During the last few years chiral smectic C (S*) liquid crystals have found
themselves in the centre of interest because of their unique macroscopic “bulk”
properties. They exhibit spontaneous polarization,! which is linearly coupled to the
electric field thereby resulting in delicate electrooptical effects.” 1% While investigat-
ing electrooptical properties of planar oriented S* samples we recently found'! that
the reorientation of the director is accompanied by a vibrational motion of the
material.

At first glance this electromechanical effect looks similar to the effects observed
in piezo- and ferroelectric crystals.'>"'* However, there are important differences
and their physical origin is also different. The aim of the present paper is to describe
the detailed experimental results and to interpret them on the basis of the recently
developed electrohydrodynamic continuum theory of o R

EXPERIMENTAL

The behaviour of a planar S* liquid crystal in an applied quasistatic electric field
was investigated. The experimental set-up is shown in Figure 1.

A sandwich cell was used without any spacer. The lower glass was fixed whereas
the upper one was allowed to move against a spring in the direction parallel to the
lower glass and perpendicular to the helical axis.

A harmonic electric field E = Ege'®’ was applied to the sample in a direction
perpendicular to the glasses.

As reported earlier,’! in addition to the well-known switching?~® and helix
unwinding®~1° a new electromechanical effect was observed, namely the vibration of
the upper plate against the spring.
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FIGURE 1 Experimental set-up. The orthogonal vectors n, E and u indicate the direction of the helical
axis. the electric ficld and the displacement of the upper plate respectively.

FIGURE 2 Typical oscillogram. The lower curve corresponds to the applied voltage (U =55V, [ =1
kHz. attenuation X 10). The upper curve shows the signal of the pick-up. Its amplitude is proportional to
the displacement of the upper plate.
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FIGURE 3 Amplitude of pick-up signal vs. applied voltage for different frequencics.

Experiments were carried out on a liquid crystal binary mixture FK4'"® with the
phase sequence:

} — o 8y — B — B,
67°C 63°C 29°C 16°C

The pitch in the S* phase was about 5 pm and an unwound sample of 10 pm
thickness was used. The sample thickness was controlled with an accuracy of +2
pm and checked by capacitance measurement. The sample was thermostated and
visually observed by polarizing microscope.

The vibration of the upper plate was detected by a ceramic pick-up sensitive to
displacement below 5 kHz (with a typical sensitivity of 6-10 mV /um).

When the signal of the pick-up was displayed on an oscilloscope as shown in
Figure 2 it was found that the frequency of the vibration of the upper plate was
equal to the frequency of the applied electric field. A lock-in amplifier was used to
analyse the signal of the pick-up as a function of the amplitude and the frequency of
the applied electric field as well as versus the temperature of the sample. Our
experimental results are presented in Figures 3-5.

Figure 3 shows the vibrational amplitude as a function of the applied voltage. A
linear dependence was found for each of the frequencies.
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FIGURE 4 Amplitude of pick-up signal vs. frequency of the applied electric field.

In Figure 4 the vibrational amplitude is plotted versus the frequency of the
applied electric field for different voltages. Below a few hundred Hz a proportional-
ity was observed while at high frequencies a saturation was found.

In Figure 5 the temperature dependence of the electromechanical effect is shown.
The vibrational amplitude is plotted versus temperature for different frequencies.
These results show that the electromechanical effect in the S, and S phases is at
least one order of magnitude weaker than in S* and is within the limits of the
experimental error.

We would mention that the shape of the curves is similar to that of the shear
induced polarization measured by Pieranski e al®

Moreover in the S* phase the curve is reminiscent of the temperature dependence
of the helical pitch®® or that of the dielectric permittivity.” But in the last case the
permittivity increases with decreasing frequency while the electromechanical effect
becomes more intensive at high frequencies.

The electromechanical effect was detected for different sample thicknesses
(5 pm < d < 70 pm), and similar dependences on the electric field and temperature
were observed.

In the case of a homeotropic structure no electromechanical effect was found.

Finally, we should like to mention a very simple but powerful method for
qualitatively detecting the electromechanical effect. If one uses a rigid connection
between the upper plate and the membrane of a loudspeaker, the membrane
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FIGURE 5 Amplitude of pick-up signal vs. temperature. (The sensitivity of the pick-up used here
differs from that used in experiments shown in Figures 3 and 4.)

replaces the spring. The motion of the glass plate then makes the membrane vibrate
—_an effect that can simply be detected by listening to the loudspeaker. In fact in
the S* phase the pitch of the note produced by the electromechanical effect
corresponds to the frequency of the applied field. In the S, Ch and isotropic phases
this basic harmonic could not be heard and only a considerably weaker sound could
be detected but it was.an octave higher, i.e., the frequency of the vibration was twice
that of the applied electric field. This second harmonic indicates the existence of a
quadratic electromechanical effect in the higher temperature phases.

Though this quadratic effect exists in the S* phase too, it is hidden there by the
linear electromechanical effect discussed above. Consequently, it can be detected
only at relatively higher fields and lower frequencies in the form of second harmonic
distortions of the pick-up signal (compare Figure 6 and 2).

The main features of the experimental results are the following:

(a) The linear electromechanical effect exists in the chiral smectic C* phase
only.

(b) At low frequencies the amplitude of vibration is proportional to E = iwE.

We should now like to offer an interpretation of the phenomenon.
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FIGURE 6 Oscillogram from the electromechanical effect. The lower curve corresponds to a tenth of
the applied voltage (U = 70 V, f= 540 Hz). The upper curve shows the signal of the pick-up. The
appearance of the second harmonic can be seen.

INTERPRETATION

Since the upper plate of the set-up moves parallel to the smectic layers this motion
should result from molecular displacements within the layers. Usually a smectic C
layer can be regarded as a two-dimensional liquid because of the lack of positional
ordering; consequently, the molecular motion in the layers may be considered a
shear flow rather than an elastic displacement. This means that the physical process
resulting in the observed electromechanical effect of S* must be different from that
which is present in piezo- or ferroelectric solids."*'* This is also reinforced by the
fact that, in contrast to solids, there is no static electromechanical effect in the S¢*
phase.

A continuum theory has been developed recently in order to explain the be-
haviour of uniformly layered S* in the presence of an electromagnetic field.">-17 It
has been shown that due to chirality and the biaxial symmetry of S* liquid crystals
there exists a cross-effect between dielectric relaxation and viscous flow. This
electromechanical coupling leads to the appearance of a mechanical stress propor-
tional to the time derivative of the applied electric field thus inducing a periodic
shear flow of the material. Due to this flow the liquid crystal exerts a force on the
upper plate resulting in a forced oscillation of that plate.

In the following simplified calculation we demonstrate quantlldtlvely that in our
geometry the above mentioned cross effect can actually explain the existence and
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the frequency dependence of -the observed linear electromechanical effect. (The
non-linear, quadratic effects, leading to frequency doubling will not be considered.)

The upper glass plate moves against a spring which exerts a restoring force
proportional to the displacement u of the plate (Figure 1). The upper plate thus
performs a forced oscillation governed by the equation of motion

mit = —ku + F9, 4 (1)

where m is the mass of the plate, k is the spring constant, and F% is the force
exerted on the plate by the liquid crystal. This force is a surface force

Fé = j;zgdﬂ. (2)

where o is the mechanical stress tensor of the S, df is a surface element pointing
outward from the sample, and the integration should be carried out over the whole
surface © of the upper plate.

The flow velocity v can be determined from the equation of motion of the S*

pl.): = —v/olj + Fld‘ (3)

where p is the density, and F is the density of the electromagnetic volume
force. 517 This differential equation must be supplemented by the boundary
conditions:

v = 0 at the lower plate,

v = i at the upper plate. (4)

The S* material is taken to be incompressible and insulating; moreover. the
uniform layered structure does not appear to be distorted as is supported by
the optical observations. To proceed further, the continuum theory'*~!7 states that
the mechanical stress tensor must be written as

—. gt 65 I 66
0;; = 0~ LerE}: - Ll,/l«lvlvk* (5)
where o/, is its reversible part, E/ is the electric field in the co-moving frame, L
is the electromechanical coupling tensor, and LS, is the viscosity tensor. (Hereafter
the notations of References 15-17 are used.)

Our calculation will be carried out in the laboratory frame, (Figure 7), with axes

given by the electric field E (x-axis), the direction of displacement u ( y-axis), and
the smectic layer normal n (z-axis). Thus

E=(E,00), u=(0u,0), n=(0.01). (6)

The position of the C-director ¢ is characterized by the azimuthal angle ¢ (Figure
)

¢ = (sing,cos ¢,0). (7)
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FIGURE 7 Smectic C* coordinate system. The smectic C* molecules form a layered structure; the
z-axis is parallel to the layer normal. The average direction of the molecular long axes defines the unit
director field d. The molecules tilt away from the layer normal n by angle #. The projection of d onto the
layer plane defines the C-director ¢, which makes an angle ¢ with the y-axis. The ferroelectric
polarization P, is perpendicular to ¢ and lies in the layer plane.

The fixed lower plate corresponds to the plane x = 0; the upper plate is positioned
at x = d.
Let us now introduce some simplifying assumptions:

(a) The dimensions of the sample in the y and z directions are much greater
than the sample thickness and the pitch; this means that there are no side effects so
the y dependence can be neglected.

The electromechanical effect has been observed for thick samples having undis-
torted helical structure as well as for thin ones where the helix is unwound by the
surfaces. This suggests that the z dependence of the C-director in the sample does
not influence essentially the effect, consequently the z dependence can also be

neglected, i.e., in our simplified calculation all physical quantities depend on x only.

(b) A material flow normal to the layers is incompatible with the smectic
structure thus v, = 0. As long as v, = 0 at the glass plates (see Equation (4)) and the
incompressibility requires v,0, = 0, it follows that v, = 0, L.e.,

v= (0, v_),,O). (8)
(c) It is supposed that the velocity of the material flow is small, ie., it is

sufficient to keep terms linear in v and E. This makes it unnecessary to differentiate
between the laboratory frame introduced above and the co-moving material frame
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which was used when developing the continuum theory."*"!7 It means that the
electric field in the two frames is identical E = E’; the magnetic field is zero.

(d) If a harmonic voltage U = Uge'" is applied, the electric field in the medium
1s

E (x,t)=E(x)e™" (9)

We are interested only in the linear electromechanical effect; thus, neglecting higher
harmonics, we can take

g E) = ue'", gilxd)= v(x)e™". (10)

(¢) o/, in Equation (5) is connected with the reversible deformations of the S*
material, i.e., with the reorientation of the C-director, while the other terms describe
irreversible processes. Visual investigations have shown that the electrooptical
effects. like switching?~? or helix unwinding,® ' are not influenced by the vibration
of the upper plate. It suggests that the reversible changes of the C-director can be
handled separately from the irreversible shear flow, thus we can take o/, = 0.

In our experimental geometry with the above assumptions one gets for the
equation of motion (3) of the S material

_ d av A
opo(x) = — —= | —n(x) 5= = V(x)iwE(x) (1)
dx dx
with
p(x) =py, + PsSinz‘P cos’g
and

y(x) = [Y5 - (vt 2Y5)C052(p]5in(p.

where pg, py, are viscosities, and v, Ys are electromechanical coupling constants.
@(x) would describe the C-director in the sample, but this function is unknown. It
should be calculated from the equation of motion of the C-director'®'7 but
unfortunately it cannot be solved exactly. Since the sample has a planar orientation,
the C-director has to be parallel to the plates (strong anchoring at the boundaries),
ie, ¢ =0or ¢ = +m must be fulfilled at x = 0 and x = d.

This means that p(x), y(x) and E(x) in Equation (11) can be expanded into a
Fourier series as follows

T
p(x) = peg + #(”sin(gx) + higher harmonics,
v(x) = Y(”Sm(gx) + higher harmonics,

7 7
E(x) = 8[1 + asin(—(jx) + Bcos(gx)] + higher harmonics.
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Supposing that it is sufficient to retain the first nonvanishing harmonics, Equa-
tion (11) finally becomes

_ d dv U m
iwpv(x) = — a{—pmg; + zwjymsm(gx)}. (12)
where
1 ng
Pegr = M1 T gﬂs’ Yerr = 1+ 2a/7
and

d 2a
Uy= [E(x) dx = 6(1 3 —)a’

0 v

is the amplitude of the applied voltage. This equation is supplemented with the
boundary conditions for the velocity (see Equation (4)):

v(0) =0, v(d) = iwu.

With the approximations listed above the equation of motion of the upper plate
becomes

dv
—mwu= —ku— Qu g . (13)
ax x=d

These equations can now be solved exactly resulting in the following expression for
the amplitude of vibration:

U, 27 Ad/2cth Ad/2
u=ivYg—N "3 T , (14)
d 72+ Nd?*k—mo® + iopQActh Ad
where A = \Jiwp /[ -
In the low frequency limit Equation (14) yields the asymptotic formula
(w—0)=i Y szz ! (15
u(w )—twyc“d - )

This formula shows that for low frequencies the displacement of the upper plate
is proportional to w in accordance with our experimental results (see Figure 4).
Equation (15) gives a good approximation of Equation (14) below the natural
frequency f, = (l/2w)\/k/m of the system.

f, has been determined experimentally applying a voltage to the loudspeaker and
measuring the amplitude of vibration of the upper plate versus frequency. Depend-
ing on the quality of the alignment and the sample thickness we obtained f; =
300-600 Hz, a value which is in good agreement with the data in Figure 4.
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SUMMARY

A periodic electric field induced mechanical vibration of the same frequency was
detected in a SX* mixture. It was proved experimentally that this linear electrome-
chanical effect exists in the ferroelectric phase only. In contrast to piezoelectrics, a
static field does not induce deformation.

The phenomenon is interpreted as a result of a new cross-effect termed electro-
mechanical coupling. Our model is in good qualitative agreement with the experi-
mental results.
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