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Abstract

Recent experimental results on electroconvection in homeotropic nematic liquid crystals are summarized.
Static and dynamic properties of the patterns at and above threshold are discussed. The azimuthal angle of
the director is determined for various pattern morphologies (normal, abnormal and CRAZY rolls). Prelimi-
nary results on controlled defect motion are presented. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Electroconvection (EC) in planar nematics [1,2] belongs among the "rst observed pattern
forming processes in liquid crystals [3]. As a result of extensive studies in the past decades, the main
characteristics of the phenomenon are well understood [4}7].

In homeotropically aligned nematics with negative dielectric anisotropy (e
!
) the "rst instability

that occurs when applying an AC electric "eld parallel to the director is the bend Freedericksz
transition [8]. The deformed director con"guration involves a homogeneous tilt and an arbitrary
azimuthal angle. This continuous degeneracy can conveniently be lifted by applying a magnetic
"eld perpendicular to the electric one. Electroconvection (EC) sets in on the distorted state and no
preferred roll direction is expected (in the absence of magnetic "eld) because of the rotational
symmetry of the boundary conditions.

E!orts to investigate homeotropically oriented cells using nematics with manifestly negative
e
!

were initiated rather recently, see [9}18] for experimental and [6,20}24] for theoretical work.
In this work results on normal (NR), oblique (OR) and abnormal (AR) rolls are summarized.
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Fig. 1. Geometry and director distribution in a homeotropic cell: (a) 04<(<
F
} homeotropic texture; (b)

<
F
(<(<

#
} Freedericksz distorted state; and (c) <

#
(< electroconvection pattern.

The threshold of convection, the wave number at onset, and the threshold for the transition
between order and disorder in the presence of a stabilizing magnetic "eld have been measured and
compared with theory. Whereas in the oblique roll range the behaviour of the correlation time of
the disordered state exhibits the expected scaling behaviour near onset, the disordered state in the
normal roll range at zero magnetic "eld shows no dynamics below a well de"ned value of the
control parameter, in contrast to the theoretical predictions. At that value one has reproducibly
a continuous and reversible transition to a dynamic state which goes hand in hand with the
appearance of chevron-like structures.

An experimental technique is presented for visualizing the domain structure of AR-s. The voltage
and frequency dependence of the azimuthal angle of the director is determined. A new striped
pattern (CRAZY rolls) is observed and characterized in a parameter range.

Defect dynamics of the roll pattern is studied as a function of the magnetic "eld.

2. Freedericksz distorted state

In the homeotropic geometry the director is initially parallel to z and this state is isotropic
(rotationally symmetric) in the x}y plane (Fig. 1a). The "rst instability at a voltage <"<

F
is the

(ideally) spatially homogeneous (in the x}y plane) bend Freedericksz transition where the director
bends away from the z direction, singling out spontaneously a local direction in the x}y plane (Fig.
1b). This corresponds to a spontaneous breaking of the O(2) symmetry, and leads to a Goldstone
mode, i.e. an undamped mode describing the (in"nitesimal) rotation of the in-plane director.
Large-scale variations are weakly damped. As a consequence, one observes point defects (umbilics).

The isotropy can be broken externally by applying a weak stabilizing magnetic "eld (a "eld
strength much smaller than the bend Freedericksz threshold H

F
su$ces) parallel to the plane of the

sample (in the x direction) which de"nes the direction of the bend. There remains a twofold
degeneracy of the Freedericksz distorted state with walls separating the two types of domains.

3. Threshold behaviour

At higher voltages <
#
'<

F
there is a transition to electroconvection (Fig. 1c, where <

#
is

frequency-dependent contrary to <
F
, see Fig. 2a), which is in many respects similar to that in cells

with planarly aligned nematics. However, the presence of the Goldstone mode in the homeotropic
case with full rotational invariance (i.e. without additional magnetic "eld) leads to fundamental
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Fig. 2. a. Frequency dependence of the Freedericksz and the EC threshold voltages. b. Phase diagram for EC scenarios.
Measured points refer to a 31 lm thick homeotropic cell of Nematic Phase 5A (Merck) at H"H

F
/3, lines correspond to

theoretical calculations.

Fig. 3. Frequency dependence of the obliqueness of the rolls (p
#
/q

#
). Solid lines correspond to theoretical calculations,

measured points refer to: (a) a 47 lm thick homeotropic cell of MBBA at H"0; and (b) a 31 lm thick homeotropic cell
of Nematic Phase 5A (Merck) at H"H

F
/3.

di!erences. In fact the patterns are disordered. Nevertheless normal (NR), oblique (OR) and
abnormal (AR) rolls can be distinguished.

Since the convective #ow is coupled to periodic distortions of the director, the pattern is easily
visualized [25]. The patterns at threshold are characterized by a two-dimensional (local) wave
vector k

#
"(q

#
, p

#
), describing the orientation and spacing of the rolls (q

#
and p

#
are the x and

y components of k
#
, x is the local direction of the in-plane director). k

#
can be determined from

a 2D Fourier analysis of the snapshots of the pattern inspite of the fact that the rolls have arbitrary
orientation. The ratio p

#
/q

#
characterizes the obliqueness of the rolls and vanishes at the Lifshitz

point f
L

(Fig. 3).
The threshold behaviour is well described by a linear stability analysis (LSA) of the

basic (nonconvecting but Freedericksz distorted) state starting from the standard hydrodynamic
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equations [20]. This analysis cannot capture nonlinear properties like e.g. the amplitude of the
pattern as a function of the reduced control parameter commonly de"ned as e"<2/<2

#
!1.

If the degeneracy of the azimuthal angle of the director is lifted by applying a magnetic "eld
electroconvection scenarios similar to those in planar arrangement can be observed. The magnetic
"eld HEx acts on the patterns by stabilizing the in-plane director orientation (for not too large e, see
below) [14}16,21,22]. The patterns have the appearance of regularly ordered normal (typically
above a frequency f

L
) or oblique (below f

L
) rolls.

Besides producing well ordered patterns H shifts <
#

upwards and changes also the critical wave
vector. In particular, f

L
is shifted to lower frequencies and k

#
is increased. Similarly to the planar

con"guration, the roll angle shows near f
L

a square root behaviour with frequency (Fig. 3a) [26].
However, certain combinations of the material parameters may lead (e.g. in Nematic Phase 5A,
Merck) to the appearance of a second (lower) Lifshitz point, i.e. to normal rolls at very low
frequencies (Fig. 3b). Such a behaviour has never been observed in planarly aligned samples.

4. Static and dynamic convection states slightly above threshold

The next step is a weakly nonlinear analysis, which employs an expansion in terms of the
complex amplitude A of the patterning mode including slow modulations in space and time. In
the NR regime this leads to a Ginzburg}Landau-type amplitude equation [5,6]. In addition, in the
presence of a weak orienting magnetic "eld the in-plane director mode described by an angle
u must be included [21,23]. The theory predicts destabilization of NRs either by a zig-zag
(undulatory) instability slightly above f

L
(or f

L2
) or by a transition to ARs (see below) above

a frequency f
AR

. In Fig. 2b this scenario is shown for the material Merck Phase 5A at H"H
F
/3.

There is a general scaling e&H2 in the range of validity of the weakly nonlinear theory. For larger
H a more general theory starting from the basic hydrodynamic equations has to be used [27].

The zig-zag destabilization at e
;;

has been observed in MBBA, where the interval between
f
AR

and f
L

is larger than in Phase 5 [26]. Slightly above e
;;

one has stable undulations, at larger
values e

6
(depending on the magnetic "eld) defects appear. The disordered state attained beyond

e
6

appears to be static in the NR range (in contrast to the theoretical prediction). In other
experiments on the material MBBA a slow dynamics was found [15,16].

The frozen state and its transition to dynamics has been studied in detail at zero magnetic "eld
(where e

6
"0) [26]. For e'e

6
defects (dislocations in the roll pattern) appear which order along

chains (Fig. 4). The topological charge of defects alternates from chain to chain. There is
a remarkable similarity between this structure and the chevrons known in the dielectric range of
planar samples. A theoretical connection between the two structures has been made [21,24]. The
density of defects in the homeotropic chevron state has been measured as a function of e and a fairly
sharp increase at e

s
'e

6
was detected. At e

s
also a dynamical state took place [26].

The time evolution of the patterns and the transition from static to dynamic disorder was studied
without magnetic "eld as a function of e and f. To characterize the director dynamics quantitatively
the autocorrelation function of the measured intensity was constructed and the correlation
time was determined by assuming exponential decay (Fig. 5) [26]. At e

s
one seems to have a

sharp and reversible crossover between the stationary and dynamic states, thus indicating a
forward bifurcation. The temporal behaviour was found signi"cantly di!erent in the OR range
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Fig. 4. Chevrons in the conductive regime of a homeotropic sample.

Fig. 5. Epsilon dependence of the correlation time constant for various frequencies around f
L
. Solid symbols refer to

a 23 lm thick homeotropic cell of MBBA at H"0 measured with increasing, open symbols with decreasing voltage,
lines correspond to a linear "t. e

s
"0.012, 0.085 and 0.060 for f"0.99f

L
, f

L
and 1.33f

L
, respectively.

below f
L
, where e

4
was found to be zero (or nearly zero). In agreement with the theory which

predicts spatio-temporal chaos at onset, we "nd that the inverse correlation time is proportional
with e.

5. Abnormal and CRAZY rolls

For f'f
AR

the destabilization of normal rolls occurs at e
AR

through a homogeneous pitchfork
bifurcation leading to ARs where the in-plane director is rotated homogeneously in the x}y
plane out of its normal orientation (uO0) [21,23] (Fig. 2b). Finally, at higher e defects appear
which move irregularly through the patterns (defect turbulence). The in-plane director angle can
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1Name and structure for CRAZY rolls were proposed in Ref. [30].

be given as

u
B
"G

$UJe!e
AR

(e'e
AR

) ,

0 (e(e
AR

) ,
(1)

where U"(m
yy

q
#
)~1 diverges at fPf

L
.

Abnormal rolls have been found "rst in homeotropic liquid crystals where increasing the applied
voltage in the normal roll regime the director may su!er an azimuthal rotation away from the roll
normal without a!ecting the direction of the rolls [11,13,17,19]. This new scenario has been
observed in planar geometry too [7]. Theoretical descriptions of the phenomenon could also be
given both for the homeotropic [21,23] and the planar case [7].

Due to the strong anchoring in planar cells the distortion of the director from the roll normal in
ARs results in a twist deformation. The adiabatic propagation of light makes it di$cult to detect
this twist (depolarization techniques should be used) [28,29]. In contrast to this, as there is no
constraint on the azimuthal angle of the director at a homeotropic surface, a similar deviation
should yield a net rotation of the optical axis of the homeotropic sample. The local azimuthal angle
of the director can thus easily be mapped optically by simply adjusting the polarization of the
illuminating light. Thus, the homeotropic geometry has considerable advantages over the planar
one in detecting ARs.

The snapshots and the x}a images in Fig. 6 illustrate the experimentally observed NR-AR
scenarios. In the subcritical (e(0) and the normal roll (0(e(e

AR
) regimes the director is

homogeneously oriented along the magnetic "eld (u(x)"0).
In the abnormal roll regime (e

AR
(e(e

CY
) u becomes nonzero and slowly spatially modulated

(without in#uencing the roll direction). u varies continuously on a length scale of several roll
wavelengths (no sharp domain walls) [30].

Just above e
AR

(when u is small) the AR domains are fairly large and patchy (Fig. 7a). At higher
e the domains get thinner and elongated mainly along the roll direction and they become more and
more periodic (Figs. 6b and 7b). This feature is clearly demonstrated by the histograms in Figs. 7c
and d exhibiting the distribution of domain widths of the snapshots. The typical domain width is
3-6 times the roll wavelength, and is decreasing with increasing e.

The size and location of the AR domains #uctuates on the time scale of seconds. However, the
total area of the two types of domains is equal in average, i.e. there is no preference for either the
plus or the minus sign of u.

The voltage dependence of the maximum (u
`

) and minimum (u
~

) of u(x) (Figs. 8a and b)
exhibits the pitchfork bifurcation expected from Eq. (1). The opening angle of the pitchfork is
increasing sharply as the frequency approaches f

L
from above, which is also in accordance with the

theory [30].
When the in-plane director angle becomes large enough (about $20!303), which occurs only

for frequencies not too far from f
L
, a new striped structure } the CRAZY rolls (convection in

a regular array of z}y disclination loops)1 } evolves and grows along the rolls replacing partially
the ARs (Fig. 6c). The width of a single CRAZY unit is about the wavelength of the ARs.
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Fig. 6. NRs (a), ARs (b) and CRAZY rolls (c) for Phase 5A, cell thickness d"31 lm, H"H
F
/3, f'f

L
. Left column:

snapshots with polars parallel to x. Right column: x}a images (actually x}t images for polars rotating with a "xed angular
velocity) taken with parallel (middle right), and at crossed polars (bottom right). The top right image exhibits the pattern
along the tested line with polars parallel to x. (a) normal rolls ( f"1000 Hz); (b) &periodically' alternating AR domains
( f"1000 Hz); and (c) CRAZY rolls ( f"800 Hz). A and B represent the two symmetry degenerate versions of CRAZY
units, (v) stands for an abnormal roll.
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Fig. 7. Snapshots of abnormal roll patterns at f'f
L

and distribution of horizontal domain widths (crossed polars,
polarizer rotated to 83 away from x). Same conditions as in Fig. 6b except f"1200 Hz. (a,c) small e!e

AR
, patchy

domains; (b,d) larger e!e
AR

, &periodic' domains.

In each unit of CRAZY rolls the in-plane angle changes by $903 when passing through its
width, in contrast to the AR domains where the in-plane director angle varies smoothly over length
scales of multiples of the roll wavelength. There are two types of CRAZY units as the direction of
rotation can be either from #453 to !453 (type A), or vice versa (type B). The CRAZY rolls can
either "ll the space densely by themselves, then the units of type A and B alternate regularly, or are
separated by domains without disclinations (Fig. 6c). The separating domains either appear like the
usual rolls (ARs) or have a modulation in y-direction. In the separating domains bordered by
CRAZY units of identical type the azimuthal angle changes smoothly by $903, otherwise the net
rotation of the in-plane director is zero.

Increasing e above e
AR

CRAZY units are born locally one by one, and then grow along the rolls
into the ARs. Reducing e below e

AR
the decay of CRAZY rolls often leaves behind long disclination
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Fig. 8. e-dependence of the maximum and minimum of u(x) in a 31 lm thick homeotropic cell of Nematic Phase 5A
(Merck) at H"H

F
/3. The dashed line represents a "t to the theoretical predictions (Eq. (1)). The vertical lines separate

the various scenarios: (a) f<f
L
; (b) f'f

L
; and (c) f(f

L
.
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loops, which can temporarily persist even in the subcritical voltages. They relax on the time scale of
several minutes.

These observations have led us to the conclusion that each CRAZY unit contains two disclina-
tion lines running along the roll direction at (or near) the surfaces and these lines are "nally closing
at the tips forming a loop [30]. The coexistence between CRAZY rolls and ARs shows that
convection still plays an important role.

It should be mentioned that a period doubling of the roll pattern leading to striped domains that
appear similar to a periodic packing of A and B CRAZY units has recently been reported in
another substance [31].

At frequencies below f
L

oblique rolls are observed. As the sign of the roll angle is arbitrary, there
should be zig and zag domains separated by sharp domain walls. According to the theory in
oblique rolls, instead of a pitchfork bifurcation, one always has a nonzero in-plane director angle,
which behaves like e2 for small e and should increase monotonically with e. The sign of u is
opposite in the zig and the zag domains. The measured e-dependence of u shown in Fig. 8c is
consistent with this prediction. The jump in u at e"e

CY
indicates a transition in the structure.

Though the optical appearance of the resulting new structure di!ers slightly from that of the
CRAZY rolls, they are characterized by the same type of rotation of the in-plane director angle, as
for f'f

L
.

6. Dynamics of defects

The motion of defects (dislocations) in ordered roll patterns in anisotropic systems constitutes
a mechanism for the change of the wavevector k of the pattern. In fact &climb' (motion along the
rolls) will change the spacing, i.e. the wavenumber perpendicular to the rolls. &Glide' (motion
perpendicular to the rolls) will change the orientation, i.e. the wavenumber parallel to the rolls.
Near the primary threshold, where the system behaves like a potential system, one has an optimal
wavevector k

*$
. Motion of defects will be such that the wavevector mismatch *k"k!k

*$
decreases. The precise connection between *k and the velocity t of a defect has been calculated
within the Ginzburg}Landau description valid near threshold [32,33]. The relation *v(k) is
nonlinear and involves a logarithmic singularity for *kP0. The direction of t should always be
perpendicular to *k.

In this context experiments have been performed in EC of planarly aligned LCs [34}36].
Quantitative experiments involved only changes of the roll spacing where one has pure climb. The
defect velocity was found to be consistent with the theory but detailed feature, like the logarithmic
singularity could not be resolved.

The homeotropic system studied here provides an elegant method to investigate glide: the
preferred direction is de"ned by the applied magnetic "eld in the plane of the sample. One can vary
this direction by rotating the "eld with respect to the cell. So there is a possibility of varying k/DkD,
i.e. to induce glide.

A defect pair was created in the NR regime by heating the cell locally with a He}Ne laser. Then
the cell was rotated by an angle a with respect to the magnetic "eld which created a mismatch
*k"2k sin a/2 (Fig. 9). As expected, defect motion with a main glide-component was observed.
The velocity of the defects was measured during a time period, when the distance between the two
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Fig. 9. Snapshot of a defect (dislocation) in the electroconvection pattern.

defects was large enough, that interaction could be neglected. The velocity * was determined by
taking a series of digitized images and localizing the defect position by a demodulation method
[36]. This was done before reorientation of the pattern due to other processes became appreciable.

In order to compare the results of these measurements quantitatively with theory the coe$cients
of the Ginzburg}Landau amplitude equation had to be determined: necessary information has
been extracted from the slope of the defect core and the decay time of the patterns as was done in
[36]. Preliminary results con"rm the predicted direction of defect movement and indicate the
presence of the logarithmic term in the relation between velocity and the wavevector mismatch.
Detailed results will be presented elsewhere.

7. Outlook

Clearly, there remains much room for further study. There is the marked discrepancy between
experiment and theory concerning the frozen, disordered patterns in the NR range where theory
predicts a dynamical state. In order to test if pinning due to inhomogeneities of the alignment of the
bounding plates is involved, one could repeat the experiments with thicker cells where pinning is
expected to play a smaller role.

In Section 5, the scenario leading from NRs to ARs and CRAZY rolls was monitored by
increasing e at "xed H. It would seem useful to keep e "xed at some small value and decrease H,
because in this way one remains within the range of validity of the weakly nonlinear theory. We
point out that a similar procedure can be envisaged in planar systems. Thereby, applying
a magnetic "eld perpendicular to the director alignment one should be able to reduce e

AR
until it

reaches zero at the twist Freedericksz threshold "eld.

A!. Buka et al. / Physics Reports 337 (2000) 157}169 167



Acknowledgements

We wish to thank W. Pesch and A.G. Rossberg for discussions. Support of the Hungarian
Research Grants Nos. OTKA-T031808, OTKA-T022772, VW Foundation and the EU TMR
Research Network `Patterns, Noise and Chaosa is gratefully acknowledged. A.B. and L.K. thank
the hospitality of the `Max-Planck-Institut fuK r Physik Komplexer Systemea, Dresden.

References

[1] V. Freedericksz, V. Tsvetkov, Acta Physicochim. URSS 3 (1935) 879.
[2] R. Williams, J. Chem. Phys. 39 (1963) 384.
[3] AD . Buka, L. Kramer (Eds.), Pattern Formation in Liquid Crystals, Springer, Berlin, 1995.
[4] W. Helfrich, J. Chem. Phys. 51 (1969) 4092.
[5] E. Bodenschatz, W. Zimmermann, L. Kramer, J. Phys. France 49 (1988) 1875.
[6] L. Kramer, W. Pesch, in: AD . Buka, L. Kramer (Eds.), Pattern Formation in Liquid Crystals, Springer, Berlin,

1995.
[7] E. Plaut, W. Decker, A.G. Rossberg, L. Kramer, W. Pesch, A. Belaidi, R. Ribotta, Phys. Rev. Lett. 79 (1997) 2367; E.

Plaut, W. Pesch, Phys. Rev. E 59 (1999) 1277.
[8] S. Chandrasekhar, Liquid Crystals, Cambridge University Press, Cambridge, 1992; P.G. de Gennes, J. Prost, The

Physics of Liquid Crystals, Clarendon Press, Oxford, 1993; L.M. Blinov, Electrooptical and Magnetooptical
Properties of Liquid Crystals, Wiley, New York, 1983.

[9] D. Meyerhofer, A. Sussman, Appl. Phys. Lett. 20 (1972) 337.
[10] M.I. Barnik, L.M. Blinov, M.F. Grebenkin, S.A. Pikin, V.G. Chigrinov, J. Exp. Theor. Phys. URSS 69 (1975) 1080.
[11] H. Richter, AD . Buka, I. Rehberg, Mol. Cryst. Liq. Cryst. 251 (1994) 181.
[12] H. Richter, AD . Buka, I. Rehberg, Phys. Rev. E 51 (1995) 5886.
[13] H. Richter, AD . Buka, I. Rehberg, in: Spatio-Temporal Patterns in Nonequilibrium Complex Systems, P. Cladis, P.

Pal!y-Muhoray (Eds.), Addison-Wesley, Reading, MA, 1994.
[14] H. Richter, N. KloK pper, A. Hertrich, AD . Buka, Europhys. Lett. 30 (1995) 37.
[15] Sh. Kai, K. Hayashi, Y. Hidaka, J. Phys. Chem. 100 (1996) 19007; Y. Hidaka, J. Huh, K. Hayashi, M. Tribelsky, Sh.

Kai, J. Phys. Soc. Japan 66 (1997) 3329.
[16] Y. Hidaka, J.-H. Huh, K. Hayashi, Sh. Kai, Tribelsky M, Phys. Rev. E 56 (1997) R6256.
[17] J.-H. Huh, Y. Hidaka, Sh. Kai, Phys. Rev. E 58 (1998) 7355.
[18] J.-H. Huh, Y. Hidaka, Sh. Kai, J. Phys. Soc. Japan 67 (1998) 1948.
[19] J.-H. Huh, Y. Hidaka, Sh. Kai, J. Phys. Soc. Japan 68 (1999) 1567.
[20] A. Hertrich, W. Decker, W. Pesch, L. Kramer, J. Phys. France II 2 (1992) 1915; L. Kramer, A. Hertrich, W. Pesch,

in: Sh. Kai (Ed.), Pattern Formation in Complex Dissipative Systems, World Scienti"c, Singapore,
1992.

[21] A.G. Rossberg, A. Hertrich, L. Kramer, W. Pesch, Phys. Rev. Lett. 76 (1996) 4729; A.G. Rossberg, L. Kramer,
Physica Scripta T67 (1996) 121.

[22] A. Hertrich, Ph.D. Thesis, Bayreuth, 1995.
[23] A.G. Rossberg, Ph.D. Thesis, Bayreuth, 1997.
[24] A.G. Rossberg, L. Kramer, Physica D 115 (1998) 19.
[25] S. Rasenat, G. Hartung, B.L. Winkler, I. Rehberg, Exp. Fluids 7 (1989) 412.
[26] P. ToH th, AD . Buka, J. Peinke, L. Kramer, Phys. Rev. E 58 (1998) 1983.
[27] A. Hertrich, W. Pesch, unpublished.
[28] H. Amm, M. Grigutsch, R. Stannarius, Mol. Cryst. Liq. Cryst. 320 (1998) 11.
[29] S. Rudro!, H. Zhao, L. Kramer, I. Rehberg, Phys. Rev. Lett. 81 (1998) 4144.
[30] A.G. Rossberg, N. ED ber, AD . Buka, Phys. Rev. E 61 (2000) R25.
[31] C. Fradin, P.L. Finn, H.R. Brand, P.E. Cladis, Phys. Rev. Lett. 81 (1998) 2902.

168 A!. Buka et al. / Physics Reports 337 (2000) 157}169



[32] E. Bodenschatz, W. Pesch, L. Kramer, Physica D 32 (1988) 135; L. Kramer, E. Bodenschatz, W. Pesch, Comment in
Phys. Rev. Lett. 64 (1990) 2588.

[33] L. Pismen, Vortices in Nonlinear Fields: from Liquid Crystals to Super#uids, from Non-equilibrium Patterns to
Cosmic Strings, Clarendon Press, Oxford, 1999.

[34] S. Nasuno, S. Takeuchi, Y. Sawada, Phys. Rev. A 40 (1989) 3457.
[35] Sh. Kai, N. Chizumi, M. Kohno, Phys. Rev. A 40 (1989) 6554.
[36] S. Rasenat, V. Steinberg, I. Rehberg, Phys. Rev. A 42 (1990) 5998.

A!. Buka et al. / Physics Reports 337 (2000) 157}169 169


