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Electrically induced patterns in nematics and how to avoid them

N. Éber, P. Salamon and Á. Buka

Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary

ABSTRACT
Electric field-induced patterns in liquid crystals have been observed and studied for about 50 years.
During this time, a great variety of structures, detected under different conditions, have been
described; theoretical descriptions were also developed parallel with the experiments and a huge
number of papers have been published. The non-vanishing interest in the topic is due to several fac-
tors. First, most experimentalists workingwith new (or evenwell-known) liquid crystals apply sooner
or later an electric field for different purposes and, as a response, often (maybe undesirably or unex-
pectedly) have to face with emergence of patterns. Second, understanding the complexity of the
formation mechanism of regular patterns in a viscous, anisotropic fluid is an extremely challenging
theoretical task. Third, specialists in display fabrication or in other applications are also interested
in the results; either to make use of them or in order to avoid field-induced patterns. In this review,
we attempt to provide a systematic overview of the large amount of published results, focusing on
recent achievements, about the three main types of electric field-induced patterns: transient pat-
terns during the Freedericksz transition, flexoelectric domains and electroconvection. As a result of
different instability mechanisms, a variety of patternmorphologies may arise. We address the physi-
cal background of the mechanisms, specify the conditions under which they may become effective,
discuss the characteristics of the patterns, and summarize the possibilities of morphological transi-
tions induced by frequency, voltage or temperature variations. Special emphasis is given to certain
topics, which recently have gained enhanced interest from experimental as well as theoretical point
of view, like driving with ultra-low frequencies or non-sinusoidal (superposed) waveforms, and the
dynamics of defects and embedded colloidal particles. Assisting newcomers to the field, we also
mention some, yet unresolved, problems, which may need further experimental and/or theoretical
studies.
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1. Introduction

The motivation to review and summarize this topic is
obvious; in the large number of liquid crystal (LC) exper-
iments aiming at understanding basic phenomena (fun-
damental research) as well as in the majority of the LC
applications the sample is subjected to electric field. It can
lead to a great variety of phenomena depending onmany
parameters. It is essential for both research and technol-
ogy to know and predict the field-induced effects; specifi-
cally, whether the applied voltage induces a homogeneous
state or a structured one. Some researchers intend to
study patterns, thus they will prefer them; others, on the
contrary, want to avoid patterns regarding them as dis-
tractions.Whatever is the actual aim, the onset condition
of a pattern is the essential information for a given sys-
tem. One has to calculate and/or measure the stability
limit, which defines the border between the pattern form-
ing and the initial state. Knowing that, one can decide,
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whether to remain on the stable or on the unstable side
of this limit.

Nematic liquid crystals are vital commodities of our
age of information technology; the various devices based
on themboosted new branches of the industry and highly
contributed to the development of the economy. The
great scientific and commercial success of nematics is due
to their unique virtues. They possess a long-range ori-
entational order characterized by their cylindrical sym-
metry axis, the director n, which leads to anisotropic
physical properties and thus allows easy alignment via
interactions with bounding surfaces and with external
(electric or magnetic) fields [1,2]. While typical applica-
tions (liquid crystal displays) are relied on the homogene-
ity of the initial and the realigned state, liquid crystals,
being in principle nonlinear systems, are easily subjected
to pattern forming instabilities [3]. In the present review,
we will focus on patterns induced by an electric field.

© 2016 Informa UK Limited, trading as Taylor & Francis Group
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In a vast majority of scientific studies as well as in
applications, nematic liquid crystals are sandwiched as
3–50 μm thick layers between two substrates (either glass
or flexible polymer plates), which are coated with trans-
parent electrodes (typical area: 1–400mm2); thus, the
samples have a large (> 100) aspect ratio. In the inves-
tigations presented below, a similar geometry is uti-
lized. Applying an electric field along x, y or z to a
nematic liquid crystal, homogeneously aligned in the
x–y plane (basic state), might lead to three types of
responses:

(a) no change in the structure (i.e., the basic state is
stable);

(b) transition to a state distorted only along z, but still
homogeneous in the x–y plane (e.g., a uniform
Freedericksz transition [1,2]; Figure 1 depicts the
possible geometries);

(c) onset of a broad variety of three-dimensional pat-
terns [3] (spatially periodic or localized director
distortions, which brake the homogeneity in the
x–y plane).

Figure 1. The frame of reference and sketches of the three main
geometries (splay, twist and bend), where an electric field E
can induce a homogeneous deformation in a liquid crystal with
(a)–(c) positive (εa > 0) and (d)–(f ) negative (εa < 0) dielectric
anisotropy.

⊙
indicates out-of-plane direction of E. The double

arrow indicates the initial director n0.

Which of those will be realised is determined by the
combination of three sets of parameters. The first set
depends on the geometry of the system and includes the
initial director alignment n0 and the cell thickness d. The
second set contains the material parameters of the stud-
ied nematic. These include the dielectric permittivities
(ε⊥ and ε‖), the electrical conductivities (σ⊥ and σ‖)
and their anisotropies (εa = ε‖ − ε⊥ and σa = σ‖ − σ⊥),
the three elastic constants (K11, K22, K33), the six vis-
cosities (α1, . . . ,α6), the two flexoelectric coefficients (e1
and e3), etc. [1]. Finally, the third set specifies control
parameters, i.e., the characteristics of the applied electric
field by the magnitude of the applied voltage U, by its
waveform (which can be a constant, sinusoidal, square
wave, stochastic or their combination) and, in case of
AC driving, by its frequency f. For sinusoidal signals,
in the following, we will mean by U the root-mean-
square (rms) value. The set of control parameters might
include additional applied fields, e.g., a magnetic field or
shearing.

The parameter combinations, where the system does
not respond to the applied field [case (a) above], are
important for those who want to avoid patterns. These
include trivially the voltage ranges below the onset of
patterns, but may involve also more complex situations
(see, e.g., the case of ac + dc driving in Section 6.2).
Case (b), in general, does not form part of pattern for-
mation studies, except when non-equilibrium, transient
scenarios involving flow occur during the onset of the
deformation (see Section 2). It may also become rele-
vant, if the presence of the homogeneous deformation
is a prerequisite of pattern formation (see examples in
Section 4.1.2). The main emphasis of this work will be
paid to the great variety of patterns corresponding to the
situation (c).

Patterns involve a spatial variation of the director (i.e.,
of the optical axis). Due to the transparency and the
anisotropic optical properties of nematics, it can easily be
observed by optical techniques. Variation of the tilt angle
(the out-of-plane component) of the director changes the
effective refractive index and, as a consequence, the bire-
fringence of the sample. Commonly, the sample is placed
between the crossed polarizers of a polarizing micro-
scope (POM); then birefringence modulation appears as
a variation of the intensity and/or the colour of the image
[4]. In-plane (azimuthal) modulations of the director are
also detectable with POM, though in this case, using cir-
cularly polarized light as illumination (i.e., inserting a
λ/4 plate in the light path) might improve the perfor-
mance [5].

A spatially periodic refractive index modulation
caused by director gradients behaves like an array of
lenses, and periodically deflect the light path from the
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incidence direction. The resulting focusing/defocusing
effect leads to a spatial modulation of the transmitted
intensity (in addition to that owing to the birefringence),
called the shadowgraph image. The contribution of the
birefringence can be eliminated if only a single polarizer
(that ensuring illumination with extraordinary polariza-
tion) is used instead of the crossed ones. Moreover, the
shadowgraph image is observable even without polarizer,
though with lower contrast (as the light with ordinary
polarization is fully transmitted). Tedious calculations of
the light path through an inhomogeneous, anisotropic
system concluded that sharp shadowgraph images can
be obtained in three focal planes: when the microscope
is focussed in the middle of the sample or to certain
positions below and above it [6–8]. These focal positions
are, however, not equivalent. The periodicity of the shad-
owgraph image matches that of the director field (�)
only, when focussed in the middle of the sample. For the
other two positions, an apparent periodicity of �/2 is
observed.

Besides POM, light diffraction offers another possi-
bility to observe and study patterns, as the periodic dis-
tortion is equivalent to an optical grating. The far-field
diffracted image (which corresponds to the Fourier trans-
form of the actual pattern) can be visualized on a screen
and provides information, e.g., on the symmetry and the
wave vector of the pattern.

All three optical techniques mentioned above are suit-
able to study the electric field-induced patterns. Which
one is preferred depends on the actual pattern type. The
snapshot images included in the present review were
mostly (but not exclusively) prepared using the shadow-
graph technique.

Besides the morphology and threshold behaviour,
dynamics also belongs to the important characteristics of
patterns. In order to analyse the dynamics of the phenom-
ena driven by electric field, it is useful to list the typical
relaxation times of the system: the director relaxation
time τd, the charge relaxation time τq and the viscous
relaxation time τv, which are defined as

τd = (α2 − α3)d2

K11π2 , τq = ε0ε⊥
σ⊥

and τv = 2ρd2

α4
,

(1)
respectively (ε0 is the electric constant and ρ is the
density).

Assuming a nematic with typical material parameters
in a d=20-μm-thick cell, one has τd ∼ 1 s, τq ∼ 10−3 s
and τv ∼ 10−5 s. These timescales play either dominant
or negligible role, depending on their ratio to T = f−1,
the period of the applied AC electric field.

In the following sections, we attempt to give a non-
exhaustive description of three main types of electric

field-induced patterns: the transients during the Freeder-
icksz transition, the flexoelectric domains (FDs) and the
electroconvection (EC).

2. Pattern formation during a Freedericksz
transition

Freedericksz transition is commonly known as a field-
induced uniform deformation resulting in a state dis-
torted along z, but homogeneous in the plane of the
sample [case (b) above]. More precisely, this statement
applies to the final equilibrium state only, except when
the external field is increased beyond its threshold value
gradually, in very small steps (adiabatically slowly, to let
the system continuously acquire its equilibrium state). If,
however, the field is applied suddenly, in large steps, the
system is driven out of equilibrium and forms transient
patterns. Even in this case, the director configuration
will reach the final equilibrium state (that corresponds
to the destabilizing dielectric torque being compensated
by the elastic torque) after a period of time, but dur-
ing this time interval the system is out of equilibrium
and reacts by developing a more or less ordered periodic,
intermediate (transient) structure (Figure 2), which can
be well characterized by a typical wave vector q in the
Fourier space. The coupling between inhomogeneous,
time-varying director distribution and the fluid velocity
produces shear flow, which lowers the effective rotational
viscosity that explains the observed faster response of
the spatially periodic state than that of the homogeneous
distribution. The viscous effects are opposed by elastic
forces, which become important when the wavelength
reaches the order of the cell thickness.

Figure 2. Snapshot of a transient pattern taken in the splay
geometry on 5CB. The average wavelength is set by the cell
thickness (d = 100 μm) [9]. The double arrow indicates the initial
director n0. Crossed polars; the light polarization is parallel to n0.
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The first level of description involves the calculation
of linear growth rates ν(q) of individual Fourier com-
ponents as a function of the wave number and finding
the maximum of this quantity. The fastest growing wave
number gives, in many cases, a reasonable description
of the early stages of the pattern forming process, but
the procedure must be mistrusted for two reasons: (i)
the selectively amplified modes are initialized by thermal
fluctuations, whose spectrum should be relevant and (ii)
nonlinear effectsmay become important, or even decisive
already at an early stage; thus, the homogeneous (q=0)
mode may be suppressed by nonlinear interactions with
the q �= 0 modes.

Several experimental situations can be considered,
depending on the geometry (splay, twist or bend con-
figuration, see the typical Freedericksz geometries in
Figure 1) and on the applied field: electric or mag-
netic. While in the equilibrium Freedericksz transition,
the magnetically and electrically driven transitions are
analogous, it is not the case when transient patterns
occur.

In the splay geometry (Figure 1(a)), the wave vec-
tor of the magnetically driven stripes was predicted and
found to be parallel [10,11] or slightly oblique [12,13]
to the initial director x. On the contrary, in the electri-
cally driven case, stripes are parallel with the director [9].
The differences arise from two sources: (1) as a result
of anisotropic conductivity one has production of space
charges and (2) the diamagnetic susceptibilities and their
anisotropy are several orders of magnitude smaller than
the dielectric permittivities. Consequently, the magnetic
field remains homogeneous even in the distorted sample,
while, on the contrary, in the electrically driven case, both
effects (1) and (2) result in a nonuniform electric field
in the Freedericksz-distorted state perpendicular to the
director, which leads to transient stripes of very different
properties from those observed in the same sample under
magnetic field [14–16].

A three-dimensional (3D) linear stability analysis for
the electrically driven case, including both effects (1) and
(2), revealed that in the direction perpendicular to the
director, the homogeneous mode is the fastest growing
one here as well. Aweakly nonlinear calculation, however,
showed that, as a result of the two additional effects, a
wave vector perpendicular to the initial director can also
arise [15,16]. The theory also explains the experimen-
tally observed crossover from perpendicular to parallel
stripes, induced by changing the frequency of the elec-
tric field. The key feature is that the scenario is domi-
nated by the conductivity effects at low frequency and by
the dielectric permittivity at high frequencies. The two
material parameters have several orders of magnitude
difference, which makes the transition detectable.

In the twist geometry (Figure 1(b)), magnetically
induced stripe structures, oriented perpendicular to the
initial director alignment , were found [17–20]. Restrict-
ing the wave vector to the observed direction, i.e., within
a two-dimensional (2D) description, the linear growth
rates with realistic boundary conditions can be calculated
analytically in this geometry. It describes the experiments
quite well at early times. The coarsening observed at
later times can be understood by nonlinear effects that
were treated numerically using thermal noise as initial
condition.

In the bend geometry (Figure 1(c)), the electric field-
induced transition was studied in the presence of a
competing magnetic field [21]. A periodic structure
was found with a wave vector parallel to the pla-
narly applied electric field. The stripes appeared to per-
sist in low electric field, which is supported by a 2D
calculation [22].

In all the above-mentioned geometries, the final equi-
libriumFreedericksz state is uniform. There are, however,
situationswhen this is not the case. It has been shown the-
oretically that if the twist elastic constantK22 is extremely
small compared to the splay (K11) and bend (K33) ones,
a spatially periodic deformed state is preferred over the
uniform one because of its lower free energy [23]. We are
not aware that this theoretical possibility of an electric
field-induced periodic twist Freedericksz transition has
ever been justified experimentally. Its magnetic analogue
has, however, been demonstrated [23] in a polymeric
nematic system.

We note that the transient patterns described in this
section are not the only 3D distortion types which may
arise during the Freedericksz transition. The director
tilt has a twofold degeneracy (tilt to the right or left
are equivalent); the tilt direction is singled out acciden-
tally at different locations. Domains of opposite tilt are
separated by topological defects (Brochard–Leger walls,
see, e.g., [24]) which disappear as time evolves, unless
they are pinned at surface inhomogeneities or the cell
boundaries. Although topological defects occur quite fre-
quently in LCs and represent an interesting, growing field
of LC science, they are not in the scope of the present
review.

3. Flexodomains

Additional to the electric and elastic torques govern-
ing the Freedericksz transition, the flexoelectric torque
is also present and cannot be neglected in some config-
urations; on the contrary, it becomes decisive and will
itself be responsible for transitions into pattern forming
states.
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3.1. FDs driven by a DC field

By applying the same procedure as for describing the
Freedericksz state, thus minimizing the free energy when
adding to the electric and elastic contribution also the
flexoelectric term, one can find a very regular, spatially
periodic structure parallel to n0 (parallel stripes along x)
above a threshold (see Figure 3(a)). The threshold volt-
age UFD as well as the critical wave number qFD can be
calculated analytically in linear approximation of small
director distortions and a condition for the formation of
the pattern defines a constraint on the combination of
material parameters [25]:

(e1 − e3)2 > |εa|ε0K, (2)

where K is the average elastic modulus.
This result has been obtained for rigid boundary

conditions, for isotropic elasticity (one-constant approx-
imation) and for a DC electric field. The structure
that arises is due to the distortions of the basic direc-
tor field, characterized by an out-of-plane tilt compo-
nent nz(y, z, t) and by an in-plane azimuthal compo-
nent ny(y, z, t), both being periodic along y and depend
on z:

nx(y, z, t) ≈ 1; ny(y, z, t) = sin(py)n̄y(z, t) � 1;

nz(y, z, t) = cos(py)n̄z(z, t) � 1. (3)

A review and summary of theoretical as well as experi-
mental results has recently been given in [26].

The analysis has recently been extended to the case
of anisotropic elasticity (K11 �= K22 �= K33) [27]. A tran-
scendental equation was derived for the neutral curve
U0(q) at which the bifurcation from the basic planar
state to flexodomains with wave number q takes place. A

Figure 3. Snapshots of flexodomains in the BCN 2,5-bis(4-
(difluoro(4-heptylphenyl)methoxy)phenyl)-1,3,4-oxadiazole (7P-
CF2O-ODBP): (a) near onset, (b) much above onset (d = 6 μm)
(photoswith courtesy of Y. Xiang). Shadowgraph images; the light
polarization is parallel with n0.

relative elastic anisotropy

δk = K11 − K22

K11 + K22
(4)

was introduced, measuring the deviation of the system
from the isotropic case, extending into both positive and
negative directions. Solving the equation numerically for
the neutral curve and minimizing it subsequently with
respect to q yield the critical wave number and thresh-
old voltage. As one of the most important results, the
existence region of FDs was explored in the full range
of material parameters [27]. The rigorous calculation
showed that the director field in FDs and in the periodic
splay-twist Freedericksz state [23] (mentioned in Section
2) is similar. The latter evolves, even in the absence of
flexoelectricity, if δk is above a critical value.

A nonlinear analysis was also attempted [28] in order
to predict the voltage dependence of the wavelength of
FDs. Calculations could be performed only neglecting
the boundary conditions (thus no z-dependence was
assumed), which yielded Uc = 0 and q ∝ U. Indeed,
experimentally a linear increase in the wave number with
the applied voltage, q = qc + α(U − Uc), was reported
on different compounds [28–30]. The wavelength dif-
ference between FDs near to and far from onset can be
clearly noticed by comparing Figure 3(a, b).

In view of the theoretical relation between the flexo-
coefficents and qc, observation of FDs offers a method
for determining the combination |e1 − e3| by measur-
ing the wavelength of FDs [31–33]. The advantage of
this method is that there is no need to measure voltages,
whichmay be problematic at low frequencies (see discus-
sion in Section 5). Its disadvantage is that, unfortunately,
the applicability of the method is restricted to those few
compounds, which exhibit FDs.

A recent work [30] reported about the effect of a mag-
netic field on the formation and characteristics of FDs.
The behaviour is complex and depends substantially on
the relative orientation of the relevant fields: the E elec-
tric, theHmagnetic and the n0 director. Two geometries
were studied experimentally as well as by numerical sim-
ulations. In the case ofH ‖ n0, the stabilizing effect of the
magnetic field increases the FD threshold. If, however,
H ⊥ n0, the threshold voltage and critical wave number
of FDs depend non-trivially (non-monotonically) on the
magnetic field, exhibiting a minimum at H = HF, at the
magnetic twist Freedericksz threshold field. In addition,
for H > HF, the direction of the FDs rotates, following
the director twist in the Freedericksz state. This rotation
of q may be regarded as a proof for the bulk origin of
FDs. Themagnetic field-induced reduction of the thresh-
old voltage may allow the emergence of FDs in certain
compounds, where no FDs are detectable at H=0.
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3.2. FDs driven by an AC field

The possibility of the formation of FDs at AC fields
has already been examined in [25] and rigorously anal-
ysed and numerically tested in [27]. The calculation has
been restricted to harmonic (sinusoidal) voltage with a
given frequency f. Moreover, only very low frequencies
compared with the inverse director relaxation time τd
have been taken into account, based on the experimental
observations, which show that FDs can only be observed
for very low f. At higher frequencies, for the available
parameter ranges, either the equilibrium Freedericksz
state or the very robust EC takes over which usually
have lower threshold voltage. The crossover frequency
between FDs and EC typically falls into the subhertz
region.

The low-frequency range where f < 1/τd involves
specific phenomena, which are not present at DC driv-
ing and are negligible at higher f. When the period of
the applied voltage is comparable or longer than τd, the
director distortion relaxes – partially or fully –within one
period of the driving voltage towards its basic state. This
leads to a non-stationary contrast; the pattern intensity
fluctuates with the driving frequency. The flashingmakes
the experimental detection of the pattern characteristics
more demanding than in the case of stationary contrast,
but it can be handled. This specific phenomenon (flash-
ing), which will be treated in more detail in Section 5,
allows one to study different pattern forming phenom-
ena: e.g., FDs and EC, which occur subsequently within
one period of driving.

3.3. Flexodomains in bent-core nematics

Bent-core nematics (BCN) have several unusual prop-
erties compared with the calamitic nematics taken into
account so far. The differences appear, e.g., in the ratio of
elastic moduli, the order of magnitude of the viscosities
and the flexoelectric coefficients [34]. Nevertheless, the
pattern forming abilities under electric field are similar.
Flexodomains as well as a variety of EC structures have
been observed in planar as well as in twisted geometry.

In planar geometry, parallel stripes (wave vector is
perpendicular to n0) have been detected below 30Hz
on the substance 4-chloro-1,3-phenylene bis-4- [4′-
(9-decenyloxy)benzoyloxy] benzoate (ClPbis10BB) in
[35–37]. The pattern was interpreted differently, due to
the much lower conductivity in the second experiment
than in the first one. Stable longitudinal rolls have been
seen on other bent-core nematics too [38,39].

Nonlinear field effects and defect dynamics were also
studied [38], as well as special geometries like twisted
cells [40].

4. EC

While for flexodomains the periodic director distortion
(calculated from the principle of minimizing the free
energy) alone provides a satisfactory description, there
exists a long known phenomenon where, besides the
director modulation, material flow and space charges
play a just as important role in the pattern formation.
This phenomenon is called EC; it is also known as the
electro-hydrodynamic instability. Owing to the presence
of flow, EC is amore complex phenomenon, which has an
inherently dissipative character. Depending on the sam-
ple’s properties and the driving conditions, a multitude
of pattern morphologies may be formed. These mostly
include stripe patterns with a diverse range regarding
the wavelength and the direction of the stripes, but two-
dimensional (square grid or hexagonal) patterns, local-
ized deformations (worms, Maltese crosses, dendrites
and fingers) as well as complex structures (chevrons,
wavy pattern, CRAZY rolls and spirals) involving topo-
logical defects (dislocations or disclinations) have also
been reported. Representative images will be shown later
during the detailed discussions. Based on the cumu-
lated experiences and some theoretical considerations,
one could deduce that the signs of the dielectric and
the conductivity anisotropies are especially important
in deciding what kind of EC patterns can exist in a
nematic if any [41]. Therefore, it is convenient to clas-
sify LCs into groups of various sign combinations of
(sgn(εa) sgn(σa)) [1,42] ; e.g., (−+) meaning εa < 0,
σa > 0.

The expanding richness of the patterns and the com-
plexity of the mechanisms behind them have justified
reviewing EC from time to time, from different aspects,
marking the way for gradually understanding the phe-
nomenon: introducing various pattern types and pre-
senting only simple models [2,43,44], providing thor-
ough theoretical overviews with approximate analytical
formulas [45–47], discussing the role of anisotropies
[41], addressing the importance of alignment symme-
tries [48] and the role of flexoelectricity [31] in pattern
formation.

4.1. The standardmodel of EC and its extensions

A classical example of EC, the Williams domains [49],
is observable in a thin layer of planarly aligned (−+)

nematic, which is subjected to a DC or an AC (rms)
voltage U, resulting in an electric field E perpendicular
to the substrates. While the initial, homogeneous state
is preserved if the applied voltage is low, it becomes
unstable towards distortions when U exceeds a critical



LIQUID CRYSTALS REVIEWS 107

Figure 4. Illustration for the Carr–Helfrich feedback mechanism. Green rods represent the nematic director, black circles with arrows
indicate the flow directions, the red and blue bullets mark the+ and− space charge clouds, respectively.

(threshold) valueUc. As nematic LCs are optically uniax-
ial materials, the periodic tilt (out-of-plane) distortions
of the director yield a modulation of the refractive index,
which makes the pattern visible in a polarizing micro-
scope as a sequence of dark and bright stripes; either due
to birefringence when using crossed polarizers or owing
to focussing/defocussing effects (shadowgraph technique
[6–8]) if using single or no polarizer. The occurrence of
the instability can be understood via the fundamental
Carr–Helfrich (C–H) feedback mechanism (named after
its discoverers [50,51] ), illustrated in Figure 4.

Infinitesimal, spatial director tilt modulations may
always be present in a planar nematic due to thermal
fluctuations. The director field is subjected to elastic and
dielectric restoring torques. However, due to tilt and to
σa �= 0, the electric current has a nonzero component
perpendicular to E, which leads to a space charge forma-
tion. Owing to the Coulomb force acting on the charges,
a material flow is induced. Being confined by the sub-
strates, the flow forms vortices, which exert a destabi-
lizing viscous torque on the director; thus closing the
feedback loop. For U < Uc, the feedback is negative and
the director fluctuations decay. However, forU > Uc, the
feedback becomes positive for one Fourier mode of the
fluctuation with a critical wave vector qc = (qc, pc, 0),
which thus grows to a pattern of finite amplitude.

If one would like to calculate or predict the charac-
teristics of EC patterns, the inseminating ideas above
have to be converted into the form of differential equa-
tions. The comprehensive theoretical model, capable of
describing the formation of various EC pattern mor-
phologies, has been developed during decades and is now
referred to as the standard model (SM) [52]. The model
combines the equations of nematodynamics (for director
relaxation and flow) with Maxwell’s equations, assum-
ing that nematics are incompressible, have a finite (small)

ohmic electrical conductivity and flexoelectricity is neg-
ligible. It finally provides a set of six coupled nonlinear
partial differential equations (PDEs) for the six indepen-
dent variables: two components of the director field n(r),
the velocity field v(r) and the electric potential φ(r). As
boundary conditions at the substrates, strong director
anchoring, no-slip condition for the velocities and no
charge transfer through the electrodes are assumed.

Unfortunately, the complexity of these equations does
not allow fully analytical solutions; thus further approx-
imations are required in order to draw specific con-
clusions on pattern characteristics. The most obvious
assumption is that at the onset of the instability, the pat-
tern amplitude (e.g., the maximum director tilt) is small.
It holds if the amplitude grows continuously from zero
with the voltage rising above Uc (forward bifurcation),
which condition fulfils, by fortune, for most EC patterns.
Then nonlinear terms in the PDEs can be neglected and
a linear stability analysis of the initial state can be per-
formed [53]. Separating the spatially periodic (eiqr) and
an exponentially growing (eνt) part of the variables from
the remaining z and t dependence, which are expressed
by truncated Fourier series, the PDEs can be converted
to a set of algebraic equations for the Fourier coefficients.
The growth rate ν(q,U) is obtained from the solubil-
ity criterion. Finally, the ν(q,U) = 0 condition defines a
U(q) neutral surface, whose minimum Uc(qc) provides
the onset voltage Uc and the critical wave number qc of
the pattern.

The procedure above can be applied in the case of DC
driving (U = Udc), as well as for AC excitations (U =
Uac

√
2 sin 2π ft) in a wide range of frequencies f. For the

latter case, inspection of the SM equations shows that
they can have two solutions with different time symme-
tries. In the so-called conductive regime 〈nz〉 �= 0 (nz has
the same sign in both half periods), while in the dielectric
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regime 〈nz〉 = 0 (nz changes its sign in subsequent half
periods). This latter is the only solution if f is higher
than the so-called cut-off frequency fcut which is related
to τq. Here, 〈 〉 corresponds to the time average over a
driving period. This practically means that, in leading
order, the director tilt (and the flow velocity) modula-
tion in conductive EC patterns is stationary, whereas the
space charges oscillate with the driving frequency; in
the dielectric regime, on the contrary, the director and
the flow oscillates, but the space charge pattern becomes
stationary.

Approximate analytical formulas can be obtained, if
only the leading terms of the Fourier series (in z and t)
are kept [45]; for more precise Uc and qc values, numeri-
cal methods are needed, which require the knowledge of
a complete set ofmaterial parameters (listed in Section 1).
The SM is able to explain experimental results on EC
pattern formation for a large group of nematics [(−+)

and (+−) materials] qualitatively and, when the mate-
rial parameters are known to high enough precision,
also quantitatively. These EC phenomena, which are thus
explicable with the SM, have been denominated as stan-
dard electroconvection (s-EC) and will be discussed in
Sections 4.1.1 and 4.1.2 in more detail. In other groups
of nematics, which have a different combination of mate-
rial parameters [(−−) and (+ +) materials], however,
no instability should occur according to the SM; EC
patterns have, nevertheless, been observed occasionally
even in those materials. These phenomena, which can-
not be accounted for by the SM, are known as nonstan-
dard electroconvection (ns-EC) and will be addressed in
Section 4.2.

The linear stability analysis has an unimpeachable role
in determining the onset characteristics of the pattern,
the z-profile of the variables as well as the mutual rela-
tions between the magnitudes of the director compo-
nents, the velocities and the space charges. By neglecting
the nonlinear terms, it fails, however, to provide infor-
mation about how the pattern amplitude A depends on
the applied voltage. The nonlinear features just above the
onset (weakly nonlinear description) can be handled by
the amplitude formalism, using Ginzburg–Landau equa-
tions (GLEs) that may couple the amplitude (and the
azimuthal angle of the director) with the voltage [53].
Here, a critical task is the calculation of the coefficients
of the GLEs from the raw PDEs. In return, not only the
A(U) relation, but also certain morphological transitions
can be predicted (see also Section 4.3).

The existence of ns-EC patterns clearly shows that,
though the SM includes essential ingredients of the
pattern formation process, it does not provide a com-
plete description. Further development of the theory
requires the incorporation of additional effects, originally

neglected in the SM. One example is the extended SM,
which incorporates flexoelectricity by adding a few new
terms into the existing set of PDEs. These extended equa-
tions are listed in the appendix of Ref. [54]. Its importance
will be made clear in Sections 4.1.1 and 4.2.

Although ohmic conductivity of LCs is a basic
assumption of the SM, this is clearly a simplification.
The conductivity of LCs originates in the ionic contam-
inants; consequently, ionic effects should be taken into
account in a more complete description. This has, at least
partially, been done by introducing the weak electrolyte
model (WEM) [55], which can handle charge carriers
(ions) of opposite charge as well as the association, dis-
sociation and migration of ions. Thus, the WEM has a
great scientific potential in explaining EC phenomena;
unfortunately, on the expense of increasing the num-
ber of governing equations, introducing new timescales
and requiring the knowledge of further (not easily mea-
surable) material parameters. So far, the WEM has only
been analysed from one aspect: it has explained the Hopf
bifurcation at EC onset (which cannot be obtained in
the frame of the SM); thus explained the nature of the
travelling waves in s-EC (see also Section 4.1.1).

4.1.1. EC as a primary instability
Most of the materials that exhibit s-EC belong to the
(− +) group; they include single compounds such as p-
azoxyanisole (PAA) [49], n-4′ -methoxybenzylidene-n-
butylanilin (MBBA) [56], 4-ethyl-2-fluoro-4c- [2-(trans-
4-pentylcyclohexyl)-ethyl] biphenyl (I52) [57] or 4-n-
octyloxy-phenyl 4-n-methyloxybenzoate (1OO8) [32],
as well as mixtures such as Phase 4 [58], Phase 5/5A
(Merck) [59,60] or Mischung 5 [61]. For decades, the
majority of experiments (and thus also the related the-
oretical simulations) have been performed at AC excita-
tion with f being in the audio frequency range. Under
such conditions, the period time T = 1/f of the driv-
ing voltage is much shorter than the director relaxation
time τd or the growth/decay times of the pattern, which
depends besides τd on the wavenumber [62] and on the
excess voltage 
U = U − Uc [63,64] too. Thus, several
cycles are required for the stabilization of the pattern. The
other limit, T > τd, will be discussed later in Section 5.

In planar samples of (− +) materials, EC is a pri-
mary instability: upon increasing the voltage, the pattern
emerges directly from the homogeneous initial state. It is
composed of convection rolls, which appear in themicro-
scope as a sequence of stripes with different intensity (or
colour).

It follows from the SM (Section 4.1) that (− +)

compounds have two EC regimes with distinct tempo-
ral dynamics; both might exist for f < fcut. The onset
characteristics, i.e., the frequency dependence of the
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threshold voltages Uc(f ) and of the wave vectors qc(f ),
are different in the two regimes. At lower frequencies,
in the conductive regime, Uc(f ) increases steeply with
f exhibiting a divergence-like behaviour. At higher f, in
the dielectric regime, the frequency dependence of the
threshold is weaker,Uc(f ) ∝ √

f . Consequently, there is a
crossover frequency fc, where the Uc(f ) curves intersect.
This crossover frequency is typically at about 60–80% of
fcut. For f < fc, conductive rolls (Figure 5(a ,b)), while for
f > fc, dielectric rolls (Figure 5(c,d)) have lower thresh-
old (see Figure 6); therefore, by increasing the frequency,
a crossover from conductive to dielectric rolls occurs.
This transition is easily perceptible via the jump in the
pattern wavelength: in the conductive regime, λ is about
the sample thickness d, while in the dielectric regime, the
wavelength is defined by a combination of the material
parameters and is independent of the thickness; if d falls
in the usual range of 10–100 μm, λ of the dielectric pat-
tern (typically 3–4 μm) is much smaller than that of the
conductive one. At f = fc, the two patterns may coexist,
either side by side or superposed [65].

At the crossover, the temporal dynamics of the pattern
also changes. Although the difference in the temporal
evolution within the driving period cannot be perceived
by the naked eyewhen f is in the audio frequency range, it

Figure 5. Snapshots of s-EC patterns in planar (− +) sam-
ples near onset: (a) conductive oblique rolls (1OO8, d = 11 μm),
(b) conductive normal rolls (Phase 5, d = 12 μm), (c) dielectric
oblique rolls (1OO8, d = 11 μm) and (d) dielectric normal rolls
(Phase 5, d = 11.4 μm). The double arrows indicate the initial
directorn0. Shadowgraph images; the light polarization is parallel
with n0.

Figure 6. A typical schematic morphological phase diagram (the
frequency dependence of the onset voltage of patterns) for planar
(− +) nematics.

could be detected by using fast cameras for image record-
ing [61,65] or by monitoring the intensity of the light
diffracted by the patterns [66].

The convection rolls are oriented either perpendicu-
lar to the initial director alignment (normal rolls, NR,
q ‖ n0, Figure 5(b,d)) or are slightly rotated by an angle
α with respect to this direction (oblique rolls, OR, Fig-
ures 5(a ,c)). In the latter case, the two possible rotation
directions are degenerate, which often leads to zigzag
structures. Usually, OR is observed at low frequencies;
increasing f, the obliqueness angle α decreases mono-
tonically, roughly following the relation α ∝ √

fL − f . At
the Lifshitz point fL, there is a crossover from oblique to
normal rolls (α becomes zero). It has to be emphasized
that the crossover between the conductive and dielec-
tric regimes (involving the change of |q|) is not related
to the crossover between OR and NR; fc and fL depend
on different combinations of the material parameters.
Therefore, even though the Lifshitz point has been found
almost exclusively to fall into the frequency range of the
conductive regime (as it is shown, e.g., in the schematic
morphological phase diagram in Figure 6), resulting in
conductive OR to conductive NR transition, it need not
be so. Indeed, recently a crossover from dielectric OR to
dielectricNR in Phase 4 [58], as well as a sequence of con-
ductive OR – dielectric OR – dielectric NR transitions in
the nematic 1OO8 [32], has also been reported.

The Uc(f ) and qc(f ) dependences calculated from the
SM for both EC regimes are in good agreement with
the experimental observations summarized above. The
matching between experimental data and the theoret-
ical predictions can further be improved by using the



110 N. ÉBER ET AL.

extended SM, which can take into account the influence
of flexoelectricity [54,67]. While it does not affect signifi-
cantly the onset characteristics in the conductive regime,
it reduces the dielectric threshold by about 30% [27].

Figure 6 shows a hatched area, which needs a special
attention. In certain cases, there is a frequency range in
the conductive regime close to fc, where the roll pattern
at onset is not stationary; instead, it is travelling in both
directions normal to the rolls [68,69]. Whether travelling
waves exist, depends on the material as well as on the
sample thickness. If they are present, the lowest frequency
where they appear is independent of the Lifshitz point;
thus travelling OR and NR patterns have equally been
reported. Travelling waves are an experimental manifes-
tation of the Hopf bifurcation (the growth rate of the pat-
tern has an imaginary part too). Aswe alreadymentioned
in Section 4.1, the travelling feature of these patterns
cannot be reproduced by the (extended) SM; the inter-
pretation requires incorporation of ionic effects as it was
done in the weak electrolyte model [55]. The predictions
of the WEM for the Hopf frequency (which determines
the travelling speed) have been experimentally justified
in two nematics, I52 [57] and Phase 5A [70,71]. Interest-
ingly, theUc(f ) and qc(f ) onset characteristics calculated
from the WEM for travelling waves differ only very little
from the values provided by the much simpler SM. This
is the reason why travelling waves in (− +) compounds
are still categorized as s-EC.

We shouldmention that the fast development of align-
ment technologies allows one to prepare much more
complex geometries than a simple planar cell. Recently,
studies on a planar-periodic sample have been reported,
where one substrate is unidirectionally aligned, but on
the other one the director, though planar, rotates peri-
odically when moving along the x-direction [72]. As
a result, there is a periodical twist deformation in the
sample with domains separated by disclination lines.
Using MBBA, two different EC scenarios were observed,
depending on the sample thickness. At large d, the twist
had no influence on the conductive EC rolls. At low d,
however, the twist deformation made the normal rolls
curved.

Theoretical calculations have been performed for
another sophisticated geometry, where the sample thick-
ness varies in a direction perpendicular to n0 [73]. Emer-
gence of stable patterns with branching rolls is predicted;
experimental verification is still awaited.

So far all theoretical results and experimental obser-
vations were referred to cells of large aspect ratio (nearly
infinite sample). Reducing the aspect ratio (i.e., reduc-
ing the electrode size) requires additional considera-
tions, as then the lateral boundary conditions become
non-negligible. This affects the wavelength selection

mechanism: an integer number of wavelengths should fit
into the active area [74–77].

Side-view cells represent a different, 90◦ rotated geom-
etry with a lateral electric field, to be used for exploring
and visualizing the convection patterns in the plane par-
allel to E [78–80]. This geometry corresponds to a very
low aspect ratio in one direction; therefore, it is unclear
to what extent do the identified convection profiles agree
with those present in usual, high aspect ratio samples.
Nevertheless, in the conduction regime, convection was
found to fill the space between the electrodes; in the
dielectric regime, it was rather concentrated to the region
near the electrodes [80]. This observation agrees with the
findings on EC in twisted nematic cells [81].

Although planar (− +) samples are the paradigm of
s-EC, it is easy to see that the C–H mechanism works
also in homeotropic (+ −) samples [1]. From theoreti-
cal point of view, there is, however, a principal symme-
try difference between the two cases. In planar (− +)

materials, there is a preferred direction in the plane of
the substrates, thus the initial state is anisotropic in the
plane of the sample, in two dimensions (2D). In con-
trast to this, in homeotropic (+ −) samples, the director
is normal to the substrates, i.e., all directions parallel
to the substrates are equivalent; hence, the initial state
is isotropic in 2D. It means that the anisotropic pat-
terned state emerges directly from the isotropic initial
one and, as a consequence, the patterns developing are
not expected to be ordered. Experimental studies on this
kind of pattern formation are scarce as, unfortunately,
nematics belonging to the (+ −) group are very rare. Sys-
tematic observations were made on an exotic, swallow-
tailed compound, which exhibited disordered oblique
(zigzag) rolls (Figure 7(a)) at lower f, which cross over to
long-wave-modulated square grid patterns (soft squares)
(Figure 7(b)) above a critical frequency f ∗ [82]. These
pattern morphologies could be reproduced via simula-
tions based on the SM. Very recently a calamitic mixture
offering similar scenarios was also reported [83].

4.1.2. EC as a secondary instability (homeotropic)
In homeotropic (− +) nematics, the Carr–Helfrich
mechanism does not produce a destabilizing torque;
therefore, in this geometry, no direct transition from
the initial state to EC is possible. The negative dielec-
tric anisotropy, however, leads to a bend Freedericksz
transition (as a first instability, Figure 1(f)) resulting in
a quasiplanar state (which is homogeneous in the x–y
plane, but is distorted along z), where the C–H mech-
anism becomes effective again. Thus, EC may set in
at voltages exceeding the Freedericksz threshold UF , as
a secondary instability [84]. For theoretical modelling,
one can follow the procedure outlined in Section 4.1,
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Figure 7. Snapshots of s-EC patterns in a (+ −) swallow-tail
nematic compound near onset: (a) disordered rolls, (b) soft
squares in ahomeotropic sample (d = 11 μm) and (c) parallel rolls
in a planar sample (d = 11 μm) [82].

⊙
and ↔ indicate out-of-

plane and in-plane directions of n0, respectively. Shadowgraph
images; the light polarization is horizontal.

though it becomes more tedious, as now the stability of
an already distorted Freedericksz state should be checked
against periodic modulations [85]. The exhibited pattern
morphologies and frequency-induced crossover scenar-
ios are the same as those for the planar samples out-
lined in Section 4.1.1: conductive and dielectric regimes,
oblique (Figure 8(a,b)) and normal (Figure 8(c,d)) rolls
can be detected as well. Thus, Figure 6 may serve as a
schematic morphological diagram also for homeotropic
(− +) nematics with one correction: one should add a
horizontal line for the frequency-independent Freeder-
icksz threshold lying below all EC curves.

Under some, not yet fully specified conditions, which
are met by Phase 5A (but not met by MBBA), however,
homeotropic samples may exhibit some unusual features.
It was shown by experiment as well as by simulation
that homeotropic Phase 5A has two Lifshitz points: it
has NR at low as well as at high frequencies, and OR in
between [86].

Although the initial, homeotropic state is isotropic
in 2D, this symmetry breaks during the Freedericksz
transition; thus, in contrast to the homeotropic (+ −)

case above in Section 4.1.1, the patterns appear already
on an anisotropic background. The azimuthal direction
of the tilt is, however, singled out during the Freedericksz
transition accidentally; it is a soft mode, the azimuthal

Figure 8. Snapshots of s-EC patterns in homeotropic MBBA
(d = 50 μm): (a) disordered conductive oblique rolls, (b) conduc-
tive oblique rolls ordered by an in-plane magnetic field H, (c)
disordered conductive normal rolls and (d) conductive normal
rolls ordered by an in-plane magnetic field H. The initial director
n0 is normal to the image plane. Shadowgraph images; the light
polarization is horizontal.

angle varies in space and time. Consequently, the EC
patterns are also disordered, chaotic (see Figure 8(a,c)).
This kind of pattern formation is an example of a direct
transition to spatiotemporal chaos [87]; it is also called
soft mode turbulence (SMT) [88]. This phenomenon
attracted lot of interest from both theoretical and exper-
imental point of view; its extensive literature cannot be
reviewed here.

The azimuthal degeneracy originating in the homeo-
tropic alignment can be lifted by applying a small mag-
netic field H parallel to the substrates [89,90]. Theoreti-
cally, an infinitesimal H would be sufficient to break the
degeneracy and introduce a preferred direction parallel
with H; experimentally, H equal to about the third of
the Freedericksz threshold field HF might be needed to
safely overcome accidental alignment imperfections and
to order the EC patterns (see Figure 8(b,d)). Switching
on–off a static magnetic field [91] or using an AC mag-
netic field [92], the dynamics of the SMT regime could be
studied.

Planar (+ −) nematics are another example of s-
EC occurring as a secondary instability. Here, a splay
Freedericksz transition is induced by the applied volt-
age first (Figure 1(a)), then EC can emerge from
the Freedericksz-distorted, quasihomeotropic state at
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higher voltages. In contrast to the 2D isotropy of
homeotropic (+ −) samples, this quasihomeotropic state
is anisotropic. Thus, well-ordered roll patterns have been
detected, however, with the roll direction parallel to the
initial orientation (Figure 7(c)), in a swallow-tailed com-
pound [82]. As other representatives of (+ −) nemat-
ics, an LC dimer composed of a calamitic and a bent-
core molecule [93,94] as well as a calamitic mixture
[83] were also tested and pattern sequences of longitudi-
nal rolls–oblique rolls–normal rolls were detected upon
increasing the frequency.

4.2. Nonstandard electroconvection

The existence of standard EC relies on whether the C–H
mechanism can provide a destabilizing torque on the
director. It can be seen that if, in the geometry of Figure 4,
the sign of σa alters, yielding (− −), the polarity of the
space charges and thus the directions of the flow and of
the viscous torque also change to the opposite. There-
fore, the feedback remains negative and director fluc-
tuations decay for all voltages; thus, no pattern should
arise according to the SM. In contrast to this prediction,
however, it has been known for a long time that some
planar samples of the (− −) group of nematics, e.g., n-(p-
n-butoxybenzy1idene)-n-octylanilin (4O.8) [95,96], di-
n-4-4′-octyloxyazoxybenzene (C8) [95], 4-n-decyloxy-
phenyl-4-n ′-hexyloxy-benzoate (10/6) [42] and 4-n-
octyloxy-phenyl-4-n ′-heptyloxy-benzoate (8/7) [42,97],
do exhibit EC upon voltage excitation. The assortment
of compounds suitable for studying this type of ns-EC
is quite narrow; they usually have a smectic (preferably
smectic C) phase below the nematic one in order to
have σa < 0 in the lower temperature part of the nematic
range. A common feature of the patterns is that they
are longitudinal rolls (running parallel [Figure 9(a)] or
at small angles [Figure 9(b)] to the initial director); they

Figure 9. Snapshots of ns-EC patterns taken with nearly crossed
polarizers in a planar (− −) sample (8/7, d = 12 μm): (a) longi-
tudinal rolls and (b) oblique rolls. The double arrows indicate the
initial director n0.

have low contrast, are best visible at nearly crossed polar-
izers;moreover, the rolls aremuch less ordered than those
of s-EC. They are typically observable in a limited (low)
frequency range and have a linear Uc(f ) dependence.

Although the SM cannot account for this instability,
it has been shown recently that incorporating flexoelec-
tricity into the SM (i.e., using the extended SM) already
does the job [54]. The flexoelectric polarization arising
due to a periodic director distortion with q ⊥ n0 creates
a space charge modulation of opposite sign compared to
that caused by the conductivity anisotropy. This dom-
inance of the flexoelectric charges makes the feedback
loop positive and leads to the appearance of the longitu-
dinal rolls of the ns-EC as a primary instability in planar
samples. In contrast, in homeotropic samples of the same
materials, the patterns may appear only as a secondary
instability, following the bend Freedericksz transition
(Figure 1(f)).

It is worth noting that the flexoelectric terms in the
PDEs provide some coupling between solutions of the
conductive and of the dielectric types with different
z-profiles; nevertheless, the latter are dominating [54].
Indeed, in experiments, the contrast (and also the diffrac-
tion intensity) of ns-EC longitudinal rolls was found to
oscillate with the excitation frequency [66].

Occasionally, longitudinal rolls can also be travelling
[97], indicating that Hopf bifurcationmay exist in ns-EC.
The measured Hopf frequencies seem to follow a similar
functional dependence as that in s-EC. It is anticipated
that the combination of the WEM with flexoelectricity
could provide a full interpretation of the observations.

Nematics of (+ +) type are another group of mate-
rials where the SM does not predict patterns, yet ns-
EC has been observed. A representative of this group
is the well-known 4-cyano-4′-pentylbiphenyl (5CB),
where homeotropic samples exhibited a direct transi-
tion to ns-EC yielding a low contrast 2D cellular pattern
(Figure 10(a)) [98,99], which, under special conditions,
could have hexagonal symmetry [100]). In planar sam-
ples of 5CB, ns-EC was also observed (Figure 10(c)),
however, only at voltages above the splay Freedericksz
threshold (Figure 1(a)), as a secondary instability. Roll
patterns (disordered, fingerprint-like [Figure 10(b)] for
homeotropic, ordered normal rolls [Figure 10(d)] for pla-
nar samples) were also seen at much higher voltages [99].
In 5CB [101] and in similar, highly polar compounds
such as p-octyl-p ′-cyanobiphenyl (8CB) [102,103],
p-cyanobenzylidene-p ′-octyloxyaniline (CBOOA) [102],
4-n-octyloxy-4 ′-cyanobiphenyl (8OCB) [103] or mix-
tures [102,104], an additional pattern morphology,
a swarm of Maltese crosses (Figure 11), presum-
ably corresponding to circular domains, could also
be seen.
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Figure 10. Snapshots of ns-EC patterns takenwith nearly crossed
polarizers in (+ +) samples: (a) cellular pattern at onset, (b) dis-
ordered rolls at high voltage in homeotropic 5CB (d ≈ 30 μm), (c)
cellular pattern at onset and (d) normal rolls at high voltage in pla-
nar 5CB (d ≈ 20 μm) [99].

⊙
and ↔ indicate out-of-plane and

in-plane directions of n0, respectively.

Figure 11. Localized ns-EC pattern in a (+ +) sample: Mal-
tese crosses, presumably corresponding to circular domains in
homeotropic 5CB (d = 50 μm).

⊙
indicates the out-of-plane

direction of n0. Crossed polarizers; the light polarization is hori-
zontal.

Note that the occurrence of ns-EC in those com-
pounds is especially surprising, in view of the large
stabilizing torque due to the large (εa ∼ 9) dielectric
anisotropy. In the homeotropic alignment, flexoelectric-
ity does not have a destabilizing effect; so even the
extended SM fails to explain these observations. Some

authors have proposed the Felici–Bénard isotropicmech-
anism (related to charge injection through the electrodes,
not based on the anisotropy of LCs) as a reason for
these instabilities [102,104,105]; unfortunately, its rig-
orous theoretical description capable for predicting the
onset characteristics of the patterns has not yet been
developed. We anticipate that the equations of the WEM
[55] contain, in principle, all necessary contributions.
Nevertheless, a precise analysis of the problem using the
WEM will be a very challenging task for theoreticians.

The above ns-EC patterns occur in groups of nematics
characterized by specific combinations of their material
parameters. There is, however, a structure called pre-
wavy (PW) pattern [56,106–108] (also known as wide
domains), which does not seem to have this restriction;
it has been observed in (− +) as well as in (− −)

materials. The prewavy pattern (Figure 12(a)) consists of
stripes running perpendicular to the initial director with
a wavelength much larger than d, which are visible with
crossed polarizers only. They have a slow dynamics with
the growth/decay times in the order of minutes. In the
neighbouring stripes, the director has azimuthal angles
of opposite sign and there is a flow along the stripes (par-
allel to the substrates) in opposite directions [108]. In
calamitics, it is typically detectable at high frequencies

Figure 12. Snapshots of ns-EC patterns in homeotropic MBBA
(d = 50 μm): (a) prewavy pattern, (b) wavy pattern, (c) defect
free chevrons (superposition of the prewavy pattern with nor-
mal rolls), (d) superposition of the wavy pattern with normal rolls.⊙

indicates out-of-plane direction of n0, the direction of the
Freedericksz-tilt is horizontal. Crossed polarizers; the light polar-
ization is horizontal.
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with a weak, nearly linear frequency dependence of the
thresholds. Namely, a crossover from conductive rolls to
PW was reported in MBBA [107] and Phase 5A [109]
(the dash-dotted line in Figure 6 illustrates this scenario),
but a sequence of conductive rolls – dielectric rolls –
PW pattern can also occur [109]. PWs were observed
in the nematic 4,n-heptyloxybenzoic acid (7OBA) too
[110,111]. Recently, it has been proven that the pattern
exists even in the vicinity of the nematic-to-isotropic
phase transition [112].

The formation of PWs could not be understoodwithin
the framework of the extended SM. Taking into account
the observed features, one may speculate that PWsmight
actually be chevron structures of an underlying short
wavelength (thus unresolved by the optical microscope)
pattern induced by the isotropic mechanism [113]; how-
ever, at present, neither direct experimental data, nor
theoretical simulations are available to prove or deny
this idea.

Bent-core nematics are in general good candidates
for materials exhibiting ns-EC patterns. Even if they do
not have explicitly smectic phase(s), cybotactic, smectic-
like clusters may occur in their nematic phase [34]. In a
representative BCN (ClPbis10BB), three types of ns-EC
patterns have been observed: longitudinal rolls at low f
and two variants of the PW pattern, PW1 and PW2, in
two distinct f ranges separated by a gap in frequencies,
where no pattern formation occurs (Figure 13) [36,115].
Similar behaviour was found in some other BCNs too
[114]; occasionally, the frequency gap mentioned above
reduced to zero [116–118]. Instead of the nearly lin-
ear Uc(f ) of prewavies in calamitics, these BCNs exhib-
ited threshold voltages diverging on both sides of the

Figure 13. Frequency dependence of the thresholds for three
patternmorphologies in the BCN ClPbis10BB (d= 15 μm) [36]: ns-
EC longitudinal rolls (LR) at low f, prewavy (PW2) pattern at inter-
mediate f and prewavy (PW1) pattern at high f. The dash-dotted
lines indicate the frequencies fd1 and fd2, where Uc diverges; the
solid lines are hyperbolic fit. The inset shows the LR regime on
enlarged scale.

pattern-free frequency range. Unusually, pattern forma-
tion extended to much higher frequencies (up to several
100 kHz) than in calamitics; moreover, in the higher-f
PW range, unprecedentedly, ∂Uc/∂f < 0, i.e., threshold
voltages diminishing with increasing f were found [36,
114–118,120]. We note that the studied BCN exhibited
a dielectric relaxation at an unusually low frequency (∼
kHz) [119]; as a consequence, it exhibited a double sign
inversion of σa in the studied f range [36,116,118]. It is
still an open question, if or how this is related to the
divergence of the thresholds; nevertheless, the sign inver-
sion frequencies do not coincide with the divergence
frequencies.

In a homeotropic sample of another BCN, alignment
transitions, as well as radial and tangential stripes were
detected around umbilics depending on the frequency
[120]. Recently, a yet unprecedented scenario, a polar-
ity depending pattern, has been reported in a (− −)

BCN [121]. At low-frequency driving, oblique rolls were
detected; however, unlike regular ORs of s-EC or ns-EC
that typically manifest themselves in degenerate and thus
coexisting (or superposed) zig and zag domains, here the
polarity of the driving voltage decided whether only zig
or only zag regions are visible. It is yet unresolved, what
is the cause of this symmetry breaking occurring in the
wave vector selection.

4.3. Morphological transitions in EC

We have seen that EC may manifest itself in patterns
of different morphologies. Which of them can be real-
ized, depends on the material parameters (whether s-EC
or ns-EC), on the control parameters like f (whether
conductive or dielectric regime) and U (whether a pat-
tern is at the onset or in the nonlinear regime) as well
as on the alignment (planar or homeotropic) and thick-
ness of the sample. Changing any of these parameters
may induce a transition (a crossover) betweenmorpholo-
gies. Frequency-induced transitions have already been
discussed in Sections 4.1 and 4.2, transitions induced by
other parameter changes are addressed below.

4.3.1. Transitions induced by voltage
So far we mostly discussed the patterns emerging at the
onset of the EC instability. Increasing the voltage above
Uc, naturally enhances the deformation amplitude, but
besides, it may alter the wave vector q, the regularity, or
even the morphology of the pattern.

It is a general feature of stripe patterns that upon
increasing the excitation, the regular pattern becomes
unstable with respect to the formation of defects (dislo-
cations in the stripe structure, Figure 14(a)) indicating
an Eckhaus instability. Unsurprisingly, this instability
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Figure 14. Snapshots of s-EC patterns in planar (− +) samples
well above onset: (a) defects (dislocations) in a conductive normal
roll structure (Phase 5, d = 19 μm), (b) dielectric (defect medi-
ated) chevrons (1OO8, d = 19 μm), (c) delocalized ‘ long’ defect
in a zigzag modulated conductive normal roll structure (Phase
5, d = 19 μm) and (d) coexisting domains of dynamic scattering
modes DSM1 (bright) and DSM2 (dark) (MBBA, with courtesy of
S. Kai, Y. Hidaka and J.-H. Huh). Shadowgraph images; the light
polarization is parallel with n0.

mechanism exists in EC too. Starting with the clas-
sical example of (− +) nematics, one finds that the
behaviour is different in the two EC regimes. In the con-
ductive regime, the Eckhaus limit is usually reached at
a small 
U excess voltage above onset. Increasing 
U
promotes the formation of defects in increasing num-
bers; the pattern becomes more and more dynamic due
to defect motion and finally the sample reaches defect
chaos: a state characterized by chaotic, turbulent flow
and hence by strong light scattering. This state is also
known as a dynamic scatteringmode, which even has two
variants (the weakly turbulent DSM1 and the strongly
turbulent DSM2) with sharp boundaries between them
[122–125]. They can be distinguished by their contrast
(Figure 14(d)) and the symmetry characteristics of light
scattering (it is anisotropic for DSM1 and isotropic for
DSM2).

In the dielectric regime, defects appear again at fairly
low
U, however, the scenarios at higher voltages are dif-
ferent. After the number of dislocations has increased,
the defects start to align in parallel chains running per-
pendicular to n0, forming a quasiregular superstruc-
ture, the chevrons (Figure 14(b)) [126]. The distance

between the chains is much larger than the wavelength
of the dielectric rolls, which remain visible in the regions
between the chains, though rotated alternately in oppo-
site directions (the azimuthal angle switches its sign at
the defect chains). This self-organization of the defects
was explained theoretically [127] and confirmed experi-
mentally [5]. We note that chevrons are not exclusive to
the dielectric regime of EC. Although they do not occur
in the conductive regime in planar samples, chevrons of
conductive EC were reported for homeotropic ones [84].

The vicinity of the crossover frequency fc is worth
a special attention. Upon increasing U, for f < fc the
route to chaos is observed as told above for the conduc-
tive regime. If, however, f is just above fc, the condition
f < fcut yet holds, i.e., conductive rolls may exist, even
though their threshold is higher than the dielectric one.
Experiments have proven that the conductive EC pat-
tern is more robust; when the voltage reaches this higher,
conductive Uc, the conductive EC pattern emerges and
suppresses the dielectric one.

Besides the Eckhaus mechanism, there exist other
destabilization mechanisms of regular s-EC patterns (see
Figure 6). Another example is the zigzag (ZZ) instabil-
ity, observable in a frequency range fL < f < fAR, which
corresponds to a long wavelength undulation of the
normal rolls (i.e., a voltage-induced transition towards
oblique rolls, Figure 15(a)) [46,128,129]. At higher volt-
age, a bimodal varicose (grid-like) pattern may occur
(Figure 15(b)). For f > fAR, instead of the modulation
of the direction of q in ZZ, another instability occurs
at a critical excess voltage 
UAR. The resulting pattern,
called abnormal rolls (AR), preserves the NR roll struc-
ture (i.e., q), but causes a homogeneous azimuthal rota-
tion of the director. The NR–AR transition corresponds
to a forward pitchfork bifurcation; the azimuthal rota-
tion angle � is degenerate in its direction (left or right)
and increases with the voltage as |�| ∝ √


U − 
UAR
[84,130]. Abnormal rolls are present also for f < fAR,
pretending that the voltage is above the restabilization
curve in Figure 6 [129]. The rotation of the director
signals a symmetry breaking. The interpretation of the
phenomenon became possible via a generalization of the
weakly nonlinear theoretical description: in addition to
the GLE for the amplitude (refer to Section 4.1), another
GLE for the azimuthal angle� had to be introduced, with
cross-coupling terms in both equations [129,131,132].

The two degenerate azimuthal directions appear in
domains, which extend to a size being several times
the wavelength (Figure 15(c)). Under the usual obser-
vation conditions (by a shadowgraph technique or by
crossed polars with one polarizer parallel to n0), the two
kinds of AR domains produce the same optical con-
trast; thus, only the domain boundaries may be visible.
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Figure 15. Snapshots of s-EC patterns in planar (− +) samples
well above onset: (a) zigzag instability of conductive normal rolls,
(b) bimodal varicose pattern in planar Phase 5 (d = 19 μm); shad-
owgraph images, the light polarization is parallel to n0, (c) abnor-
mal rolls (crossed polarizers, light polarization at 8◦ from H) and
(d) CRAZY rolls (both polarizer and analyser are parallel withH) in
homeotropic Phase 5A (d ≈ 30 μm).

⊙
and ↔ indicate out-of-

plane and in-plane directions of n0, respectively, the arrow shows
the direction of the magnetic field H.

In order to distinguish the domains, the polarizer has
to be rotated from n0. In planar samples, � = 0 must
fulfil at the substrates; thus, due to the adiabatic light
propagation, AR domains are hard to be observed; their
visualization requires special techniques [61,74]. There-
fore, AR domains are best seen in homeotropic sam-
ples, where the substrate makes no constraint on the
azimuthal angle [84,130, 133,134]. At high voltages, a
specific structure, the CRAZY roll, was also detected.
This acronym, coming from ‘convection in a regular array
of z−y disclination loops’, expresses the essence of the
structure (Figure 15(d)) [130].

An interesting crossover region is found around the
frequency, where the s-EC normal rolls change to the ns-
EC prewavy pattern. Here again, in a limited frequency
range, increasing the voltage above the onset, the thresh-
old of the other pattern may be reached; then the two
kinds of patterns appear superposed. Recalling that in the
PW pattern, the azimuthal angle � of the director has
a sinusoidal modulation along n0 and the normal rolls
should be perpendicular to the local director, it results in
a chevron-like structure with oppositely curved rolls hav-
ing the wavelength of the NR (Figure 12(c)). As due to

the continuous variation of�, there are no defects in this
structure, it is called defect-free chevron [135], in con-
trast to the classical dielectric chevrons, which are defect
mediated.

At higher frequencies, after emerging, PW remains
stable for quite large
U; then a disclination loop appears
in the sample along a PW stripe. Inside the loop, the
PW stripe becomes periodically modulated, i.e., wavy
(which explains where the name prewavy comes from
[56]) (Figure 12(b)). The wavy pattern may also super-
pose with NR (Figure 12(d)).

In homeotropic (+ −) nematics, the nonlinear
behaviour depends strongly on the frequency. For f < f ∗,
where rolls appear at onset, increasing the voltage leads
to defect chaos. For f > f ∗, however, the soft squares of
the onset pattern transforms into domains of a differently
oriented, very regular grid pattern (hard squares domains,
Figure 16(a)), which are separated by sharp boundaries
[82,136] and coarsen with time [137]. Chaos also appears
here at high voltages, however, with a discontinuous
transition. In this geometry, as the azimuthal degener-
acy of the orientation breaks during the pattern onset,
Swift–Hohenberg equations should be used instead of
the GLE [53]. Simulations provided good match with the
experimental morphological phase diagrams [82,136].

In planar (+ −) nematics, the parallel rolls become
zigzag modulated when moving toward higher volt-
ages (Figure 16(b)) [82]. In 4, n-nonyloxybenzoic acid
(9OBA), a well-ordered square pattern was also observed
at a high voltage [138].

The patterns introduced above (apart from those
involving disclination loops) are common in one fea-
ture: their amplitude (e.g., the director tilt nz or
the azimuthal angle �) increases continuously with
increasing the voltage, i.e., those instabilities represent
a forward bifurcation. There are conditions, however,

Figure 16. Snapshots of s-EC patterns in a (+ −) swallow-
tail nematic compound well above onset: (a) hard squares in a
homeotropic sample (d= 11 μm), (b) zigzag modulated parallel
rolls in a planar sample (d= 11 μm).

⊙
and ↔ indicate out-of-

plane and in-plane directions of n0, respectively. Shadowgraph
images; the light polarization is horizontal.
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Figure 17. EC patterns growing into the homogeneous initial
state: (a) dendrites in planar MBBA in magnetic field (by courtesy
of J.T. Gleeson), (b) paw-like structure in homeotropic Phase 5A.
The yellow arrows show the direction of propagation of the front.⊙

and ↔ indicate out-of-plane and in-plane directions of n0 or
themagnetic fieldH, respectively. Shadowgraph images; the light
polarization is horizontal.

when the pattern appears at onset with a sudden jump
to a finite amplitude, corresponding to a backward bifur-
cation [59,139]. Growth of such patterns occurs via the
motion of their sharp boundaries. Backward bifurcations
are always accompanied by a hysteretic behaviour; the
pattern disappears at a voltage lower than its onset one.
In the voltage range of the hysteresis, an intermittent
behaviour may be detected.

Backward bifurcations are unfrequent in EC; they
may require special combination of material parame-
ters and/or application of additional fields. For example,
it has been shown both theoretically [140] and experi-
mentally [141–143] that in planar MBBA, a destabilizing
magnetic field H, being parallel to the electric field E,
may change the character of the bifurcation to EC: for
H below a critical Hc value, the usual forward bifurca-
tion is found, while forH > Hc, the bifurcation becomes
backward and hysteresis appears. Under this latter con-
dition, the EC pattern grows into the initial state in the
form of penetrating dendrites (Figure 17(a)) [141–143].
Similar localized, travelling paw-like EC patches were
reported in homeotropic Phase 5A (Figure 17(b)) [86].
Preliminary measurements on similar samples indicated
accidental intermittent oscillations in the presence of an
in-plane magnetic field. EC dendrites have also been
observed in another geometry, in 4, n-octyloxybenzoic
acid (8OBA) [a nematic with temperature-induced tran-
sition from (+ +) to (+ −) type] [78]. Propagation of EC
frontswas also reported in a planar (+−) sample, though
the presence of a hysteresis could not be approved [82].

4.3.2. Transitions induced bymaterial parameters
The existence and/or the characteristics of patterns
depend on a large number of material parameters;

therefore, it is natural to expect that changes in those
parameters may alter the pattern. The recognition that
some parameters are more vital than others in determin-
ing what kind of pattern may arise, initiated the clas-
sification of nematics into groups by the signs of their
dielectric and conductivity anisotropies in Section 4.

While this grouping turned to be very convenient and
useful, one should not forget that it is not fully precise:
the transitions between different pattern types (s-EC and
ns-EC) do not occur exactly at the sign inversion. For
example, for (− +) nematics, if σa diminishes below a
small but still positive value, s-EC ceases to exist. This
was shown analytically using the 1D approximation [42]
and could be confirmed by simulations using the SM. As
another example, if in planar (+ +) materials εa is small
and thus the Freedericksz threshold voltage UF is fairly
high, s-EC may occur until Uc < UF holds [41,144]. A
recent experimental proof for the latter has been reported
in a twisted nematic cell [145].

Tuning the material parameters is a tedious task,
involving a lot of chemistry. Unlike other parameters,
electrical conductivity is a quantity, which depends more
on the properties of the ionic contaminants than on the
chemical structure of the nematic; therefore, the con-
ductivity can successfully be modified by doping with
conducting salts. Recently, it has been proven that a DC
bias voltage also has a substantial influence on σ⊥ and
σa/σ⊥ [146].

In the early times of EC research, adjustments of
εa were attempted by mixing nematics with different
dielectric anisotropies [147]; mixing, however, modifies
other (elastic, viscous, etc.) parameters too. Changing
the temperature has a similar disadvantage: all param-
eters are affected; therefore, temperature-induced varia-
tions of the onset voltages are practically unpredictable.
Nevertheless, exploring the complexity of the changes
of pattern morphologies and their onset characteris-
tics has been attempted in several (calamitic and BCN)
materials, as a function of temperature, voltage and fre-
quency [39,97,148,149]. Temperature-induced transi-
tions between pattern morphologies were detected in
compounds exhibiting a sign inversion of either σa
[97,110] or εa [150] in the nematic phase.

All nematics mentioned so far are uniaxial materi-
als. EC measurements were also performed using a BCN
material, which was claimed to exhibit a temperature-
induced uniaxial nematic to biaxial nematic phase transi-
tion [151]. A morphological transition (actually a diver-
gence of a pattern threshold) was detected at the tran-
sition temperature, which was attributed to conductivity
variation.

A sign inversion of σa or εa may occur even at a fixed
temperature, if the compound has a dielectric relaxation.
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Typically, dielectric dispersion in calamitic nematics
occurs at very high (∼ MHz or above) frequencies,
where no pattern formation is reported. Occasionally,
however, the relaxation frequency may fall into the range
relevant for EC. One such example is a nematic capable
of dual frequency addressing, where εa changes sign in
the audio frequency range. There, a crossover between
the Freedericksz and the electroconvecting states can
be induced by changing f [152]. Recently, the influence
of the driving waveforms on the threshold of the pat-
terned states has thoroughly been analysed using such a
compound [153]. As another example, some bent-core
nematics exhibit a low f dielectric dispersion and as a
result, they show a double sign inversion of σa, as already
mentioned in Section 4.2.

Material and/or cell parameters can also be modified
by doping the nematic with nanoparticles. In a recent
experiment, a nematic doped with gold nanoparticles
exhibited reversed electro-optical switching compared to
that of the undoped material [154]. The phenomenon
was attributed to a change of orientation from planar to
homeotropic due to doping on the one hand, and to the
appearance of EC rolls characteristic for (+ −) nematics,
not present in the undoped material, on the other hand.
Unfortunately, the sign of σa has not yet been measured;
thus it is yet unclear, if σa < 0 holds and if so whether
that is also the consequence of doping.

While adjusting material parameters is difficult in
experiment, it is much simpler in theory. Checking the
influence of material parameters on Uc(f ) and qc(f )
of s-EC can easily be done by numerical simulations
based on the (extended) SM, by modifying one param-
eter, while keeping the others unaltered. For example,
it has been known for a long time that the enhance-
ment of σ⊥ reduces Uc and qc in the conductive regime,
while increases them in the dielectric one; as a result, the
crossover frequency fc shifts to higher values. Recently,
it has been proven that the enhancement of the relative
conductivity anisotropy σa/σ⊥ diminishes Uc and qc in
both regimes, but increases fc [146].

Unfortunately, similar parameter tests are missing yet
for ns-EC.

Exploring the influence of certainmaterial parameters
on pattern behaviour is also important to find a strategy
to avoid pattern formation. Simulations provide useful
hints for the proper adjustment of parameters in order
to reach that goal.

5. Pattern formation at ultra-low frequencies
(flashing)

The patterns discussed so far were observable either at
DC excitation or at AC with such frequencies where the

longest characteristic time of the system, the τd direc-
tor relaxation time, is much longer than the period T =
f−1 of the excitation. If the driving frequency is reduced
to the subhertz range, this assumption fails; neverthe-
less, pattern formation occurs even at such (ultra)low f.
ThereT/2 < τd holds; as a consequence, dynamics of the
system changes and new phenomena can be observed.
Namely, the director has enough time to build up a spa-
tial distortion and then decay back to the basic state, still
within a half period of the sinusoidal driving voltage; thus
the pattern amplitude is changing all the time. This sce-
nario is expected to occur during Freedericksz transitions
and the formation of FDs or EC as well.

Intuitively, one would expect a smoothly growing
and then diminishing pattern contrast, roughly follow-
ing the evolution of the voltage. Instead, the extended SM
[which is valid also in this ultra-low f range, for FDs as
well as for EC] concluded that director distortion (and
thus the pattern) should exist only in certain short por-
tions of the driving period [27]. For visual observations,
this would mean repetitive flashes (short pulses) of the
pattern. Experimental studies (which are rather scarce
[32,58,60,65]) confirmed this behaviour, as will be shown
below.

The transition from the audio frequency conductive
s-EC with quasi-stationary director configuration to the
low f flashing regime was experimentally explored in
Phase 5, using controllable (high) speed imaging [60,65].
For quantifying the recorded image sequences, the con-
trast Cs was defined as the mean square deviation of the
image intensity. In order to compare the behaviour at dif-
ferent frequencies, Figure 18(a) depicts the normalized
contrast for a single period (T) of the driving voltage at
various frequencies.

At f =100Hz, the contrast is almost constant, as it was
expected; the small second-order 2f modulation is just
perceptible. At one decade lower f, the contrast modu-
lation becomes larger, but the pattern is still visible in
the entire period; however, at f =1Hz, as a qualitatively
different behaviour, the pattern is not always visible (the
contrast reached the background value). At even lower
frequency (f =100mHz), EC appears only in narrow
time windows as short flashes, in each half period. The
apparent symmetry breaking observed as the inequality
of peak heights in the positive and negative half periods
was attributed to perturbation by a small offset voltage,
confirmed by the theory. The frequency dependence of
the relative contrast modulation clearly showed the tran-
sition from the stationary to the flashing character with a
transition frequency well approximating τ−1

d . For com-
parison, Figure 18(b) shows the temporal evolution of
the director component nz in the midplane of the sam-
ple within one period, calculated by the extended SM
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Figure 18. The time dependence of (a) themeasured normalized contrast and (b) the calculated director component nz in themidplane
of the sample, within one voltage period (T) at different driving frequencies for conductive EC in the compound Phase 5 [60].

for conductive EC at the same frequencies. Though the
relation of the contrast to nz is nonlinear, the qualitative
agreement with the experiments is evident. At higher f,
the time instants of the maximal contrast and nz within
the period even match quantitatively, however, a signifi-
cant difference in their phase is seen at low f [60].

At low f, deviation was also found between the mea-
sured and calculated threshold voltages. Both discrep-
ancies could be minimized by taking into account the
internal structure of the test cell: insulating orienting lay-
ers between the electrodes and the liquid crystal result
in an internal voltage attenuation and phase shift at low
f. By fitting f -dependent electric current measurements
with parameters of an equivalent circuit model, correc-
tion of the experimental data could be done [60], con-
siderably reducing themismatch compared to the theory.
The remaining difference was attributed to the stronger
effect of non-ohmic ionic conductivity at lower frequen-
cies, which is not taken into account by the theoretical
description.

Besides the flashing character, an interesting feature
of the pattern formation at ultra-low frequencies is that
the intersection of the Uc(f ) threshold curves of flex-
odomains and EC, i.e., a crossover between FDs and
EC, may occur in this frequency range [32,60]. The
behaviour of the threshold curves of FDs and EC is illus-
trated in Figure 19(b) for another calamitic compound
4-n-octyloxy-phenyl 4-n-methyloxybenzoate (1OO8).
At higher f, the EC threshold is sharp, but for f <1Hz,
the contrast versus voltage curve becomes gradually
smoother. The lack of sharp threshold at low f was
attributed to the effect of the nonlinear current charac-
teristics (see Figure 19(a)), which might exhibit spatial
dependence due to small variations in the boundary con-
ditions. The lowering of the EC threshold on decreas-
ing frequency for 0.5Hz < f < 10Hz is in accordance
with previous theoretical and experimental findings in
other liquid crystals [155]. The increasing tendency of the
EC threshold at ultra-low f may partially be attributed
to the internal voltage attenuation originating from the

Figure 19. The time dependence within a sinusoidal driving period T (a) of the Fourier contrast Cq and the electrical current Ĩ flowing
through the liquid crystal 1OO8. t= 0 corresponds to the zero crossing (from positive to negative) of the applied sinusoidal voltage. (b)
The threshold voltage of EC and flexodomains (FD) determined from various methods as a function of frequency on 1OO8 [32].
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insulating polyimide layers, and the screening of the ionic
double layers close to the substrates. For FDs, the varia-
tion of the threshold voltage was found to be weaker than
for EC in the low f regime. Considering that the internal
voltage attenuation is larger at lower f, the actual thresh-
old voltagewould decrease at f → 0, similarly to previous
theoretical findings [27].

A speciality of the crossover of flashing FDs and EC
at ultra-low f is that both kinds of patterns appear in
the whole sample, just in different time windows [32,60],
unlike at the crossover of EC patterns at high frequen-
cies, where the coexistence of the two patterns means
either their superposed or spatially separated appearance.
It means that if the applied voltage is higher than both
threshold voltages, EC and FDs appear as time sepa-
rated, alternating flashes. This time separation of patterns
allows to determine the threshold voltages of both pat-
terns in an extended frequency range on both sides of
the FD–EC crossover frequency (see Figure 19(b)). If
the voltage is between the two thresholds, only flashes
of the pattern belonging to the lower threshold occur.
This scenario applies for a relativelywide frequency range
on both sides of the crossover frequency, even when the
two pattern thresholds are significantly different. For f �
0.4Hz, the time separation of the two kinds of patterns
ceases; the two contrast peaks merge into one. Finally,
at even larger f, FDs do not appear; only EC remains
detectable.

The recognized importance of ionic phenomena in
liquid crystals during the pattern formation at ultra-
low f motivated further investigations with synchronized
electrical current measurements [32] in the rod-like
compound 4-n-octyloxy-phenyl 4-n-methyloxybenzoate
(1OO8) that showed alternating flashes of oblique EC
and FDs in a wider f range compared to Phase 5. The
two kinds of patterns are separated not only in time, but
also in the Fourier space. This behaviour is demonstrated
in the upper panel of Figure 19(a), showing the tempo-
ral evolution of the contrast Cq of each pattern. Here, Cq
is defined as the sum of the spectral intensities within a
region around the characteristic Fourier peak of the given
pattern. It is seen that the EC flash (solid line) closely
follows the time reversal of the applied voltage, while
FDs (dashed line) are present rather around the voltage
maxima/minima.

The temporal evolution of electric current Ĩ flow-
ing through the cell is plotted in the lower panel of
Figure 19(a). It clearly displays a non-ohmic charac-
ter. The current peaks after each polarity change of the
applied voltage coincide precisely with the flashes of EC
[32]. For different frequencies, voltages and tempera-
tures, the peaks in Ĩ and the EC flashes were found to
occur at the same time instants. The current peaks are

also present at voltages below the EC threshold, and in the
isotropic phase as well, thus they do not originate from
the pattern formation. Rather, the current peak seems to
trigger the EC so that it occurs earlier than is expected
from the SM, explaining the phase difference between
theory and experiment at f =100 mHz in Figure 18.

The nonlinear current response is attributed to the
ionic conductivity of the material and the insulating ori-
enting layers on the electrode surfaces (blocking elec-
trodes). The ionic conductivity arises due to the low
concentration of ions that are accelerated by the applied
electric field. If the field changes slowly, the charge carri-
ers have time to accumulate at the boundaries forming
double layers, because charge injection is hindered by
the insulating coatings. After the polarity reversal, the
forces acting on the charges turn to the opposite direction
causing a large ionic flow, since the previously formed
double layers have to be destroyed and built up on the
opposite electrodes. Thismechanism does not depend on
the anisotropy of LCs. Indeed, previous theoretical stud-
ies [156,157] yielded nonlinear current response to low
f sine voltage driving, similar to the Ĩ(t) in Figure 19(a).
In order to explore the influence of the anisotropy of LCs,
the weak electrolyte model [55] should be used instead of
the SM; however, the WEM has not yet been analysed in
the relevant low-f regime.

Dielectric s-EC has a different temporal dynamics
compared to conductive EC: nz oscillates with the driving
voltage even at high frequencies. This behaviour, namely
that the polarity of nz is alternating in subsequent half
periods, naturally persists also for ultra-low f. The tran-
sition from the high f to the low f regime means that
nz = 0 occurs not only for a time instant, but for a grad-
ually increasing interval in each half period of driving.
This was shown experimentally using the mixture Phase
4, which had exclusively dielectric EC in the whole f
range, due to its fairly low electrical conductivity [58].
The crossover between FDs and dielectric EC in the form
of alternating flashes was also observed.

We note that, while the conductive and dielectric
regimes are clearly distinguishable at high f via the tem-
poral dynamics of nz (stationary versus oscillating) as
well as by the wavelength of the patterns, it is not so easy
at ultra-low frequencies by two reasons. On the one hand,
in the flashing regime, |nz(t)| of the conductive and the
dielectric EC are almost identical, but nz changes sign
from one half period to the other in the dielectric flash,
while in the conductive flash it does not change sign.
Under the usual observation conditions, optics is not sen-
sitive to the sign of nz, therefore observation of the time
evolution of the patterns does not allow distinguishing.
On the other hand, at ultra-low f, the wavelengths of the
two kinds of patterns are less diverse.
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In the audio frequency range, switching from sinu-
soidal to square wave (SQW) driving makes only minor
quantitative differences in the pattern forming behaviour;
the ultra-low f driving is, however, more sensitive to the
waveform. Namely, at SQW applied voltages, the scenar-
ios presented above and illustrated in Figure 19(a) (the
alternating EC and FD flashes) do not exist. Instead, a
transient pattern occurs immediately after the polarity
reversal (presumably oblique rolls of s-EC induced by an
ionic current peak) which, after about a second, relaxes
to a steady state corresponding to the amplitude of the
SQW voltage. Seemingly, there is a switching between
two DC states of opposite polarity. This steady state may
be the initial homogeneous one or a DC patterned state
(FD or EC, depending on the material parameter set).
Relaxation to the homogeneous state indicates that the
threshold voltage for the onset of the transient is lower
than the threshold for any DC patterned state.

Pattern formation was also studied in 90◦ twisted pla-
nar cells using ultra-low-frequency SQW voltage excita-
tion, in a rod-like [145] as well as in a bent-core com-
pound [40]. In the rod-like compound, transient roll
structures appeared immediately after the polarity rever-
sal of the voltage that decayed in a few seconds. The
direction of q was polarity dependent; it indicated that
the maximum director distortion is located in the vicin-
ity of the negative electrode, instead of being in the
middle of the cell. The bent-core compound showed
flexodomains with similar polarity-dependent behaviour
[40] at low frequencies. Using DC voltage, the static pat-
terns appeared in domains of different stripe directions
separated by disclination lines. However, with low f AC
excitation at low voltages, the transient alternation of 90◦
rotated stripes was observed yielding that the director
deformation was localized near the surfaces. A similar
effect – flexodomains with their direction parallel to the
rubbing direction of one or the other substrate depend-
ing on the polarity of the voltage – was found also in
a 18◦ twisted cell using another BCN [158]. The effects
seen in both the rod-like and the bent-core material were
interpreted as the consequence of the ionic effect in the
liquid crystal leading to strong transient electric field gra-
dients near the electrodes, where the flexoelectric polar-
ization can assist the emergence of convective patterns
of the Carr–Helfrich mechanism and also the formation
of FDs.

We remind here (cf. Section 4.2) that a polarity-
dependent q has been found in another bent-core
nematic, however, in a planar (no twist) geometry
[121], where the above interpretation is not applica-
ble. It is yet unclear, which material parameters or
boundary conditions decide, whether surface induced or
bulk flexodomains and whether polarity-dependent or

polarity-independent patterns become observable in a
given material.

6. Driving with other, non-sinusoidal
waveforms

The patterns reported so far were excited mostly by
AC voltage of sinusoidal waveform. Using square wave
(SQW) signals is another option. In the audio frequency
range, switching from sinusoidal to square wave does not
change the scenarios qualitatively. This is not, however,
the case at ultra-low frequencies, in the flashing range (cf.
Section 5).

In recent decades, patterns induced by more complex
waveforms have also attracted attention; superposition
of an AC voltage with another AC or DC voltage, as
well as the case of stochastic driving will be addressed in
Sections 6.1, 6.2 and 6.3, respectively, in more detail.

6.1. AC+AC driving

The problem of pattern formation under superposing
two AC voltages of different frequencies (fl < fh) and
rms values, U = Ul

√
2 sin(2π flt) + Uh

√
2 sin(2π fht),

becomes especially interesting, if the two frequencies
belong to different EC regimes; i.e., if the relation fl <

fc < fh fulfils. Then the patterns induced by a single com-
ponent, conductive EC for fl and dielectric EC for fh,
have different temporal dynamics; therefore, the result
of a mixed driving is nontrivial. The main question is to
find the stability limiting curve (SLC) in theUh–Ul plane,
i.e., the border of that region where the applied (Uh,Ul)
voltage combination is not sufficient to induce pattern.

In a pioneering work [159], two AC voltages (actu-
ally SQW signals) of commensurate frequencies, fh = 4fl,
were superposed in phase and the resulting pattern for-
mation was investigated experimentally in Mischung 5,
as well as theoretically by a Floquet analysis. The SLC
obtained was composed of three branches. Starting at
Uh = 0, Ul �= 0, there is a branch with conductive nor-
mal rolls with increasing Ul threshold upon adding Uh.
Another branch originates from Uh �= 0, Ul = 0, cor-
responding to dielectric rolls, where the Uh threshold
decreases upon adding Ul. Finally, along the third con-
necting branch, at intermediate Uh, Ul values, a subhar-
monic pattern with a repetition frequency of fl/2 was
observed (Figure 20). The transitions between these pat-
tern morphologies are sharp, characterized by jumps in
the wave number of the pattern. Similar results were
obtained also in [160]. A good match between observa-
tions and theoretical predictions was found. The shape of
the SLC remained qualitatively unaltered when changing
the frequency, pretending that the conditions fl < fc <
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Figure 20. Measured threshold voltages for the pattern onset
(•) and selected wave numbers (◦) for in-phase superposition of
fl = 80 Hz and fh = 320 Hz square waves. The convection-free
ground state is surrounded by a conductive (a), a subharmonic (b)
and a dielectric regime (c). The selected wave numbers jump at
the transitions between these regimes. Circles mark the param-
eters (Ul,Uh) where the images of Figure 2 of [159] have been
taken. Dashed lines show calculated thresholds and wave num-
bers extracted fromthe (global)minimumof theneutral curveN in
theUl–kx plane for givenUh (cf. Figure 7 of [159]). Reprinted figure
with permission from [159]. Copyright (2004) by the American
Physical Society.

Figure 21. Worms detected in 1OO8 at superposing two AC volt-
ages of different frequencies (d= 50 μm) [146]. ↔ indicates the
in-plane directions of n0. Shadowgraph image; the light polariza-
tion is parallel with n0.

fh = 4fl were met [161]. A slight deviation was found
only at low fl, where the Ul(Uh) curve of the dielectric
branch of the SLC exhibited a non-monotonic behaviour.
As a result, in a narrow Uh voltage range, reentrance of
pattern formation, namely a dielectric EC–homogeneous
state–dielectric EC transition, was detected upon increas-
ing Ul [161].

It was also shown that subharmonic patterns may still
exist, even if the phase shift between the commensu-
rate frequencies is nonzero; however, if the phase shift
becomes larger than about 40◦, subharmonic patterns
cannot be exited any more. Then only the conductive
and the dielectric branches remain in the SLC, with a

direct transition between these morphologies [162,163].
Obviously, no subharmonic pattern is expected if fl and
fh are incommensurate, because the superposed driv-
ing signal is not periodic. Indeed, recent measurements
reported localized, worm-like EC structures instead of
subharmonic pattern at the connecting branch of the
SLC [146]. Similar worm structures have previously been
reported under pure sinusoidal driving in the conductive
NR regime of MBBA and Phase 5 [164], as well as in the
conductive OR regime of I52 [139]. The latter was inter-
preted within the amplitude formalism, via the coupling
of four q-modes [139,165–167].

We note that superposition of two specific AC voltages
is not a necessary condition for observing subharmonic
EC patterns. It was shown that excitation with time-
asymmetric (e.g., sawtooth-like) waveforms may also do
this job [168]. If the measure of the time asymmetry is
large enough, the subharmonic pattern may appear in a
frequency range between the conductive and dielectric
regimes. Then, instead of the usual transition sequence
shown in Section 4.1.1, a conductive EC–subharmonic
EC–dielectric EC sequence can be detected, where each
transition is accompanied with the jump of the wave
number [168].

Superposition of two AC voltages of commensurate
frequencies provides an opportunity to study the influ-
ence of time reversal on the pattern formation. Carefully
choosing the phase of the two voltages depending on
the fl:fh frequency ratio, time-mirrored pairs of wave-
forms can be selected. Theoretical calculations based on
the SM have concluded that the time reversal should
have no influence of the SLC [163]. Indeed, experiments
with superposing SQW signals of 1:4 frequency ratio
seemed to justify this conclusion. Later tests with sinu-
soidal waveforms and various (1:2, 1:3 and 1:4) frequency
ratios have, however, shown that under certain condi-
tions (e.g., when fl is close to fc) time reversal causes a
detectable deviation in the thresholds, i.e., the two SLC
curves do not coincide [169].

Finally, we note that simulations have been extended
to nonstandardEC too. They concluded that upon chang-
ing the sign of σa, not only the conductive regime disap-
pears [54,160], but a subharmonic solution also becomes
unrealizable [160].

6.2. AC+DC driving

The aim of studying patterns driven by superposed AC
and DC voltages, U = Udc + Uac

√
2 sin(2π ft), is sim-

ilar to that described in the previous Section 6.1: to
find the boundaries of the voltage region, in which the
initial homogeneous state remains stable despite apply-
ing a combination (Uac,Udc); moreover, to explore the
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morphologies of the pattern emerging at crossing this sta-
bility limit. DC-drivenECpatterns represent a solution of
the SM with a time symmetry different from that in the
conductive and dielectric regimes: all relevant variables
are stationary. Due to this symmetry difference, there is
no smooth transition from theAC f → 0 case toDC [27];
even if the DC threshold voltage and the critical wave
number do not differ much from the AC values in the
f → 0 limit.

Working with DC voltage provides extra difficulties.
Neglecting ionic effects (which is a basic assumption of
the SM) is the least established at DC driving. The inter-
nal voltage attenuation, which originates in the interplay
of the polyimide alignment layer covering the electrodes
with the finite conductivity of LCs, becomesmost impor-
tant at DC driving. Therefore, the voltage sensed by the
LC layer is smaller than the actually measured applied
voltage. This attenuation is difficult to determine; more-
over, it varies among cells. Long-term application of DC
voltage may adversely affect the chemical stability of
the nematic, which may have consequences on repro-
ducibility; but even in a short term, DC voltage affects
the conductivity of the LC [100,146,170]. DC voltage
jumps initiate relaxation processes in the conductivity,
with σ(t) having multiple characteristic times from sec-
onds to hours [146]. Therefore, a sample practically does
not reach its equilibrium state after a DC voltage has ever
been applied; the results may depend on the measure-
ment protocol and on the history of the sample. Owing
to these effects, theoretical predictions are expected to
match experimental data less, compared to the case of AC
driving.

On the other hand, combined (AC + DC) driving
offers more possibilities in testing morphological tran-
sitions in (− +) nematics, since not only EC patterns
can be induced byDC, but flexodomains also (depending

on the material parameters). In addition, AC-driven s-
EC patterns can be either conductive or dielectric; thus
one can investigate the interaction of patterns in four dif-
ferent scenarios. Theoretical predictions [146,171] could
be obtained for the complete SLC for each scenario from
the extended SM, by numerical calculations using various
sets of material parameters. Modification of the parame-
ters did not change the qualitative behaviour (the shape
of the SLC).

For each scenario, calculations yielded a simple con-
nected pattern-free, homogeneous region. In one case,
namely when DC electroconvection interacts with a low
f conductive EC, the characteristics of the pure DC- and
pure AC-driven patterns are very close to each other; as
a result the SLC was found to be a quarter-ellipse-like,
convex curve shown as a solid line in Figure 22(a), along
which the wave number and the obliqueness angle of
the pattern change continuously. So, in this case, there
is a smooth transition between the two types of pattern;
increasing Udc from zero reduces the AC threshold and
vice versa, adding Uac to Udc reduces the DC thresh-
old. For the remaining three scenarios, i.e., when flex-
odomains and/or dielectric EC is involved, the behaviour
is different. Under these conditions, the pure DC and the
pure AC pattern are so much different (in mechanism
and/or temporal dynamics and q) that no smooth tran-
sition is possible. The SLC breaks into two branches: the
DCbranch starting atUac = 0,Udc �= 0 ( the dash-dotted
line in Figure 22(a) and the solid and dash-dotted lines in
Figure 23(a)) and the AC branch originating at Udc = 0,
Uac �= 0 ( the dotted line in Figure 22(a) and the dashed
and dotted lines in Figure 23(a)). The two branches do
not join smoothly; the pointwhere they connect indicates
a crossover of patterns, i.e., a morphological transition
accompanied by a jump in q. It was found that the DC
branch is concave (adding an AC voltage increases the

Figure 22. Stability diagram in the Uac–Udc plane at two frequencies. (a) Stability limiting curve calculated with material parameters of
Phase 5 for low (solid and dashed lines) and high (dash-dotted and dotted lines) frequencies. Data taken from [171]. (b) SLC measured
in Phase 5 at f = 10 Hz (crosses), at f = 80 Hz (open symbols) and at f = 400 Hz (solid symbols). EC DC, EC CR and EC DR denote DC
electroconvection, conductive EC and dielectric EC, respectively. Data taken from [170].
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Figure 23. Stability diagram in the Uac–Udc plane at two frequencies. (a) Stability limiting curve calculated with hypothetical material
parameters of 1OO8 for low (solid and dashed lines) and high (dash-dotted and dotted lines) frequencies. Data taken from [146]. (b) SLC
measured in 1OO8 at f = 2 Hz (open symbols) and at f = 10 Hz (solid symbols). FD, EC CR and EC DR denote flexodomains, conductive EC
and dielectric EC, respectively. Data taken from [146].

DC threshold), while the AC branch is convex (adding a
DC voltage reduces the AC threshold).

These numerical results were confirmed by approxi-
mate analytical calculations via a perturbational analy-
sis, performed in the vicinity of the Uac = 0 or Udc = 0
points (at the origin of the DC and AC branches of the
SLC) [171].

Experimental realization and exploration of the differ-
ent scenarios of the pattern formation under combined
driving were performed using two nematics: Phase 5
exhibited EC [170–172], while 1OO8 had flexodomains
at DC [146]; at AC driving, EC was present in both
materials. The stability limiting curves were determined
at various frequencies (in the conductive as well as in
the dielectric regimes). Comparison of experimental data
with theoretical predictions yielded mingled results.

When DC EC was combined with conductive EC, the
predicted convex SLC was reproduced (see the crosses in
Figure 22(b)), however, only at the lowest test frequency
[171]. Increasing f, but still remaining in the conductive
regime, an extension of the stable range was observed;
unexpectedly, the AC branch of the SLC became concave:
superposing DC increased the AC threshold. Moreover,
the AC branch broke into two segments: conductive EC
(open squares) was present at low Udc, but dielectric EC
(open circles) occurred at higher Udc. As a consequence,
instead of the predicted smooth transformation, two
morphological transitions were found. This behaviour
indicates that the DC voltage induced a reduction of the
crossover frequency fc, which was confirmed by inde-
pendent measurements too. The extension of the stable
region becomes even more pronounced at frequencies,
where the pure AC-driven pattern is dielectric EC. Here,
both along the DC (solid triangles) and along the AC
(solid circles) branch the thresholds increase upon super-
posing voltage of the other type (see Figure 22(b)); the

former agrees, but the latter is in contrast to the predic-
tions of the theory. At high frequency, the AC and the
DC branch run nearly parallel at high voltages, flank-
ing a pattern-free channel. As a result, there are Uac,
Udc combinationswhere no pattern appears, even though
the voltages exceed several times the pure DC and AC
thresholds. As an extreme, the two branches do not even
connect within the accessible voltage range (limited by
the used high-voltage amplifier) [170].

The conclusion is that a signal with properly adjusted
asymmetry leads to unusual, reentrant morphologi-
cal sequences (EC–pattern-free–EC) when voltage is
scanned either horizontally or vertically in the Uac–Udc
plane. Moreover, the asymmetrical signal suppresses
undesirable turbulence and inhibits pattern formation
completely. Thus, if for any reason, it is necessary to apply
a high AC (DC) voltage (which ismuch above the pattern
onset) to the cell, it is enough to superpose someDC (AC)
voltage, in order to keep the system in the pattern-free
channel and hence to avoid patterns.

When flexodomains existing at DC are combined
with EC, the DC branch is expected to be concave (see
Figure 23(a)). This feature has been proven experimen-
tally (see the diamonds in Figure 23(b)) by several groups
on different nematics [38,146,173]. For the AC branch
of the SLC (squares and circles in Figure 23(b)), how-
ever, the same discrepancy was found as in the above
paragraph: the curve is unexpectedly concave and the
pattern-free channel may extend to high voltages, seem-
ingly without closure [146].

In a limited frequency range, a special scenario has
also been observed: the nearly parallel DC and AC
branches of the SLC were connected by a third branch,
corresponding also to flexodomains, however, withmuch
shorter wavelength than FDs along the DC branch [146].
These short wavelength flexodomains seem to be the
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manifestation of FDs of dielectric type, whose thresh-
old is normally too high to be detected. The biasing by
DC voltage helps to reduce this threshold, as confirmed
qualitatively by numerical calculations [146].

From the studies described above one can conclude
that, though some features (the behaviour of the DC
branch of the SLC) nicely match with the expectations,
serious discrepancies (the behaviour of the AC branch of
the SLC) were also detected. Looking for the possible rea-
sons of this discrepancy, it is reasonable to expect that
due to the presence of a DC voltage one or more mate-
rial parameters actually vary (σ is a trivial candidate),
while all calculations within the SM were done assuming
that material parameters are constant. The ionic effects
(already mentioned at the beginning of Section 6.2) may
play an important role; thus, the weak electrolyte model
extended with flexoelectricity might provide a more pre-
cise description.Nevertheless, at present, such an analysis
seems to be a too big challenge.

It has recently been proven that even remaining
within the framework of the extended SM, a quali-
tative explanation can be given for the discrepancies.
Impedance measurements performed simultaneously to
pattern observations have indicated that the impedance
of the sample (which is composed of a parallel resis-
tance and capacitance) depends on the DC bias voltage:
increasing Udc the parallel resistance becomes higher
[170]. Independent measurements have approved that
not only the conductivity σ⊥, but the relative conduc-
tivity anisotropy σa/σ⊥ too, diminishes upon increasing
Udc. Both parameters affect the threshold characteristics,
as mentioned in Section 4.3.2. Thus, comparing exper-
iments with the theoretical predictions, one should not
use the SLC calculated for a fixed σa and σ⊥, instead
theoretical data should be taken from a set of SLCs,
each calculated with different, experimentally obtained
conductivity data belonging to a given Udc. That pro-
cedure can, qualitatively, explain why pattern forma-
tion is suppressed by the superposition of DC and AC
voltages [146].

The combined driving has been used from another
aspect at a frequency, where an NR–ZZ–AR–varicose
transition sequence occurs at increasing U [174]. In
some voltage range, oscillating zigzag structures can be
observed, which were decomposed into three modes: the
zig, the zag and a twist mode; the latter corresponds to
a homogeneous rotation of the director, like in case of
AR. It was shown that the phases of these three modes
become synchronized to the driving voltage if a DC volt-
age is superposed; such synchronisation is absent in case
of pure AC driving.

For the other variant of s-EC, the (+ −) nematics, so
far neither theoretical analysis, nor experimental studies

are known about the influence of superposing AC and
DC voltages.

Nonstandard electroconvectionunder combineddriv-
ing is also a mostly unexplored field yet. Though for
(− −) nematics the mechanism of the pattern forma-
tion is known (originating in flexoelectricity), up to now
no theoretical predictions are available. Experimentally,
the limited assortment of (− −) compounds makes a
constraint. Moreover, as the temporal dynamics of the
longitudinal rolls of this kind of ns-EC resemble the
dielectric regime of s-EC, the EC pattern may not exist
at DC driving. Therefore, in some compounds, pure Udc
does not influence the stability of the planar state; then
the SLC has only the AC branch left. Preliminary results
on a representative compound, 8/7, indicate increasing
AC threshold upon biasing with Udc [175]. Other com-
pounds may exhibit flexodomains at DC. As FDs and
longitudinal rolls are both (nearly) parallel to the ini-
tial director and their wavelength scales roughly with
the thickness, a smooth transformation between these
two pattern types may be anticipated. Indeed, prelimi-
nary results on the BCNClPbis10BB seem to confirm this
anticipation [175].

For (+ +) nematics, the lack of the full understanding
of the pattern formation mechanism is a big drawback.
The morphological phase diagram in the Uac–Udc plane
has yet partially been explored for planar 5CB [100]. The
first instability in this compound is the splay Freeder-
icksz transition; its SLC is a quarter circle. EC sets in
as a secondary instability in the quasihomeotropic state
in the form of a stationary cellular pattern, both at pure
AC and pure DC driving as well as at combined driving;
its SLC is quarter-ellipse-like. At high Uac, normal rolls
were observed (independently of Udc), while at certain
Uac, Udc combination, a new pattern morphology, paral-
lel stripes, was detected. Thus whenmapping theUac–Udc
plane by keeping the Udc/Uac ratio constant, a sequence
of the following transitions pattern-free planar – pattern-
free quasihomeotropic – cellular – parallel stripes – nor-
mal rolls were observed. The boundaries between various
pattern types were typically not sharp; it might partially
be due to the dependence on the sample history, or to the
coexistence/superposition of neighbouring pattern types
(e.g., superposition of planar stripes with normal rolls
yielded a special herringbone pattern). The influence of
Udc on σ⊥ and σa/σ⊥ may certainly play a role here too.

6.3. Stochastic driving

Electroconvecting nematics are suitablematerials also for
investigating the influence of multiplicative noise on pat-
tern formation in an extended system. In a sequence
of experiments, a stochastic driving signal, synthesized
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by superposing a deterministic (sinusoidal) voltage with
a non-deterministic component (a white noise), was
applied to MBBA and an increase of the conductive EC
threshold as well as of the wave number with the noise
amplitude was observed [176–178]. This effect was inter-
preted using the simple 1D model of EC. It was also
shown that, besides the shift of the onset voltage, noise
also delays the onset of EC (increases the growth time);
moreover, it postpones the onset of turbulence [179,180].
Further experiments showed that colouring the noise,
i.e., cutting its high-frequency components, the thresh-
old increment of conductive EC reduces and can even
turn to negative [181–184]. Thus, the effect of the noise
may be tuned from suppressing pattern formation to pro-
moting it, depending on the relation between the highest
frequency of the noise and the cut-off frequency of the LC
[183]. As a consequence, the response of conductive EC
and dielectric EC on stochastic excitation is substantially
different; in the latter case, the threshold dependence on
the noise intensity is non-monotonic [185]. Differences
between the behaviour of planar and homeotropic sam-
ples were also studied [186]. Noise also has an effect
on the thresholds of further instabilities at high volt-
ages in the nonlinear regime [184]. The influence of an
additional magnetic field (which suppresses the additive
noise related to director fluctuations) was also investi-
gated [187]. It has to be noted that a pure stochastic
excitation can also lead to the formation of EC patterns,
which was proven for a homeotropic sample [188].

Another experimental approach for a stochastic driv-
ing was using square wave as the deterministic signal
and a dichotomous Markovian noise (i.e., random jumps
between two voltage values of opposite sign) as the non-
deterministic component. Measurements onMischung 5
indicated threshold variations and spatiotemporal fluctu-
ation of the patterns [189]. The purely stochastic driving
was analysed in more detail. Patterns appeared in the
form of bursts above the DC threshold, but already below
the deterministic (SQW) threshold voltage [190]. These
bursts correspond to an on–off intermittency between the
patterned and the initial homogeneous state. The prob-
ability distribution of the duration of the intermittent
states was analysed and compared to theoretical simula-
tions [191].

Theoretical description of the pattern formation
under stochastic driving is a challenging task. The
numerical tools used for calculations in the SM (har-
monic expansions for the temporal behaviour) are not
compatible with the applied non-deterministic voltages.
Therefore, different theoretical approaches had to be
developed based on lower dimension approximate mod-
els [191–196]. The methods and results are summarized
in a review [46].

7. Dynamics of defects and embedded particles

We have seen in Section 4.3.1 that if the applied volt-
age reaches the Eckhaus limit, the regular roll structure
becomes unstable against the formation of defects (dis-
locations). Figure 14(a) displays a pair of such defects.
Defects play an important role also below the Eckhaus
limit, in adjusting the wave vector of the pattern after
changes in the control parameters (U and f ). For exam-
ple, if the voltage and/or the frequency is altered from
(U0, f0) to (U1, f1), the wave vector should adjust itself
from q0(U0, f0) to q1(U1, f1). This change cannot occur
momentarily; therefore, a temporary wave vector mis-
match �q = q1 − q0 develops, which relaxes to zero as
time evolves. In extended systems, like in typical LC cells
having a large (> 100) aspect ratio, q cannot change con-
tinuously. Instead, defects are created in pairs of opposite
topological charge [197], which then move away from
each other until they reach the cell boundary or annihi-
late with another defect of opposite topological charge.
Motion of dislocations along the rolls (called climbing)
adjusts the wavelength (i.e., |q|) in small steps, while
motion perpendicular to the rolls (called gliding) intro-
duces small rotation of q [197,198]. In order to resolve
the wave vector mismatch, usually generation, motion
and then disappearance of a large number of defects are
required.

Dynamics of defects depends, besides the material
parameters, on the mismatch �q. The weakly nonlinear
analysis of the SM provides a relation between the mis-
match and the velocity of isolated defects [197,199]. The
velocity increases linearlywith�q, except in the�q → 0
limit, where a logarithmic singularity occurs. Experimen-
tally, studying defectmotion requires different conditions
for climbing and gliding. Climbing may be induced by
changing the frequency and voltage simultaneously, with
precautions to keep the relative excess voltage
U/U the
same for both frequencies [200,201]. Gliding could be
provoked in homeotropic EC by rotating the sample in
a symmetry-breaking magnetic field [202]. The veloc-
ity of defects or the temporal evolution of their number
could experimentally be obtained from a time sequence
of snapshots using specific algorithms for locating the
position of the defects [200,202] and the logarithmic sin-
gularity could be justified. The same technique could be
utilized to study the formation of chevrons (the super-
structures formed by defect chains, see Section 4.3.1)
[201,203].

The dislocations discussed above are localized defects;
they have a well-defined core. There are, however, ‘ long’
defects too (see Figure 14(c)), which are delocalized over
several rolls into phase-jump lines; they occur frequently
in the AR range either in planar or in homeotropic
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samples [204]. Dynamics of similar, breather-like defects
(having no singular core) has also been studied theoreti-
cally as well as experimentally in twisted nematic samples
[205,206].

The prewavy pattern of the bent-core nematic ClP-
bis10BB may form very spectacular temporary defect
structures on the way to reduce the q-mismatch: the knit-
ting instability (Figure 24) [36]. Recently, a very similar
scenario has been reported in another BCN and analysed
carefully uncovering director distributions, the velocities
and number of defects; just under the name ofmetastable
chevrons of the in-plane normal rolls [150]. Based on the
reported data, we assume that the different names cover
the same structures.

Boundaries of zigzag structures and abnormal roll
domains represent another type of defect: walls. Con-
siderable theoretical efforts have been devoted to under-
stand their formation and dynamics [113,207,208].

The optical contrast of the patterns seen in the micro-
scope comes solely from the director modulation; flow or
space charge distribution is not directly visible. However,
flow can be revealed using tracer particles. Dust parti-
cles, often present in the samples, may serve as tracers;
alternatively, colloidal particles (e.g., silicamicro spheres)
may be embedded into the LC. Tracer particles allow
one to prove the presence of flow vortices in the plane
perpendicular to the s-EC rolls; they repeatedly circle
out of and then back into focus within the roll. Very
recently, this was demonstrated in a low birefringence
nematic; in addition,measuring the velocity of single par-
ticles allowed one to distinguish between electro-foretic
motion (belowUc) andmotion due to EC [209]. The par-
ticles tended to form self-assembled chains, much longer
than the wavelength of the conductive s-EC rolls; the
onset of EC induced the undulation and thus an apparent
shortening of these particle chains [209].

Figure 24. Snapshot of the knitting instability in the BCN ClP-
bis10BB (d = 10 μm) [36]. The double arrow indicates the initial
director n0. Crossed polarizers; the light polarization is rotated
from n0 by 15◦.

The transport properties of colloidal particles were
investigated during s-EC in a wide voltage range in pla-
nar geometries [210,211]. At voltages moderately above
the threshold, the particles were found to be trapped in
a single convection roll exhibiting two different types of
motion: rotation in the vortex flow and gliding along con-
vection rolls. Increasing the voltage resulted in higher
rotation frequency and higher gliding velocity. At high
voltage excitation, in the presence of temporally fluctu-
ating roll structure (i.e., entering into the defect chaos
regime), the motion became with two-dimensional by
the hopping of particles between neighbouring rolls. The
particle transport perpendicular to the rolls exhibited dif-
fusion character and couldwell be described by a stochas-
tic model considering the rotation frequency of the par-
ticles, the roll width and the hopping probability [210].
At high voltage, two kinds of spatiotemporal chaos [87]
could be detected: coexisting with defect turbulence also
grid patterns may develop in clusters of varying size and
shape [211]. Therefore, at a given location, a spatiotem-
poral intermittency, i.e., a random switching between
disordered and ordered states, occurs. Trajectories of the
particles were investigated and statistically analysed for
both cases [211].

Embedding colloidal particles in the liquid crystal
was also used in the homeotropic geometry, to study
the soft mode turbulence [88,212]. The chaotic flow
field-induced random motion of microparticles and the
resulting non-thermal Brownian motion was studied.
Two types of particle motion were found: the faster
process was related to the rotation with the convec-
tion and hopping to neighbouring rolls; the slower one
was described as a consequence of the slowly chang-
ing larger scale pattern dynamics of the soft mode tur-
bulence. The particle diffusion could be described by
non-Gaussian distribution of particle displacement, and
the results were analysed by a generalized Langevin
equation [212].

Particles were used to uncover the flow pattern of
the prewavy pattern. In contrast to s-EC, the vortices
in this ns-EC pattern are parallel to the substrates; the
flow velocity has opposite direction in the neighbouring
stripes of PW [108].

8. Summary/outlook

Reviewing the electric field-induced pattern formation in
liquid crystals – whose study has a history of about a half
century – necessarily might not be complete. For exam-
ple, in the present review, we constrained ourselves to the
electric field-induced patterns in the nematic phase only,
even though patterns may exist in other, e.g., cholesteric
and smectic phases as well.
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We made an attempt to systematically overview the
stability limits of the nematic system, i.e., the conditions,
which lead to the appearance of patterns under an applied
electric field. The crossover from the basic state into
the pattern forming instability is the result of a delicate
balance of the control, material and system parameters,
which, inmost cases, is theoretically well understood and
described.

However, despite the huge knowledge accumulated
during the past decades by investigating patterns in a
large number of nematics and the great theoretical efforts
performed aiming to understand the basic mechanisms
and occasionally the fine details of the pattern formation,
some questions still remained open. These questions are
mostly related to nonstandard electroconvection.

Obvious examples are those patterns [e.g., the prewavy
pattern or the patterns arising in (+ +) nematics], where
the mechanism of pattern formation has not yet fully
identified or only simplified, low-dimensional models
have been proposed. We assume that the determinative
processes of the complex phenomenon of pattern forma-
tion have already been identified. Some of them (director
relaxation, viscous flow, space charge separation) are con-
tained by the SM, some others (e.g., flexoelectricity, ionic
migration/association/dissociation) have been addition-
ally included as individual extensions (extended SM or
WEM) and some have been modelled in an isotropic
environment (ionic effects, injection and resulting elec-
tric field gradients). A unification of the theories by incor-
porating all these components and thus becoming able to
provide most of the missing answers is a huge theoretical
challenge; at the moment it is still a dream for the future.

The crossover between flexodomains and ns-EC lon-
gitudinal rolls upon increasing the frequency is another
example for the unresolved problems. In FDs, flow is
negligible, while in LR flow is important; nevertheless,
both patterns have similar q and in both of them flex-
oelectricity plays a determinative role. It is yet unclear,
how the two patterns can be distinguished experimen-
tally, or by other words, up to which f can the pattern be
regarded as FDs (keeping inmind that at high f, the direc-
tor relaxation surely induces flow). This question has
recently been arisen concerning the interpretation of pat-
terns observed in an oxadiazole compound [33,149]. We
may, however, put the question another way: is it neces-
sary to distinguish these two patterns or this intention is
due to an artifact, a result of the shortcomings of various
theoretical models used for the interpretation. Further
experimental tests and theoretical considerations, includ-
ing numerical simulations, might be necessary to obtain
a comforting answer.

The present review aimed to summarize our knowl-
edge about the stability limits (instability thresholds)

in electric field-induced pattern formation, as well as
about what happens if one goes outside these limits.
This knowledge is also vital if patterns are unwanted and
should be avoided, since for that, the safest strategy is
to remain in the stable region of the parameters. If, in
a specific geometry, this requirement is not met, pat-
tern formation seems to be unavoidable. Then, modifica-
tion/adjustment of the parameters remains the only clue
to push the system back to the safe side of the SLC. This
may be performed by choosing another LC with more
appropriate parameters, or by reducing the conductivity
of the selected LC with proper additives (e.g., doping by
nanoparticles), or via suppressing pattern formation by
an additional, superposed field (e.g., by a DC bias).
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