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Abstract A systematic overview of various electric-field induced pattern forming instabil-
ities in nematic liquid crystals is given. Particular emphasis is laid on the charac-
terization of the threshold voltage and the critical wavenumber of the resulting
patterns. The standard hydrodynamic description of nematics predicts the oc-
currence of striped patterns (rolls) in five different wavenumber ranges, which
depend on the anisotropies of the dielectric permittivity and of the electrical con-
ductivity as well as on the initial director orientation (planar or homeotropic).
Experiments have revealed two additional pattern types which are not captured
by the standard model of electroconvection and which still need a theoretical
explanation.

Keywords: Pattern formation, instabilities, liquid crystals, electroconvection



2

Introduction

Patternsformed in non-equilibrium systems are fascinating objects, which
arise in many physical, chemical and biological systems [1].Liquid crystals,
the other key word in the title, are substances with captivating properties [2–
4] and their study has made amazing progress - both in basic research and
applications - in the past couple of years. How do the two subjects join and
why are liquid crystals especially attractive for studying pattern formation?
An attempt will be made in this tutorial review to answer these questions to
some extent.

Pattern forming phenomena in liquid crystals can be divided into two groups.
In the first one, liquid crystals replace isotropic fluids in the study of well
known classical phenomena like Rayleigh-Benard convection, Taylor vortex
flow, viscous fingering, free solidification from melt, directional solidifica-
tion etc. [5]. This gives a possibility to extend the investigations from simple
isotropic systems to more complex, partially ordered media. As liquid crys-
tals are intrinsically anisotropic substances, unusual nonlinear couplings (e.g.
electro-mechanical, thermo-mechanical, rotation-flow) of the hydrodynamic
variables become possible. They induce various focussing effects (heat, light
or charge) which in many cases give rise to considerably lower values of the
external control parameters at the onset of the instability.

In the second groupwe find pattern forming phenomena based on new insta-
bility mechanisms arising from the specific features of liquid crystals, which
have no counterpart in isotropic fluids or at least are difficult to assess. Some
examples are shear (linear, elliptic, oscillatory, etc.) induced instabilities, tran-
sient patterns in electrically or magnetically driven Freedericksz transitions,
structures formed in inhomogeneous and/or rotating electric or magnetic fields,
electroconvection (EC), etc. [5–7].

Liquid crystals have become an important paradigm to study generic aspects
of pattern forming mechanisms. Besides their stability the large aspect ratios
of the typical convection cells allows the observation of extended regions with
regular roll patterns. The patterns are easy to visualize by exploiting the bire-
fringence of liquid crystals. It is convenient, that the number of accessible
control parameters is larger than in standard isotropic systems. For instance,
one can easily tune magnetic fields or the amplitude and the frequency of an
applied voltage. It is also not difficult to change the symmetry of a convection
layer via the boundary conditions or the amount of anisotropy by changing the
temperature, in order to observe the effect of a transition from an isotropic to an
anisotropic pattern forming system. In general one might state that liquid crys-
tals have just the right amount and right kind of complexity and non-linearity,
to make them so attractive. The understanding of patterns in liquid crystals
has immensely benefitted from a close collaboration between experimentalists
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and theoreticians. Though the hydrodynamic description of liquid crystals may
look prohibitively complex in fact a quantitative description of experiments has
been achieved in many cases. In addition universal aspects of pattern forma-
tion can be addressed more easily in some cases (e.g. in terms of amplitude
equations) than in isotropic systems [8].

The overview is organized as follows. In section1 we outline briefly the
relevant properties of liquid crystals and sketch the theoretical description. In
section2 we discuss electroconvection for different material parameter sets and
geometries focusing mainly on the onset of convection. A summary concludes
the paper.

1. Physical properties of nematics

The termliquid crystalsdenotes a family of mesophases, which consist of
elongated (or sometimes oblate) molecules. They are characterized by a long
rangeorientational orderof the molecular axes. The resulting preferred direc-
tion in the system is described by the director fieldn (with n · n = 1). The
various mesophases differ in the positional order of the constituent molecules.
Quite often one finds with decreasing temperature a multi-step transition from
the fluid-like, random positional ordering of nematic liquid crystals (nemat-
ics) through several, layered structures to smectic liquid crystals (smectics)
possessing short range crystalline order. In the following we will constrain
ourselves to the highest-symmetry liquid crystalline phase, the nematic, which
is the simplest representative of anisotropic uniaxial liquids.

The thermodynamical equilibrium of nematics would correspond to a spa-
tially uniform (constantn(r)) director orientation. External influences, like
boundaries or external fields, often lead to spatial distortions of the director
field. This results in anelastic increment,fd, of the volumefree energyden-
sity which is quadratic in the director gradients [2, 3]:

fd =
1
2
K1(∇ · n)2 +

1
2
K2(n · (∇× n))2 +

1
2
K3(n× (∇× n))2. (1)

HereK1, K2 andK3 are elastic moduli associated with the three elementary
types of deformations; splay, twist and bend, respectively. Though the three
elastic moduli are of the same order of magnitude; the orderingK2 < K1 <
K3 holds for most nematics. As a consequence of the orientational elasticity a
local restoring torque (later referred to as elastic torque) acts on the distorted
director field which tends to reduce the spatial variations.

In most experiments (and applications) a nematic layer is sandwiched be-
tween two solid (glass) surfaces supporting transparent electrodes. Special
surfacecoatings and/or treatments allow to control the directoralignmentat
the bounding plates. There are two basic geometries; theplanar one wheren
is parallel to the surfaces (usually alongx̂), and thehomeotropicone wheren
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is normal to them (alonĝz). In most cases the interaction between the liquid
crystal and the surface is strong enough to inhibit a change of the direction ofn
at the boundaries (strong anchoring) despite director gradients in the bulk. The
surface treatments combined with the elastic torques originating from Eq. (1)
ensure the initial homogeneous (i.e. no spatial variations in the plane of the
layer) director alignment of liquid crystal cells.

Due to their orientational order nematics areanisotropicsubstances, there-
fore in contrast to isotropic fluids many physical quantities have to be described
by tensors [2, 3]. As nematics are non-chiral they exhibit an inversion symme-
try as well as a cylindrical symmetry around the director. In addition, they are
characterized by a non-polar molecular packing; thus the nematic phase is in-
variant against the transformationn → −n. These symmetries imply that the
dielectric susceptibilityε, the electrical conductivityσ and magnetic suscepti-
bility χ tensors each have only two different components in their principal-axis
system:ε‖, σ‖, χ‖ andε⊥, σ⊥, χ⊥ respectively. The dielectric displacementD
induced by an electric fieldE is for instance given asD = ε⊥E + εan(n ·E).
Analogous relations connect the electric currentj to E, and the magnetization
with a magnetic field, respectively. The differenceεa = ε‖ − ε⊥ defines the
anisotropy of the dielectric susceptibility. Substances both withεa > 0 and
with εa < 0 can be found among nematics, moreover, the sign may change
with the frequency and/or the temperature in some compounds (at optical fre-
quencies alwaysεa > 0). Though liquid crystals are intrinsically insulators,
they usually contain (or are intentionally doped with) some ionic impurities
which lead to a finite electric conductivity. In most cases the anisotropy of the
electrical conductivityσa = σ‖ − σ⊥ is positive; in other words charges are
easier transported parallel to the mean orientation (directorn ) of the elongated
nematic molecules than perpendicular. In the layered smectic phases, on the
contrary, typicallyσa < 0. In some liquid crystals with a nematic-to-smectic
phase transition, when decreasing the temperature, pre-transitional fluctuations
induce a sign change ofσa already in the nematic temperature range. The
anisotropy of the magnetic susceptibilityχa = χ‖ − χ⊥ is positive for the
majority of nematics due to saturated aromatic rings as main building blocks
of the constituent molecules. The few exceptions withχa < 0 are composed
of exclusively non-aromatic (e.g. cyclohexane) rings.

The sign of the anisotropiesεa andχa governs the behaviour of the liquid
crystal in an electric (E) or a magnetic field (H) field via anelectromagnetic
contribution,fem, to theorientational free energydensity:

fem = −1
2
εoεa(n ·E)2 − 1

2
µoχa(n ·H)2. (2)

As a result, forεa > 0 or χa > 0 the electromagnetic torque tends to align the
director along the fields, while in the case ofεa < 0 or χa < 0 an orientation
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perpendicular to the field directions is preferred [2, 3, 9]. This behaviour es-
tablishes the basic working principles of most liquid crystalline electro-optic
devices (displays). Though Eq. (2) indicates a similarity between the behaviour
in electric and magnetic fields, one crucial difference should be pointed out. As
χa is of the order of10−6 in SI units, distortions of the constant applied mag-
netic field when the director varies in space, can safely be neglected. In the
electric case, however,εa is usually of the order of unity, and then the electric
field distortions have to be taken into account.

Though nematics are non-polar substances, a polarization may emerge in
the presence of director gradients, even in the absence of an electric field. This
flexoelectric polarization[2, 3]

Pfl = e1n(∇ · n)− e3n× (∇× n) (3)

originates in the shape anisotropy of the molecules. As the flexoelectric coef-
ficientse1 ande3 of rod-like nematic molecules are usually quite small, their
contribution

ffl = −Pfl ·E (4)

to the free energy density is negligible in the majority of cases or is only de-
tectable under special conditions.

Though the free energy considerations introduced above are sufficient to
describe static orientational deformations in nematics, they cannot provide in-
formation about the dynamical properties of the system (e.g. the rate of re-
orientation upon a change of an external field). Usually dynamics involves
material flowwhich couples to the director field. In the standard nemato-
electrohydrodynamic theory the flow fieldv is described by a Navier-Stokes
equation, which besides the elastic and viscous stresses includes the Coulomb
force of an electric field on charges present. The nematic anisotropy is man-
ifested in a complex form of the viscous stress tensor, such that the effective
viscosity depends on the director orientation and the gradients of the veloc-
ity field components, which appear for instance in the strain tensor∇ ⊗ v.
The dynamics of the directorn in liquid crystals is governed by a balance-
of-torques principle, which involves besides the elastic and electromagnetic
torques additional viscous ones in the presence of shear flow. It follows di-
rectly from standard symmetry arguments [2, 3, 10] that the complicated vis-
cous behaviour of nematics (reorientation of the director induces flow and vice
versa, flow aligns the director) can be described by eight phenomenological
transport coefficients - the Ericksen-Leslieviscosity coefficientsα1, ...,α6, and
the rotational viscositiesγ1 andγ2 - though in fact only 5 of them are inde-
pendent (for their definitions and the relations among them refer to e.g. [2, 3,
10]). In the nemato-electrohydrodynamic model nematics are treated as ohmic
conductors. To describe thedynamics of the charge densityρ = ∇ ·D , which
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is coupled viaD = ε ·E to the electric fieldE, the quasi-static approximation
of the Maxwell equations is sufficient in our case, which is equivalent to the
charge conservation:

dρ

dt
+∇ · j = 0 (5)

with the electric currentj = σ ·E.
Theoptical propertiesof nematics correspond to those of uniaxial crystals

[11]. The director defines the local optical axis. The most obvious indication
of the anisotropy of nematics is their birefringence. Composed of elongated
molecules their extraordinary refractive indexne is always bigger than the or-
dinary oneno, i.e. nematics have a positive optical anisotropyna = ne − no.
When light is passing through a nematic layer, an optical path difference

∆s =
∫ [

neff (z)− no

]
dz (6)

between the ordinary and extraordinary rays builds up, which depends on the
local director orientation. The effective refractive indexneff (z) for the light of
extraordinary polarization decreases with increasing angle between the director
and the light polarization (no ≤ neff (z) ≤ ne). If placed between crossed
polarizers, variation of∆s results in changes of colour and/or the intensity of
the transmitted light. This feature makes the polarising microscope a standard
tool for studying the textures of nematic liquid crystals.

There are, however, conditions where modulation of the optical properties
can be detected with a single or without any polarizer. This occurs if the di-
rector has a spatial tilt modulation periodic in a direction perpendicular to the
light path (e.g. in electroconvection). The extraordinarily polarized light then
senses the ensuing periodic modulation of the refractive indexneff , so the
sample acts like an array of lenses. The illuminating light is focused and defo-
cused, respectively, which results in a sequence of alternating dark and bright
stripes in a properly adjusted microscope. This technique, which is used in
majority of experiments, is known as theshadowgraphy[12, 13]. In this setup
of course no intensity modulation exists when illuminated with light of ordi-
nary polarization (no is constant per definition). Using unpolarized light the
intensity modulations remain visible, however, the contrast is reduced since
only part of the light with the appropriate polarization will contribute.

Besides microscopydiffractionopens another possibility to analyze periodic
patterns. The modulation of the refractive index is equivalent to an optical grat-
ing, thus illuminating with a laser beam the fringe pattern of the diffraction can
be detected at a distant screen. This allows determination of the pattern wave-
length as well as monitoring the pattern amplitude via the fringe intensities
(see [14] and references therein).
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All the physical parameters mentioned above are material specific and tem-
perature dependent (for a detailed discussion of the material properties of ne-
matics, see for instance [4]). Nevertheless, some general trends are character-
istic for most nematics. Increasing the temperature the absolute values of the
anisotropies usually decrease, until they drop to zero at the nematic-isotropic
phase transition. The electrical conductivities increase with increasing temper-
ature as well, while the viscosity coefficients decrease. If the substance has a
smectic phase at lower temperatures, some pre-transitional effects may be ex-
pected already in the nematic phase. One example has already been mentioned
when discussing the sign ofσa. Another example is the divergence of the elas-
tic modulusK2 close to the nematic-smecticA transition since the incipient
smectic structure with an orientation of the layers perpendicular ton impedes
twist deformations.

2. Electroconvection

Convection instabilities driven by temperature gradients are common in na-
ture. They are for instance crucial ingredients for the dynamics of our at-
mosphere and drive the earth dynamo. They present an intensively studied
paradigm for the dynamics of extended nonlinear systems with many degrees
of freedom and show clearly the typical bifurcation sequences: spontaneous
pattern formation by destabilization of thehomogeneous basic state→ com-
plex patterns (secondary bifurcations)→ chaos/turbulence. The understand-
ing of such systems has been in particular promoted by laboratory experiments
in the buoyancy driven classical Rayleigh-Benard convection in a layer of a
simple fluid heated from below [15]. Already this experiment allows a wide
range of possible modifications like rotating or inclining the experimental setup
or the use of more complex working fluids like binary fluids or electrically
conducting liquid metals. The wealth of phenomena are still far from being
exhausted, either from the experimental or from the theoretical point of view.

Electrically driven convection in nematic liquid crystals [6, 7, 16] represents
an alternative system with particular features listed in the Introduction. At on-
set EC represents typically a regular array of convection rolls associated with
a spatially periodic modulation of the director and the space charge distribu-
tion. Depending on the experimental conditions the nature of the roll patterns
changes, which is reflected in particular in the wide range of possible wave-
lengthsλ found. In many casesλ scales with the thicknessd of the nematic
layer, therefore it is convenient to introduce a dimensionless wavenumber as
q = 2π

λ
d
π which will be used throughout the paper. Most of the patterns can

be understood in terms of the Carr-Helfrich (CH) mechanism [17, 18] to be
discussed below, from which the standard model (SM) has been derived [19].
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Some scenarios fall outside that frame and need obviously new, other mecha-
nism(s) for description.

Experiments and theoretical considerations have shown that the key param-
eters are the symmetry of the system (planar or homeotropic boundary con-
ditions), the dielectric and the conductivity anisotropies. It is therefore con-
venient to categorize the various combinations as listed in Table 1. In its last
column the structures predicted and/or observed are summarized which will be
discussed below systematically.

Table 1. Eight different combinations (labelledA to H) of initial director alignments and the
sign of anisotropiesεa, σa. The EC pattern species are characterized in the last column:CH
stands for patterns, which are compatible with the Carr-Helfrich mechanism, in contrast to the
remaining, nonstandard ones (ns-EC)

.

Case Alignment εa σa Type of transition

A planar < 0 > 0 directCH, ns-EC (prewavy)
B homeotropic > 0 < 0 directCH
C homeotropic < 0 > 0 secondaryCH, ns-EC (prewavy)
D planar > 0 < 0 secondaryCH
E planar > 0 > 0 directCH, Freedericksz
F homeotropic > 0 > 0 directCH (α-induced)
G planar < 0 < 0 directCH (α-induced),ns-EC (longitudinal)
H homeotropic < 0 < 0 directCH, Freedericksz,ns-EC (longitudinal)

First we discuss configurations which can be described by the standard
model where patterns appear either directly or as a secondary instability (sec-
tion 2.1). Then we discuss briefly EC phenomena not covered by the standard
model (section2.2.).

2.1. Standard EC based on the Carr-Helfrich mechanism

EC is typically driven by an ac voltage. Its amplitude is used as the main
control parameter, while the driving frequency provides a convenient second
control parameter. Two types of modes, theconductiveand thedielectric, are
allowed by symmetry (see the generic stability diagram sketched in Fig. 1). In
the low-frequency, conductive regime the director and the flow field are prac-
tically time independent, while the electric field follows the external driving
in time; in the high-frequency dielectric regime (for frequencies above the so-
called cut-off frequencyfc, which increases with decreasing charge relaxation
timeτq = εoε⊥

σ⊥
) the situation is reversed. In the following we will mostly focus

on the conductive regime.
EC occurs in a layer (parallel to thex− y plane) of homogeneously aligned

nematics in the presence of an electric field across the layer (along theẑ axis).
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Figure 1. Schematic morphological phase diagram in theU−f plane. Solid lines correspond
to the threshold voltage of standard electroconvection, the dashed line denotes the threshold of
the prewavy patterns or wide domains (see later). For details see [16].

To describe the convecting state one needs the velocity fieldv(r, t), the di-
rector fieldn(r, t) and the charge distributionρ(r, t) (or the electric potential
φ(r, t) inside the layer), which are available from the nemato-hydrodynamic
equations described in section1. These coupled partial differential equations
cannot be solved analytically with the realistic rigid boundary conditions (van-
ishing v, fixed n andφ at the confining plates). Typically investigations of
EC start with a linear stability analysis of the basic homogeneous state, which
yields the threshold voltageUc(f) and the critical wavenumberqc(f) as func-
tion of frequency. Much insight into the mechanisms of EC has been obtained
by deriving approximate, analytical expressions for the critical quantitiesUc

andqc. This development started with the seminal work of Carr [17] and Hel-
frich [18] in the planar geometry. They extracted the basic positive feedback
mechanism responsible for EC, which is now called the ’Carr-Helfrich (CH)
mechanism’ in the literature: any director fluctuation leads to charge separa-
tion, flow is excited due to the Coulomb force in the Navier-Stokes equation.
The flow exerts a viscous torque on the director reinforcing its initial fluc-
tuation and thus the charge density. The mechanism is opposed by viscous
damping of the flow and the elastic torques, such that EC appears only above
a certain threshold voltage.

The original, so called 1-d formula of Carr and Helfrich, has been later
refined and generalized into a 3-d theory capable to calculate the wavevector
and describe real, three dimensional patterns (like normal or oblique rolls),
other geometries and the dielectric regime [16].

Approximate analytical threshold formulas (examples are shown in Eqs. (7)
and (8)) have been very useful not only to interpret specific experiments but
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also to get insight into general trends. For instance it can be shown that theCH
mechanism remains unaltered if all three key parameters, the initial director
alignment,εa andσa, are ’reversed’ simultaneously, i.e. the change planar→
homeotropic is combined with a sign reversal ofεa andσa. In fact pairs of
systems connected by this reversal transformation (casesA↔B, C↔D, E↔H
andF↔G in Table 1) show close similarities.

In the following, first, the situations will be discussed where EC occurs as
a primary forward bifurcation and where the standard model is directly appli-
cable (casesA andB). Then we discuss configurations where EC sets in as a
secondary instability upon an already distorted Freedericksz ground state and
compare with experiments (casesC andD). Note that in this case already the
linear analysis based on the standard model becomes numerically demanding.
Finally we address those combinations of parameters where a direct transition
to EC is not very robust, since it is confined to a narrowεa range around zero.
For casesE andH this range may be accessible experimentally while for cases
F andG it is rather a theoretical curiosity only.

Case A: planar alignment,εa < 0 & σa > 0 . This is the most studied,
classical case, since the conductivity anisotropy of usual nematics (substances
without a smectic phase) is typically positive. Concerningεa there is a big
choice of materials with negative dielectric anisotropy.

The starting point is the analytical expression for theneutral curvein planar
alignment with realistic rigid boundary conditions in the conductive regime
[20]:

U2(q, f) =
π2Keff

εoε
eff
a + Ih

(α3/q2−α2)τqσeff
a

ηeff

(7)

with the overlap integralIh = 0.97267 andτq = εoε⊥/σ⊥ the charge relax-
ation time, which decreases with increasingσ⊥. The effective material pa-
rametersKeff > 0, εeff

a < 0, σeff
a > 0, ηeff > 0 are proportional to the

corresponding physical quantities (elastic moduli, dielectric and conductivity
anisotropies and viscous damping coefficients respectively). The effective val-
ues are frequency (f ) and wavenumber (q) dependent (for the complete expres-
sions see [20]). Eq. (7) has been derived with the use of a truncated Galerkin
expansion: each variable is represented byone test functionwith respect toz
which fulfills the boundary conditions and possesses the appropriate symme-
try. The minimum ofU(q, f) with respect toq yields the critical wavenumber
qc(f) which determines the threshold voltageUth(f) = U(qc, f).

In Eq. (7) one can easily identify the impact of the various terms: on increas-
ing either the orientational elasticity (Keff ), or the dielectric torques (εeff

a )
(which both tend to turn back the director to the initial homogeneous align-
ment) or the viscous damping of the flow (ηeff ) the threshold increases. The
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only destabilizing term, which is responsible for the onset of the patterning
(q 6= 0) instability, is theCH term, (α3/q2 − α2)τqσ

eff
a (noteα2 < 0 and

|α3| ¿ |α2|).

Figure 2. Threshold voltageUth/U0 and the critical wavenumberqc versus the dimensionless
dielectric anisotropyεa/ε⊥ calculated from Eqs. (7) and (8). a; b; Planar alignment withσa >
0, c; d; homeotropic alignment withσa < 0. Dashed lines correspond to the Freedericksz
transition, solid lines to the direct EC transition.

The important role played by the electrical conductivity anisotropyσa is
evident: if it decreases,U2(q, f) increases and diverges at a small positive
value ofσa when the two terms in the denominator compensate each other.
If σa approaches zero or becomes negative (caseF) theCH term vanishes or
acts stabilizing, respectively; thus convection is not expected. The role ofεa is
somewhat different: an EC transition exists for vanishing and even for positive
εa (caseE).

When analyzing the frequency dependencesUth(f) andqc(f) it is obvious
from Eq. (7) in line with general symmetry arguments that both quantities start
with zero slope atf = 0. They increase monotonically withf and diverge at
the cutoff frequencyfc, where the dielectric regime takes over. For simplicity
we restrict the detailed presentation of the threshold behaviour to the limit
f → 0 and to MBBA material parameters [2, 4, 19] except that we allowed for
variations ofεa (while keepingε⊥ constant) and reversed the sign ofσa for the
casesB, D, G andH.
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In Fig. 2 the results for the critical voltageUth (left panels, in units ofU0 =√
π2K1/(εoε⊥), U0 = 1.19V for MBBA parameters) and the corresponding

critical wavenumberqc (right panels) are summarized as function ofεa/ε⊥.
The data are barely distinguishable from results of a rigorous linear stability
analysis based on the full standard model [21].

In caseA (left panels of Fig. 2a-b)U(q) has only one minimum at a finite
qc, bothUc(εa) andqc(εa) are almost linearly decreasing functions. EC sets in
in the wholeεa < 0 range at a few Volts applied to the convection cell.

Figure 3. Cross section of a roll pattern at the direct onset to EC in the planar geometry
(indicated by the small dashes at the confining plates). Double arrows denote the director mod-
ulations, which are maximal at the midplane. The lines follow the stream lines. The symbols+
and− denote the sign of the induced charges, shown at a phase of the applied ac voltage where
the electric field points downward.

Figure 3 exhibits the director and charge distribution and the velocity field
in thex−z plane at onset of electroconvection, where thex̂ direction is parallel
to the initial (planar) director alignment,λ is the pattern wavelength.

Experiments carried out on MBBA, I52 and Merck Phase 4 and 5 [22–25]
match typically very well the quantitative calculations of the stability diagram.
Often oblique rolls (see Fig. 4a), where the wavevector of the striped patterns
makes a nonzero angle with the basic director alignment, appear in the conduc-
tive regime below a Lifshitz point (f < fL) and normal rolls (Fig. 4b) above it.
Their wavelengthsλ are of the order of the cell thicknessd. The dielectric rolls
(Fig. 4c) appearing at frequencies above the cut-off (f > fc) can be normal or
oblique, however their wavelength is independent ofd and is usually3− 4µm.
The patterns are regular (the snapshot in Fig. 4c was taken at a higher voltage
above threshold in order to have a higher contrast to the expense of producing
defects due to secondary bifurcations) and have a large aspect ratio.

For completeness we note that in many cases in experiments traveling rolls
(Hopf bifurcation) have been observed at onset usually at the high frequency
end of the conductive range (see Fig. 1). The phenomenon has withstood the-
oretical understanding for a long time, until the standard model has been gen-
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Figure 4. Snapshots of EC patterns slightly above onset for caseA taken in a polarizing
microscope with a single polarizer (shadowgraph images, Phase 5,d = 9µm). a; Oblique rolls,
b; normal rolls, c; dielectric rolls (Note the difference in magnification.). The initial director
orientation is horizontal. The contrast was enhanced by digital processing.

eralized in a way that the simple ohmic conductivity was replaced by ionic
mobilities. The resulting weak electrolyte model (WEM) [26, 27] provided an
explanation and good quantitative agreement with experiments in MBBA [28],
I52 [24] and Phase 5 [29].

Also shown by the dashed line in Fig. 1 is the experimental threshold curve
for prewavy patterns or wide domains (λ ≈ 4 − 10d) which represent also
electroconvecting structures though not captured by the standard model (see
later in Section2.2.).

Case B: homeotropic alignment,εa > 0 & σa < 0. Here the initial
director orientation and the sign of both anisotropies are reversed compared to
caseA.

Recent work showed [30] that EC sets in here with a continuous transition
from the homogeneous state directly, similarly to the classical configuration of
caseA. It has been shown that the pattern forming mechanism including the
role of the elastic, dielectric, viscous andCH terms is analogous and the stan-
dard model is applicable. The analytical one-mode neutral-curve expression
for homeotropic initial alignment [31] reads as follows:

U2(q, f) =
π2Keff

−εoε
eff
a − Ih

(α3−α2/q2)τqσeff
a

ηeff

. (8)

It is similar to Eq. (7), however, the effective quantities andτq appearing in
Eq. (8) are differently defined. In fact they can be transformed into each other
by interchanging the subscripts‖↔⊥ and the material parametersK1 ↔ K3,
η1 ↔ η2 andα2 ↔ −α3. These transformations are natural consequences of
switching the boundary conditions between planar and homeotropic.
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The right hand side of Eq. (8) is positive forεa > 0 andσa < 0 (caseB).
One expects forUc(εa) andqc(εa) similar functions (mirror images) to those
of caseA. However the corresponding plots shown in Fig. 2 look somewhat
different. This is due to the asymmetry of the scaling factors (we plot in all
casesεa in units ofε⊥ andUth in units ofU0 =

√
π2K1/εoε⊥).

The essential difference between casesA and B lies in the symmetry of
the system. In caseA the planar geometry is anisotropic, the wavevector di-
rection is selected by the boundary conditions. In contrast, the homeotropic
alignment in caseB provides isotropic conditions in the plane of the patterns
and the direction of the wavevector of the striped patterns is chosen accidently
at threshold, which corresponds to a spontaneous breaking of the rotational
symmetry.

The director field and charge distribution as well as the velocity fields are
sketched in Fig. 5 for the homeotropic case. The director tilt angle is deter-
mined by the applied voltage, but, as already stressed before, the azimuthal
angle is not selected in this isotropic configuration. As will be demonstrated
below, this freedom leads easily to disordered patterns with slow variations of
the azimuthal director component in the weakly nonlinear regime.

Figure 5. Cross section of a roll pattern at the direct onset of EC in the homeotropic geom-
etry (indicated by the small dashes at the confining plates). Double arrows denote the director
modulations, which are maximal at the midplane. Thin lines are for the flow field. The symbols
+ and− denote the sign of the induced charges.

Experiments have been carried out on p-(nitrobenzyloxy)-biphenyl [30] and
typical patterns in the conductive range at onset are shown in Fig. 6. At low
frequencies disordered rolls without point defects have been observed with a
strong zig-zag (ZZ) modulation (see Fig. 6a) which can be interpreted as the
isotropic version of oblique rolls. Above a critical frequency a square pattern
is observed which retains the ZZ character, because the lines making up the
squares are undulated. At onset the structure is disordered, however, after a
transient period defects are pushed out and the structure relaxes into a nearly
defect free, long-wave modulated, quasi-periodic square pattern (see Fig. 6b).
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Figure 6. Snapshots of EC patterns slightly above onset for caseB. a; ZZ modulated disor-
dered rolls, b; undulated (soft) squares.

The Uc − f phase diagram is similar to Fig. 1 and can quantitatively be
reproduced by the standard model. The dielectric regime has not been seen
experimentally that may have purely technical reasons (there is no argument to
exclude the dielectric regime). Regarding the various patterns in the nonlinear
regime they have been well reproducible by a suitable weakly nonlinear anal-
ysis [32, 33]. In contrast to the generalized Ginzburg-Landau amplitude equa-
tions usually used in the anisotropic regimes, a generalized Swift-Hohenberg
model had to be constructed here.

Case C: homeotropic alignment,εa < 0 & σa > 0. In this combi-
nation of the material parameters the linear stability analysis of the base state
does not predict a direct transition to EC since the resulting expression for
U2(q) in Eq. (8) is negative for allq 6= 0 (except forεa in the immediate vicin-
ity of zero, see below). The reason is that the two terms in the denominator act
differently compared to the caseB (εa > 0, σa < 0) described in the previous
subsection. The Carr-Helfrich torque is now stabilizing while the dielectric
torque (∝ εeff

a ) acts destabilizing. Atq = qF = 0 this term dominates and
describes at the thresholdUF3 (see Fig. 7a) the continuous bifurcation to the
homogeneous (along thêx direction) bend Freedericksz distorted state (see
Fig. 8a).

However, in the vicinity ofεa ≈ 0 the destabilizing influence of theCH
term is restored if it becomes comparable with theεeff

a term. Inspection of
Eq. (8) shows that this may occur at very largeq: the (α3 − α2/q2) term
which is large and positive for usualq (q ≈ 1), decreases with increasingq and
becomes eventually negative for materials withα3 < 0 if q2 > α2/α3 (≈ 100
for MBBA). This results in a patterning mode withq = qα against which the
basic homogeneous homeotropic configuration would become unstable. This
mode is only activated if its thresholdUα becomes lower thanUF3. Uα and
UF3 intersect at a very small, negativeεa/ε⊥ ≈ −5 · 10−5 (the intersection
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point is not resolvable even in Fig. 7c). To the right from the intersectionqα

becomes in fact the fastest growing mode [34]. Note, that this "α-induced"
direct transition to EC is only an interesting theoretical possibility, with no
experimental relevance, since one would need a nematic withεa almost exactly
zero and one should be able to detect patterns with extremely largeq at very
highUα.

Figure 7. Threshold voltagesUth/U0 and the critical wavenumberqc versus the relative
dielectric anisotropyεa/ε⊥ calculated from Eq. 8. Homeotropic alignment withσa > 0. The
upper (a; b;) and lower (c; d;) plots differ only in the axis scales. Dashed lines belong to the
Freedericksz transition, solid lines to the direct transition to an ("α-induced") EC patterned
state, dotted lines represent a secondary transition to EC.

Above the Freedericksz thresholdUF3 the tilt angle with respect tôz in-
creases with increasing voltage such that eventually one arrives practically at
a planarly aligned nematic layer at the midplane. Consequently the planarCH
mechanism is expected to be activated. Convection rolls are now to be super-
imposed on the elastically pre-distorted Freedericksz state (Fig. 8b); a simple
analytical threshold formula does not exist. Thus one has to rely on a numer-
ical linear stability analysis of the Freedericksz state in the framework of the
standard model. Since boundary layers have to be resolved, one needs more
(6 − 8) Galerkin modes than typically required in the standard planar case.
These numerical calculations have achieved the same good agreement with the
experiments in MBBA or Phase 5 [35, 36] as before in the case of the pri-
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mary bifurcations (casesA andB). Uc in Fig. 7 (a,c) andqc in Fig. 7 (b,d)
(dotted lines) represent the results of such calculations which match well the
experimental data [9]. Note that theUc andqc curves should continue toεa

almost zero; however, we have been unable to access this regime numerically,
since the minimum of the neutral curve becomes too shallow. In the range
−0.2 < εa/ε⊥ < −0.03 a bifurcation to oblique (instead of normal) rolls oc-
curs at threshold. This shows up as little wiggles in the slope of the modulus
of the critical wavevector plotted in Fig. 7b. Recent experiments [36] have
shown, however, that at certain combinations of the material parameters (e.g.
for Phase 5/5A) an unusual situation occurs, namely oblique rolls become re-
stricted to a finitefL1 < f < fL2 frequency interval. BelowfL1 normal rolls
appear, and reappear abovefL2, i.e. there are two Lifshitz points.

Figure 8. Schematic director profile in caseC. a; Freedericksz distorted state, b; with super-
posed electroconvection pattern.

Though the initial homeotropic state is isotropic (as in caseB), the isotropy
in the plane is spontaneously broken due to the Freedericksz transition. Conse-
quently the EC pattern is formed on an anisotropic background with a preferred
direction in thex − y plane (as in caseA). The local azimuthal angle of the
Freedericksz tilt direction is singled out by coincidence, thus it may vary in
space as well as in time representing a soft Goldstone mode which is coupled
to the EC patterning mode. As a result the patterns at onset - oblique rolls
(Fig. 9a) or normal rolls (Fig. 9b) depending on the frequency - are disordered
and correspond to a special manifestation of spatio-temporal chaos, the soft
mode turbulence [37–39].

The chaotic behavior reflected in the disordered patterns can be suppressed
if the initial isotropy of the homeotropic alignment is broken by applying a
magnetic fieldH parallel tox̂ as shown in Fig. 8 [40]. The azimuthal angle of
n is then singled out by the magnetic field, the patterns become nicely ordered
and exhibit similar morphologies as shown in Fig. 4 for the caseA (e.g. the
disordered pattern of Fig. 9a becomes similar to that in Fig. 4a).

The homeotropic geometry offers some advantages in observing certain
phenomena in the (weakly) nonlinear regime of EC (at voltages aboveUc). It
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Figure 9. Snapshots of electroconvection patterns superposed on the Freedericksz state in
caseC. a; oblique rolls, b; normal rolls.

is known that normal rolls (NR) become unstable above a certain voltage with
respect to abnormal roll (AR) modes [41], which are characterized by a rota-
tion of the director in thex − y plane, while the roll axis remains unchanged.
In planar cells the polarization of light follows adiabatically the director ori-
entation (Mauguin’s principle) [2, 3]. Weak non-adiabatic effects have to be
resolved in this case to detect possible in-plane rotations of the director which
are maximal near the mid-plane and vanish at the boundaries.

In homeotropic cells, however, in-plane rotations of the director are reflected
in a net azimuthal rotation of the optical axis (and the light polarization) across
the cell which has allowed a detailed exploration of the characteristics of the
NR-AR transition. Experiments have shown an excellent agreement with the
predictions of generalized Ginzburg-Landau models [36].

A second example is related to the motion of defects (dislocations in the roll
pattern) which constitutes the basic mechanism of wavevector selection. In the
normal-roll regime the stationary structure is characterized by the condition
q ‖ H. However, when changing the field direction one can easily induce a
temporary wavevector mismatch∆q = qnew−qold which relaxes via a glide
(v ‖ q) motion of defects. Experiments have confirmed the validity of detailed
theoretical predictions both with respect to the the direction (v ⊥ ∆q) and the
magnitude (consistent with logarithmic divergence at|∆q| → 0) of the defect
velocityv [42].

The homeotropic geometry allows also for the appearance of structures with
a secondary spatial periodicity - chevrons - in the conductive regime at volt-
ages considerably larger thanUc [43]. Such type of chevrons, which are char-
acterized by a periodic arrangement of defect chains, have been seen before
exclusively in the dielectric regime.

Case D: planar alignment,εa > 0 & σa < 0. This configuration is
realized by ’reversing’ the sign of the anisotropies and the initial director ori-
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entation compared to caseC. Thus casesD andC belong to the same ’family’,
analogously to casesB andA as discussed before. The standard model ap-
plies and the theoretical analysis can be based on Eq. (7) for the neutral curve
U2(q).

Figure 10. Threshold voltagesUth/U0 and the critical wavenumberqc versus the relative
dielectric anisotropyεa/ε⊥ calculated from Eq. (7). Planar alignment withσa < 0. The
upper (a; b;) and lower (c; d;) plots differ only in the axis scales. Dashed lines belong to the
Freedericksz transition, solid lines to the direct transition to an ("α-induced") EC patterned
state. Dotted lines represent a secondary transition to EC.

Upon increasing the voltage usually the first transition is to the homoge-
neous (q = qF = 0) splay Freedericksz state with a frequency independent
threshold voltageUF1 (Fig. 10a), i.e the absolute minimum of the neutral curve
is atq = 0. However, very near toεa = 0 the absolute minimum appears at a
finite q. Thus we have the planar counterpart of the "α-induced" EC described
in caseC. The Freedericksz threshold smoothly transforms into an EC thresh-
old Uα atεa/ε⊥ = 0.0057 (see Fig. 10c-d). Below this a direct transition to EC
is predicted withqα growing continuously from zero and remaining extremely
small. This transition seems to be a better candidate for experimental observa-
tion than its homeotropic counterpart, because bothUα andqα are substantially
lower than in caseC.

For εa/ε⊥ > 0.0057 EC sets in superimposed onto the Freedericksz state
(secondary instability) at a higher voltageUc > UF1. The standard model can
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be applied here too by carrying out numerical linear stability analysis of the
Freedericksz distorted state, and one is faced with similar modifications and
difficulties as mentioned in caseC before. Theεa dependence ofUc andqc,
which appear as dotted lines in Fig. 10(a-b) have been calculated numerically.
One should note that the convection rolls are now oriented parallel to the initial
director alignment, contrary to the normal rolls in caseA or C.

Measurements in the only available substance have presented well-aligned
rolls in the whole conductive frequency range [30] similarly to caseA (com-
pare Fig. 11a with Fig. 4b), in fact withq ⊥ n as predicted by the theory.
The wavenumber scales withd−1. The calculations above provided a good
quantitative agreement with experiments for bothUc(f) andqc(f).

Figure 11. a; Snapshot of EC pattern in the Freedericksz distorted planar geometry of case
D. b; Voltage dependence of the contrast (the difference of the maximumImax and minimum
Imin intensities) of the EC pattern in caseD. ε = (U2 − U2

c )/U2
c is a dimensionless control

parameter.

The transition was found to be mediated by nucleation and travelling of
sharp fronts (Fig. 11a) indicating a backward bifurcation, though hysteresis
has not been identified directly. Rather a sharp jump in the contrast (pattern
amplitude) on increasing the voltage has been detected with some indications
that a low contrast pattern arises already at voltages before the jump occurs in
Fig. 11b. A preliminary, weakly non-linear analysis has exhibited a bifurca-
tion, which is in fact weakly supercritical at low frequencies. Small changes
of the parameters and/or additional effects not included (e.g. flexoelectricity
and weak-electrolyte effects) could change it into a more expressed subcritical
bifurcation [32, 33].
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Case E: planar alignment,εa > 0 & σa > 0 . Here the magnitude
of εa plays a role. Starting from negative values (caseA) a direct EC threshold
persists for zero and positiveεa (see Eq. (7) and Fig. 2a-b). An upper limit in
εa is set by the onset of the homogeneous (q = qF = 0) splay Freedericksz
transition at a thresholdUF1. The intersection ofUc andUF1 occurs about
εa/ε⊥ = 0.06, where the Freedericksz transition starts preceding the EC bi-
furcation. A local minimum on the neutral curve still exists at a finiteqc up to
εa/ε⊥ = 0.09 whereqc discontinuously drops to zero. In the parameter range
whereUc ≈ UF1, interesting scenarios are expected as a result of the competi-
tion between the homogeneous and the convective mode [44, 45]. As in cases
C and D, we have performed a linear stability analysis of the Freedericksz
distorted state, but did not find any secondary EC threshold. To understand
this behavior we note that the dielectric destabilizing torque of the basic state
preferringq = 0 prevails over theCH torque resulting in the Freedericksz
transition atUF1. Increasing the voltageU aboveUF1, the tilt-angle of the
director increases and reduces further the destabilizing effect of theCH term
and an even higher voltage would be required for EC onset. At large enough
director tilt the CH term becomes even stabilizing and the EC threshold "runs
away". EC does not superimpose onto the Freedericksz state like it does in
casesC andD .

Case F: homeotropic alignment,εa > 0 & σa > 0. This is one of the
rather uninteresting situations. The only transition predicted is the "α-induced"
high q instability discussed in caseC which is the primary transition in a very
narrowεa > 0 interval (see Fig. 7a-d). No transition has been observed exper-
imentally for any wavenumber at any voltage.

Case G: planar alignment,εa < 0 & σa < 0. This is the counterpart of
caseF, thus the "α-induced" lowq instability discussed in caseD theoretically
persists forεa < 0 but the existence range is much smaller than in caseF.
TheUα curve diverges here atεa/ε⊥ ≈ −10−5 which can not be resolved in
Fig. 10c and has not been seen experimentally.

Case H: homeotropic alignment,εa < 0 & σa < 0. Here one expects
a qualitative behaviour similar to caseE. A direct EC transition is predicted for
negativeεa down toεa/ε⊥ ≈ −0.1 (see Fig. 2c-d), though there is no exper-
imental evidence yet. For more negativeεa the Freedericksz transition takes
over, above which no secondary EC threshold is expected. The discussion and
arguments given for caseE apply here as well.
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2.2. Non-standard EC excluded by theCH mechanism

The standard model is very powerful and as demonstrated before it describes
quantitatively the EC structures at onset and also quite deeply in the nonlinear
regimes. Nevertheless there are some situations (one of them is the prewavy
structure mentioned under caseA) where the standard model does not predict
a bifurcation to EC, though experimental observations have clearly identified
pattern formation accompanied by convection (ns-EC) in the presence of elec-
tric fields.

Cases A and C:εa < 0 & σa > 0. Compounds withεa < 0 andσa > 0
are the most common examples of substances to exhibit theCH electrocon-
vection as discussed above. In substances with higher electrical conductivity,
however, occasionally another periodical stripe pattern - theprewavy pattern-
arises already at voltages below the EC threshold voltageUc. This pattern has
been reported for homeotropic [46] (caseC) as well as for planar cells (case
A) and has been called wide domains [47, 48, 9]). It is characterized by a
wavelengthλ much larger than the sample thickness (λ ≈ 4 − 10d) (Fig. 12)
as well as by much longer relaxation times than those of standard EC patterns.
The stripes are running perpendicular to the director, i.e. in the same direction
as the conductive normal rolls. The prewavy pattern does not produce (at least
near to its threshold) a shadowgraph image, it becomes visible using crossed
polarizers only. This implies that the pattern is due to an azimuthal modulation
of the director which is associated with flow vortices parallel to the surfaces
[49] (i.e. in thex − y plane in contrast to the normal rolls inCH mechanism
where both the director modulation and the flow occurs in thex − z plane).
While the azimuthal rotation of the director is easily detectable in homeotropic
samples for anyd, in planar samples its visibility requires the detection of
non-adiabatic corrections to the light propagation, which restricts the sample
thickness.

Measurements have shown that the prewavy pattern appears in a forward
bifurcation [50]. Its threshold voltageUpw has a weak, nearly linear frequency
dependence. It usually occurs at higher frequencies (see Fig. 1). Conductive
normal rolls, dielectric rolls and the prewavy pattern may follow each other
with increasingf (dielectric rolls may be skipped in compounds with higher
conductivity). Near the crossover frequencyfc the conductive (or dielectric)
rolls may coexist with the prewavy pattern resulting in the defect free chevron
structure [51].

The characteristics of the prewavy pattern which clearly differ from those of
the classical EC patterns, cannot be explained using the standard model. The
underlying mechanism is not yet known. One proposed interpretation - the
inertial mode of EC [9] - fails to predict the correct direction of the stripes. The
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Figure 12. The prewavy pattern in homeotropic MBBA.d = 50µm.

observation, thatUpw seems to remain continuous and that the flow survives
when passing the nematic-to-isotropic transition with increasing temperature,
may suggest that the prewavy pattern could correspond to the chevron structure
of a not yet detected primary pattern created by an isotropic mechanism already
at voltages belowUpw. However, there are no direct experimental or theoretical
proofs for this idea.

Case G: planar alignment,εa < 0 & σa < 0. Standard EC (based
on theCH mechanism) is excluded for the material parameter combination
εa < 0, σa < 0 [2] except the ’α induced’ pattern type. Nevertheless convec-
tion associated with roll formation has been observed in ac electric field in the
homologous series of N-(p-n-alkoxybenzylidene)-n-alkylanilines, di-n-4-4’-
alkyloxyazoxybenzenes and 4-n-alkyloxy-phenyl-4-n’alkyloxy-benzoates [52–
54]. The characteristics of the patterns; i.e. the orientation of the rolls, contrast,
frequency dependence of the wavevector and that of the threshold, director
variation in space and time etc., are substantially different from those observed
in the standard EC. Since this roll formation process falls outside of the frame
of the standard model it has been callednonstandard electroconvection(ns-
EC).

The main characteristics of thesens-EC patterns which differ from those of
standard EC are:

The overall contrast of the pattern is low compared to the standard EC
structures. Near onset thens-EC pattern is not visible with the con-
ventional shadowgraph method, crossed polarizers are needed to detect
it. Thus the director field has noz component, i.e. the director is only
modulated in thex−y plane. This feature also explains the low contrast.

The threshold voltage scales with the cell thickness, thus the onset is
characterized by a threshold field (not a voltage).
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The critical wavevector is perpendicular to or subtends a large angle with
the initial director alignment (contrary to normal rolls) thus the rolls are
parallel (longitudinal) or strongly oblique (see Fig. 13).

The critical wavelength is comparable or larger than the cell thickness.

The director field oscillates with the driving frequency similar as in the
dielectric regime of standard EC.

The threshold is a linear function of the driving frequency.

Figure 13. Snapshots of nonstandard electroconvection pattern in caseG taken with crossed
polarizers. a; Oblique rolls, b; parallel rolls. Contrast was enhanced by digital processing. The
initial director orientation is horizontal. The depicted image is0.225× 0.225mm2, d = 11µm.

As possible explanations, several ideas have been proposed: a hand-waving
argument based on "destabilization of twist fluctuations" [52], a possibility of
an isotropic mechanism based on the non-uniform space charge distribution
along the field [53] and the flexoelectric effect [55–57].

Case H: homeotropic alignment,εa < 0 & σa < 0. Above the
Freedericksz transition, where no standard EC is predicted, convection (ns-
EC) builds up with properties similar to those listed for caseG. The patterns
are disordered (see Fig. 14) as expected for an initial homeotropic alignment.

Summary

In this paper we have reviewed the structures appearing at onset of electro-
convection in nematic liquid crystals. The influence of the relevant material
parameters (εa andσa) and the role of the initial director alignment were ex-
plored. Our calculations using a linear stability analysis of the standard model
of electroconvection (performed for zero frequency) revealed that four different
scenarios characterized by different wavenumber rangesq can be identified: (1)
is theqF = 0 mode (a homogeneous deformation known as theFreedericksz
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Figure 14. Snapshots of nonstandard electroconvection pattern in caseH taken with crossed
polarizers. a; Oblique rolls, b; parallel rolls. The initial director orientation is horizontal. The
depicted image is0.45× 0.45mm2, d = 20µm.

transition) predicted and observed in casesC, D, E andH, which is actually a
convection free state; (2) is theqc ≈ 1 mode (wavelength in the range ofd),
the classical electroconvection, appearing either as a primary or a secondary
bifurcation, both have been detected and explained quantitatively in the cases
A, B andC, D; (3) is a short wavelength structure withqα > 15 in caseF
and (4) is a long wavelength one withqα < 0.07 in caseD, both are only
theoretically predicted ("α-induced" EC) for substances withα3 < 0. Extend-
ing the scope from zero to low frequencies no qualitative change of the mode
assortment is expected though some morphological changes of the pattern are
present (oblique versus normal rolls).

At high frequencies - in the dielectric regime - Eqs. (7) and (8) do not ap-
ply. We mention for completeness that independent calculations for that range
would invoke a differentq-mode (5), the dielectric rolls, with a wavelength
which does not scale withd.

Experiments, however, proved that further stripe patterns occur which do not
have as yet an unambiguous, widely accepted interpretation. These patterns
can be classified into two additionalq-modes: (6) is theprewavypattern (or
wide domains) with0.2 < q < 0.5 observed in casesA and C, replacing
or coexisting with modes (2) and/or (5); and (7) corresponds to the parallel
(longitudinal) rolls which were observed in casesG andH, exhibitingqc ≈ 1
similarly to mode (2), but otherwise having different characteristics.
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