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Patterns driven by combined ac and dc electric fields in nematic liquid crystals
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The effect of superimposed ac and dc electric fields on the formation of electroconvection and flexoelectric
patterns in nematic liquid crystals was studied. For selected ac frequencies, an extended standard model of the
electrohydrodynamic instabilities was used to characterize the onset of pattern formation in the two-dimensional
parameter space of the magnitudes of the ac and dc electric field components. Numerical as well as approximate
analytical calculations demonstrate that depending on the type of patterns and on the ac frequency, the combined
action of ac and dc fields may either enhance or suppress the formation of patterns. The theoretical predictions
are qualitatively confirmed by experiments in most cases. Some discrepancies, however, seem to indicate the
need to extend the theoretical description.

DOI: 10.1103/PhysRevE.89.052507 PACS number(s): 61.30.Gd, 47.54.−r, 64.70.M−

I. INTRODUCTION

A wide variety of pattern-forming instabilities in extended
layers of nematic liquid crystals (nematics, or NLCs) under
the influence of electric field has been investigated extensively
in the past few decades (see, e.g., [1,2]). Typically a NLC layer
with thickness d in the range 10 � d � 100 μm is sandwiched
between two electrode plates parallel to the x,y plane to apply
a voltage. The confining plates are also used to ensure a
homogeneous director orientation n ‖ x̂ in the basic planar
state, where n describes the locally preferred orientation of the
nonspherical molecules of nematics. The patterns that develop
above a certain critical applied voltage are associated with
spatially periodic director variations in the layer plane, which
are characterized by the critical wave vector qc. Two different
types of patterns have been observed in the past. In some
nematic materials and mostly under a dc electric field, one finds
the so-called flexodomains [3,4], where qc ‖ ŷ. Their analysis
requires in essence only the minimization of the orientational
free energy of nematics [5,6]. In contrast to this equilibrium
transition of the planar basic state, in the majority of cases
the electroconvection instability (EC) is observed [7,8], i.e.,
a nonequilibrium transition accompanied by material flow,
where the angle between qc and x̂ is quite small or often
zero.

The theoretical analysis of the EC instability in nematics
is based on the well-established standard model (SM) [9],
which has been further refined in the past two decades (see,
e.g., [2] and references therein). In this paper, we concentrate
exclusively on the onset of pattern formation (linear regime).
However, the nonlinear regime is also well described by the
standard model [10,11].
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The basic ingredients of the SM (a coupled system of the
Maxwell, generalized Navier-Stokes, and director equations)
are discussed extensively in the literature [4,7]. A key
difference from isotropic fluids is that practically all material
parameters are of a tensorial nature and thus depend on
n, the distortions of which lead to charge separation (finite
electric charge density ρel). We deal only with nematics with
a finite though very small electrical conductivity, which is due
to certain mobile ions, often originating from the synthesis
of the nematic compounds. Note, however, that within the
SM, nematics are simply modeled as anisotropic Ohmic
conductors.

It should be emphasized that only the internal voltage drop
seen by the nematic layer serves as input in the theory. In
principle, it has to be distinguished from the external voltage
applied to the confining plates. In fact, the difficult task of
relating these two voltages is not tackled within the present
modeling of patterns in NLCs, in view of the complicated
multilayer structure of the confining electrodes and the mostly
unknown electrolytic properties of the NLCs.

Fortunately, in experiments, when (as in the majority of
cases in the past) sinusoidal ac voltages with not too small
frequency, f , are used, the difference between the external
and the internal voltage drop seems to be quite small, since
the experiments match the theoretical calculations fairly well.
Here the ac frequency f (or the angular frequency ω = 2πf )
serves as an important secondary control parameter in addition
to the effective amplitude U0 (the rms value) of the applied
ac voltage U = √

2U0 cos(ωt). It is useful that for not too
small ω, the ω dependence of the main features of EC can
often be absorbed by introducing the dimensionless frequency
ωτq with the charge relaxation time τq = ε0ε⊥/σ⊥. Here ε⊥
denotes the dielectric constant when an electric field is applied
perpendicular to the director, and σ⊥ ∼ 10−8 � m−1 is the
corresponding small electric conductivity. In contrast, the case
of zero or very small ω is more complicated and challenging

1539-3755/2014/89(5)/052507(7) 052507-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.89.052507


ALEXEI KREKHOV et al. PHYSICAL REVIEW E 89, 052507 (2014)

as well. Consistent with the theory, a switching between
flexodomains and EC patterns has been observed in some cases
(see, e.g., [12–15]). In general, the limit ω → 0 for EC is not
smooth since the patterns flash up only during a very short frac-
tion of the ac period T = 2π/ω. In addition, large differences
between the external and the internal voltage show up.

The linear properties of EC driven by a pure ac field are
described in detail on the basis of the SM in the literature.
In particular, one is faced with two types of roll patterns of
different time symmetry [16]. For ω smaller than the so-called
crossover frequency ωc, we have the conductive regime, where
the time average of the out-of-plane director component, nz,
is finite in leading order and where the dimensionless wave
number qc = |qc|d/π of the pattern is of the order 1. For
ω > ωc, we have the dielectric regime where in leading order
nz ∝ cos(ωt) and typically qc � 5. The existence of these two
linear solution types can be traced back to a certain symmetry
of the SM, which is invariant against the combination of a
reflection at the midplane and a time shift by T/2. Since the
various convection patterns are associated with a periodically
modulated director configuration in space, which has the effect
of an optical grating (see, e.g., [17] and references therein),
they are easily discriminated in experiments.

In the following sections, we deal with the main topic
of this work, namely the detailed description of the various
pattern-forming instabilities in a nematic layer driven by two
superimposed voltages, where each of them would separately
trigger patterns of different time symmetry. Section II is
devoted to the linear stability analysis of the underlying
nemato-electrohydrodynamic equations. In Sec. III, we deal
with a comparison of the theoretical results with representative
experiments. The paper concludes with a summary and an
outlook toward future work.

II. PATTERNS DRIVEN BY COMBINED
ac AND dc ELECTRIC FIELDS

In a first systematic study on patterns in nematics driven
by superimposed electric fields, two square-form ac voltages
with frequencies ω1 < ωc and ω2 > ωc were considered [18].
Later on, in more recent experiments [19], the case of two
superimposed harmonic voltages of the form

U = Ulow sin ω1t + Uhigh sin(ω2t + β) (1)

was explored. One finds in the Uhigh-Ulow plane a pattern-free
region, which is simply connected. The detailed shape of that
region depends in a complicated manner on the choice of the
two frequencies ω1, ω2 and also on the phase shift β. An
exact theoretical analysis of the various scenarios is missing
so far and would be quite demanding within the framework of
the SM.

To simplify the situation by reducing the number of
parameters in Eq. (1), we have considered the case ω1 = 0,
i.e., a superposition of a dc and an ac voltage of the following
form:

U = Udc +
√

2Uac cos(ωt). (2)

We will consider only moderate ac frequencies ωτq > 0.1,
as in most experiments in the past. In this way, we avoid
the problematic region ω → 0 for EC. On the other hand, it

opens the possibility to study the mutual interaction between
flexodomains that exist for Uac = 0 and EC patterns for
Udc = 0. Furthermore, we expect that a comparison with
experiments would yield valuable information on possible
modifications of the externally applied voltage inside the cell,
which might happen in particular through the dc component
of the applied voltage, for instance by an accumulation of the
mobile ions at the electrodes (Debye layers).

To analyze this situation, we had to modify the SM code
used in [16] by including the additional dc voltage. As a result,
the special reflection-time-shift symmetry of the SM alluded to
above is broken. For ω < ωc, the time average of the director
component nz remains finite and we use the short-hand notion
“conductive” to describe the resulting low-qc patterns. For
ω > ωc, this pattern type is expected as well when Udc � Uac

in Eq. (2). In contrast, for Udc 	 Uac, where nz as well as the
pattern amplitude are time-periodic, the high-qc patterns are
denoted as “dielectric.”

Instead of presenting extended parameter studies, we will
discuss some characteristic examples of the onset of EC due
to the applied voltage of the form given in Eq. (2). They have
been obtained by a linear stability analysis of our SM code,
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FIG. 1. Phase diagram for EC patterns in the Udc-Uac plane under
combined dc and ac voltages with ωτq = 0.3 (f = 10 Hz) in the
conductive regime: Boundary curve enclosing the pattern-free region
(a); the critical wave number |qc| (b); angle α between the critical
wave vector qc and the x axis (c) along the boundary curve. Material
parameters of Phase 5, thickness d = 10 μm, flexocoefficients e1 =
e3 = 0.
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where a “standard” material parameter set of the nematic
Phase 5 has been used [13,20]: ε⊥ = 5.25, εa = −0.184,
σ⊥ = 10−8 � m−1, σa/σ⊥ = 0.7; elastic constants in units
of 10−12 N: k11 = 9.8, k22 = 4.6, k33 = 12.7; and viscosity
coefficients in units of 10−3 Pa s: α1 = −39, α2 = −109.3,
α3 = 1.5, α4 = 56.3, α5 = 82.9, α6 = −24.9.

A. Numerical stability analysis

Let us start with the case of an ac frequency ωτq = 0.3,
which leads for Udc = 0 to EC rolls of the conductive
symmetry. The resulting quarter-ellipsoidal pattern-free region
in Fig. 1(a) is limited by a smooth curve. With increasing Uac,
the critical value of Udc decreases until one finds for Udc = 0
the critical value of pure ac-voltage driven conductive rolls.
Moving along the boundary curve, starting from the left where
Uac = 0, the EC roll patterns remain practically stationary;
their wave numbers |qc| and angles α between qc and the
preferred x direction decrease slightly [see Figs. 1(b) and 1(c)].

Next we consider the situation with ac frequencies above
ωcτq ≈ 2 (see Fig. 2). The threshold at Uac = 0 is given by the
threshold for pure dc driving and is thus the same as in Fig. 1(a).
With increasing Uac, the pattern remains of conductive type
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FIG. 2. (Color online) Phase diagram for EC patterns in analogy
to Fig. 1 except for the ac-voltage component with ωτq = 6
(f = 200 Hz) in the dielectric regime. The crossover between the
conductive EC patterns and the dielectric ones is marked by the filled
circle in (a).

along the upper boundary, but, in contrast to the case of small
ω [see Fig. 1(a)], the critical value of Udc increases. Starting
alternatively at the threshold of dielectric rolls at Udc = 0 and
increasing Udc, the pattern of dielectric type persists along the
right boundary curve in Fig. 2(a). As is to be expected, these
two boundary curves associated with patterns of a different
type and of substantially different wave numbers [Fig. 2(b)] are
not joining smoothly. Note that similar smooth and nonsmooth
boundary curves have been observed before in the case of two
superimposed harmonic voltages as well [19].

Finally, we consider the competition between flexodomains
and an EC pattern, either in the conductive or in the dielectric
regime. For that purpose, we have to modify the Phase 5
material parameter set listed before, for which the bifurcation
to EC prevails for all ωτq . One has to include flexoelectricity
into the SM parametrized by the flexocoefficients e1 and e3.
The threshold voltage for flexodomains, Uflex

c , at ω = 0 is
proportional to |e1 − e3| (see, e.g., Ref. [6]), and by choosing
for simplicity e1 = 12 pC/m, e3 = 0, we obtain in fact a
bifurcation to flexodomains at ω = 0.

As demonstrated in Figs. 3(a) and 4(a), we obtain in the
context of this pure model study again pattern-free regions that
look very similar to the ones described before in Figs. 1 and 2,
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FIG. 3. (Color online) Phase diagram for flexodomains and con-
ductive EC rolls for the ac-voltage component with ωτq = 0.3
(f = 10 Hz) in analogy to Fig. 1 except for finite flexocoefficients
e1 = 12 pC/m, e3 = 0. The crossover between flexodomains and
conductive EC rolls is marked by the filled circle in (a).
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FIG. 4. (Color online) Phase diagram for flexodomains and di-
electric EC rolls in analogy to Fig. 3, but for the much higher ac fre-
quency ωτq = 6 (f = 200 Hz). The crossover between flexodomains
and dielectric EC rolls is marked by the filled circle in (a).

where only EC patterns are involved. According to Fig. 3,
for the ac frequency ωτq = 0.3 in the conductive regime of
EC we find at first flexodomains when following the upper
transition curve with increasing Uac. As is characteristic for
flexodomains, the angle α between the critical wave vector
qc and the x axis remains at α = 90◦, while |qc| slowly
increases. At about Uac ≈ 2.5 V, a crossover to EC patterns
takes place and the transition curve in Fig. 3(a) monotonically
bends down when further increasing Uac. Furthermore, one
observes jumps in the wave number |qc| and in the angle
α at the crossover point [Figs. 3(b) and 3(c)]. While the
latter quantity decreases substantially with increasing Uac,
the former quantity increases. The corresponding scenario for
the ac driving in the dielectric regime (ωτq = 6) is presented
in Fig. 4 and looks qualitatively similar. With increasing ac
voltage at about Uac ≈ 18 V, we find the transition from
flexodomains to dielectric EC rolls, which are confined to
a much smaller Uac interval compared to Fig. 3. In contrast to
Fig. 3(a), at the crossover point the slope of the transition curve
changes dramatically and the jump of |qc| is much larger. The
angle α between the critical wave vector qc and the x axis
switches from α = 90◦ to α = 0 (not shown).

B. Qualitative analysis

In the following, we give some rough arguments to support
the exact numerical results on the general shape of the
pattern-free regions shown in the figures above. In principle,
we go back to the basic elements of the positive feedback
mechanism, commonly named after Carr and Helfrich [21,22],
which governs the EC instability. In essence, the reasoning is
as follows: Any out-of-plane distortion of the originally planar
director configuration (finite nz) leads to charge separation and
to a finite charge density ρel. As a consequence, in the presence

of an electric field of strength Ez across the nematic layer,
the Coulomb force ρelEz appears in the velocity equation,
by which a velocity field with the component vz is excited.
A necessary condition for destabilization of the basic planar
state toward EC patterns is the reinforcement of the original
director distortion by the resulting viscous torque ∝vz on the
director. Details are discussed, for instance, in Ref. [16]. In
particular, the time symmetry of the patterns plays an important
role. In the case of a dc voltage or a low-ω ac voltage
(conductive regime), both nz and vz ∝ ρelEz are virtually
time-independent, while both Ez and ρel oscillate sinusoidally
for small ω. For large ω, the time symmetry is reversed. Thus it
is clear from the beginning that the time-independent torques
originating from a pure dc-electric field and an ac-electric field
in the conductive regime allow for their optimal cooperation.

The following paragraphs are devoted to a more detailed
analysis on the basis of a perturbative treatment of the
combined action of ac and dc voltages. We will focus on
two particular sections of the boundary curves of the various
pattern-free regions discussed in Sec. II A, namely small ac
perturbations of the purely dc-voltage driven EC patterns,
and alternatively small dc perturbations of purely ac-voltage
driven EC patterns. The appropriate lowest-order ansatz for the
out-of-plane component of the director, which vanishes at the
upper and the lower horizontal boundary plates (at z = ±d/2),
is given as

nz(x,y,z,t) = Nz(t) cos(πz/d) cos(qx + py), (3)

with qc = (q,p). The amplitude Nz is determined by the
time symmetry of the EC modes. At finite nz, the dielectric
displacement D leads via ρel = ∇ · D to the charge density ρel

in the form

ρel(x,y,z,t) = ρ̄el(t) cos(πz/d) sin(qx + py). (4)

Let us start with the case Udc � Uac in Eq. (2). Concen-
trating first on a small ac frequency ω, the z component of the
applied electric field can be represented as

Ez = Edc + δEac cos(ωt), (5)

where Edc corresponds to the critical dc field and δEac cos(ωt)
describes the appropriate time-periodic perturbation in the
conductive regime (ωτq 	 1), where, on the other hand, both
the director field and the velocity are time-independent in
leading order. Consequently, we use the following ansatz for
the amplitude Nz of the out-of-plane director component:

Nz = Ndc
z + δN ac

z , (6)

where Ndc
z ,δN ac

z > 0. Using Eqs. (3) and (6), the correspond-
ing amplitude of the charge density ρ̄el can be calculated [for
details, see, e.g., Eq. (A11) in Ref. [16]]. For rolls driven by
the dc field, only the stationary correction of the z component
of the Coulomb force (∝ρ̄elEz) in the Navier-Stokes equation
is relevant. In leading order in the perturbations δN ac

z , δEac,
one finds

ρ̄elEz = E2
dc

(
Ndc

z + δN ac
z

)
ρ0 , (7)

where ρ0 is given by

ρ0 = qε0ε⊥(σa/σ⊥ − εa/ε⊥)

1 + (σa/σ⊥)q2/(q2 + p2 + π2/d2)
. (8)
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For (σa/σ⊥ − εa/ε⊥) > 0, which holds for Phase 5, the
positive correction E2

dcδN
ac
z ρ0 of Coulomb force leads to an

enhancement of vz and thus of the destabilizing viscous torque.
Consequently, the EC instability occurs at a reduced value of
Edc, in line with the bending down of the upper boundary curve
in Fig. 1(a).

In the following, we continue with the case Udc � Uac

but consider a high-frequency ac-voltage perturbation in the
dielectric regime. In analogy to Eq. (6), the appropriate
lowest-mode ansatz involves now the generic time-periodic
perturbation in the dielectric regime as follows:

Nz = Ndc
z + δN ac

z cos(ωt). (9)

Following the same strategy as before, we arrive after some
algebra at

ρ̄elEz = (
E2

dcN
dc
z − 1

2EdcδEacδN
ac
z

)
ρ0. (10)

The main difference from the low-ω case considered before
is that the Coulomb force driving the pure Udc patterns (i.e.,
E2

dcN
dc
z ρ0) acquires a negative correction that depends quadrat-

ically on the ac perturbations. Accordingly, the threshold Edc

has to increase in line with Fig. 2(a).
The following considerations deal with the second main

part, Uac � Udc, of our perturbative analysis regarding the
effects of combined ac and dc voltages. In analogy to Eq. (5),
we use the following ansatz for the electric field:

Ez = Eac cos(ωt) + δEdc, (11)

where Eac corresponds to the critical ac field and δEdc is a small
dc perturbation. First consider the case of an ac field with the
frequency ωτq 	 1 in the conductive regime. According to the
time symmetries of the linear unstable modes either driven by
an ac voltage in the conductive regime or by a dc voltage, one
uses for the amplitude of the out-of-plane director component
the following ansatz:

Nz = N ac
z + δNdc

z , (12)

where the first term corresponds to the dominant ac-field driven
director distortion and the second term appears due to the
dc-field perturbation. Calculating the electric charge density
as before, we arrive finally in the leading order with respect to
the perturbations δN ac

z , δEac and for ωτq 	 1 at

ρ̄elEz = 1
2E2

ac

(
N ac

z + δNdc
z

)
ρ0. (13)

Obviously the dc electric field perturbation causes an increase
of the Coulomb force and thus of vz as well, resulting in
an enhanced destabilizing viscous torque. Consequently, the
critical Eac is decreasing in the presence of δEdc and the
vertical threshold curve must bend to the left in line with
Fig. 1(a).

Finally, we arrive again at the case Uac � Udc but consider
a high-frequency ac voltage with the frequency ωτq � 1 in the
dielectric regime. The appropriate ansatz for the lowest-mode
director component, Nz, reads as follows:

Nz = N ac
z cos(ωt) + δNdc

z . (14)

The rolls with dielectric symmetry are driven by the oscillatory
component of the Coulomb force ∝ cos(ωt), which in leading

order in the perturbations δN ac
z , δEac and for ωτq � 1 is given

by

ρ̄elEz = (
1
2E2

acN
ac
z + EacδEdcδN

dc
z

)
ρ0 cos(ωt). (15)

The correction to the pure ac field is now of the second order
in the perturbations δNdc

z , δEdc and leads to an increase of
the Coulomb force. Accordingly, the critical value of Eac has
to decrease in line with the bending to the left of the right
boundary curve in Fig. 2(a).

There exists no obvious way to capture qualitatively the
competition between flexodomains and EC patterns, as demon-
strated in Figs. 3 and 4. For instance, in the flexodomains with
qc ‖ ŷ, a finite charge density, which is responsible for the EC
instability and has played a crucial role in our considerations
before, does not exist.

III. COMPARISON WITH EXPERIMENTS

In this section, we compare the theoretical calculations
with experiments carried out on the nematic Phase 5. In
Fig. 5, we show an example of the EC pattern-free region in
the presence of combined dc and ac voltages at fairly low ac
frequency (f = 10 Hz), much below the crossover fc, thus
corresponding to the conductive regime of EC. The shape
of that region matches satisfactorily the theoretical phase
diagram shown in Fig. 1(a). In Fig. 6, one finds representative
sections of shadowgraph images taken slightly above onset,
at the locations marked by stars in Fig. 5. They are indeed
of the conductive type. Experimental oblique roll patterns
are rarely perfect. Apart from the appearance of dislocations,
one observes so-called “zig” and “zag” patches with the
symmetry-degenerated wave vectors qc = (q,±p), which are
separated by grain boundaries. Nevertheless, we were able
to extract via a Fourier analysis the experimental values of
qc. The obliqueness angle α between the wave vector qc and
the x axis is gradually decreasing from α ≈ 37◦ to α ≈ 22◦
as Uac increases. The wave number acquires its maximum
qc ≈ 1.42π/d for Uac = 0, passes then through a minimum
(qc ≈ 1.12π/d) when Udc and Uac are roughly comparable,
and rises again to the value qc ≈ 1.3π/d when Udc → 0. The
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FIG. 5. (Color online) Experimental boundary curve of the
pattern-free region in the Udc-Uac plane in the presence of combined
dc and ac voltages for f = 10 Hz, in the conductive regime for
Phase 5. Cell thickness d = 11.4 μm. Stars indicate the locations
where the snapshots of Fig. 6 were taken.
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FIG. 6. Snapshots of EC patterns along the boundary curve at the three locations indicated in Fig. 5: (a) pure dc driving; (b) superimposed
dc and ac voltages; and (c) pure ac driving. The wave number qc and the obliqueness angle α of the observed oblique conductive rolls are
(a) qc ≈ 1.42π/d , α ≈ ±37◦; (b) qc ≈ 1.12π/d , α ≈ ±26◦; (c) qc ≈ 1.30π/d , α ≈ ±22◦. The arrow bars of length 20 μm are parallel to the
initial planar director orientation n ‖ x̂.

general change of qc when moving from left to right along
the limiting curve of the pattern-free region in Fig. 5 is in
satisfactory agreement with the theoretical results shown in
Fig. 1.

As an example for the combination of a dc voltage with an
ac voltage in the dielectric regime, we present in Fig. 7(a)
the phase diagram for a large ac frequency (f = 200 Hz,
above the crossover fc), where a competition occurs between
conductive (low qc) and dielectric (high qc) rolls. In agreement
with the theoretical shape of the pattern-free region shown
in Fig. 2(a), the upper and the right boundary lines do not
merge smoothly. Instead, they cross at a finite angle, indicating
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FIG. 7. (Color online) Experimental phase diagram of EC pat-
terns for Phase 5 in the Udc-Uac plane for an ac frequency f = 200 Hz,
in the dielectric regime: Boundary curve enclosing the pattern-free
region (a); the critical wave number |qc| along the boundary curve
(b). Cell thickness d = 10.8 μm. Stars indicate the locations where
the snapshots of Fig. 8 were taken.

the sharp morphological transition between conductive and
dielectric EC rolls. The corresponding jump in the critical wave
number |qc|, shown in Fig. 7(b), compares well with Fig. 2(b).
The qualitative change of the pattern type along the transition
curve is clearly documented in the experiments: Figures 8(a)
and 8(b) show representative snapshots of conductive patterns
for smaller Uac before they are replaced by dielectric ones at
larger Uac [see Figs. 8(c) and 8(d)]. A closer look at Figs. 2(a)
and 7(a) reveals, however, a certain discrepancy between
theory and experiment. While the theoretical as well as the
experimental upper transition lines in the conductive regime
curve upward considerably, the experimental right transition
line in the dielectric regime bends to the right and not to the
left, as in the theory.

FIG. 8. Snapshots of EC patterns along the boundary curve at the
four locations indicated in Fig. 7: (a) oblique rolls at pure dc driving;
(b) oblique rolls at superposed dc and ac voltages; (c) dielectric rolls
at pure ac driving; and (d) dielectric rolls at superposed dc and ac
driving. The arrow bars [of length 50 μm for (a) and (b), and 20 μm
for (c) and (d)] are parallel to the initial planar director orientation
n ‖ x̂.
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IV. SUMMARY AND OUTLOOK

It is very satisfactory that in general our theoretical results
are well confirmed by the experiments. It is particularly
reassuring that the measured (external) voltages and critical
wave vectors compare well with the theoretical (internal)
voltages obtained by the proper choice of the conductivity.
One is accustomed to such a good agreement in conventional
EC experiments with pure ac-voltage driving. As already
mentioned at the end of Sec. III, however, the boundary curves
in the dielectric regime under combined ac and dc driving
show an opposite curvature in theory and experiment. This
points to the fact that in the theory some mechanisms seem
to be missing. One of them comes immediately to mind. Due
to the applied dc voltage, a certain fraction of the mobile ions
will certainly move to the electrodes. As a consequence, the
conductivity of the NLC decreases with increasing Udc which,
typically, leads to modifications of the threshold voltage
of EC.

Certainly more systematic, but also very time-consuming,
experiments are desirable in the future. In any case, the ac
frequency ω and the cell thickness d are important parameters,
which need a thorough exploration. Furthermore, one should
use different nematic materials. A possible candidate to test,
for instance, the phase diagram in Fig. 4 might be the nematic
Phase 4 (with material parameters comparable to Phase 5),
where already a transition between flexodomains under pure
dc driving to dielectric EC rolls under pure ac driving at very
low frequencies has been observed [12].

From the theoretical point of view, certainly a more detailed
analysis is needed as well. It looks very plausible that the
dc-voltage profile across the cell in the basic planar state
will deviate substantially from linearity as assumed in the
SM. For instance, the cell may consist of regions with strong
field variations near the electrodes (over the Debye layers) and
weaker ones in the central part of the cell. One would expect
that such field gradients have a larger influence on patterns with
shorter wavelengths (i.e., in dielectric rolls), which are compa-
rable to the characteristic length scales of the electric potential
variations. To account for such variations, the description of
the NLC as an Ohmic conductor has to be abandoned and
replaced by a more detailed description of the mobile ions.

Major efforts have been made in the past to describe the
ionic effects on the electrical conductivity of isotropic liquids
(see, e.g., [23] and references therein). An important role is
played by the formation of the so-called double layers at
the electrodes, which depend on the detailed design of the
electrodes. One finds notions such as “blocking,” “injecting,”
and “charge-carrier-absorbing” electrodes [24,25]. To include
such mechanisms in the description of electrically driven
pattern-forming instabilities in nematics, the “weak electrolyte
model” (WEM) has been formulated in the past [26]. So far it
has only been used to explain the occurrence of traveling waves
in certain EC experiments under pure ac driving, which are ex-
cluded within the framework of the SM [20,27]. It is expected,
however, that a more complete analysis of this model would
give important insight into the complex physics of patterns de-
veloping under the combined action of ac and dc electric fields.
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[14] N. Éber, L. O. Palomares, P. Salamon, A. Krekhov, and Á. Buka,
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