
Phase Transitions,
Vol. 78, No. 6, June 2005, 433–442

Electroconvection in homeotropic nematic liquid crystals
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Electroconvection is a classical example of pattern-forming phenomena in liquid
crystals, typically observed in nematics with negative dielectric and positive
conductivity anisotropies. This article focuses on how electroconvection in the
homeotropic geometry differs from that in planar alignment. The influence of
an additional magnetic field on the pattern characteristics and on secondary
instabilities (the normal roll–abnormal roll transition) is discussed. The
homeotropic alignment offers unique possibilities also for studying defect
motion. Basic characteristics of some patterns of large wavelength are
presented and compared with those of the classical Carr–Helfrich structures.
Finally, electroconvection in substances with negative conductivity anisotropy
is addressed.
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1. Introduction

Anisotropic liquids (e.g. nematic liquid crystals), driven out of equilibrium, offer a

rich palette of pattern forming phenomena [1, 2]. Electroconvection (EC) is a classi-

cal example of such instabilities [3]. Normally it is observed that if a planarly

oriented thin layer of a nematic possessing negative dielectric and positive conduc-

tivity anisotropies ("a<0, �a>0) is subjected to an electric field E normal to the

surfaces, when the applied voltage V exceeds a threshold value Vc, the initially

homogeneous texture becomes unstable against a periodic tilt modulation of the

director associated with flow vortices (convective rolls) and charge separation,

resulting in a regular sequence of bright and dark stripes if viewed in a microscope.

The ultimate reason for the appearance of the pattern lies in the anisotropy of the

electrical conductivity according to the famous Carr–Helfrich mechanism [3–5].
By varying the applied voltage and its frequency f (the two basic control param-

eters of the system), different pattern morphologies may become observable. There

exists a so-called cut-off frequency fc which divides the frequency range for two

distinct electroconvection regimes. In the ‘dielectric’ regime ( f>fc) the director is
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oscillating with f, the wavelength � of the roll pattern is short (�� 2–5 mm) and
independent of the thickness d of the nematic, and the threshold voltage is propor-
tional to d

ffiffiffi
f

p
. At low frequencies (the ‘conductive’ regime, f< fc), on the contrary,

the director distribution is stationary, � scales with d, while Vc is independent of the
thickness and shows a monotonically increasing, divergence-like behaviour as f
approaches fc.

Usually, in the ‘conductive’ regime there is another morphological transition
with frequency at the Lifshitz point fL. Above the Lifshitz point ( fL<f<fc) the
convective rolls are perpendicular to the director (normal rolls, NRs), just as in
the ‘dielectric’ regime. However, below fL the direction of the rolls is rotated by
an angle �� 6¼ 0, with � changing nearly as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð fL � f Þ

p
, so that one sees a zigzag

pattern (oblique rolls, ORs).
During the past decades electroconvection in planar nematics has extensively

been studied experimentally, and the proper theoretical description (often referred
to as the standard model of EC [3, 6]) has been developed too. Much less attention
has been paid to other geometries where the phenomenon can still occur.

In the present article, we review the changes in the characteristics of electrocon-
vection when we use a different initial geometry, namely the homeotropic alignment,
without or with an additional magnetic field H. First we concentrate on the
characteristics of the pattern at onset, then we address some questions relating to
the behaviour above the threshold (instabilities of the roll pattern); finally we discuss
some other pattern morphologies occurring under special conditions (large
wavelength patterns and patterns in substances with unusual material parameter
combinations).

2. Pattern characteristics at onset

A careful inspection of the Carr–Helfrich mechanism shows immediately that, on

switching from the planar initial geometry to a homeotropic one, the torque due to

the flow vortices becomes stabilizing. Thus one cannot expect a direct transition

from the homogeneous into a patterned electroconvecting state. On the other

hand, the dielectric torque becomes destabilizing; thus if the applied voltage exceeds

a threshold level VF, the nematic undergoes a Freedericksz transition, and the

director tilts away from the direction normal to the surfaces. Increasing the voltage

the tilt angle increases, so the system is getting closer to the planar geometry

favoured by the Carr–Helfrich mechanism. As a result EC patterns may appear at

a second threshold Vc>VF as a modulation superposed onto the Freedericksz

distorted state, as shown in figure 1(a) [7–9].
In contrast to the planar case, the homeotropic alignment does not have

any preferred direction parallel to the surfaces, and the orientation is azimuthally
degenerate. The Freedericksz transition breaks this degeneracy, singling out
(randomly) a direction for the tilt (which later serves as an already preferred
direction for the onset of EC); however, this direction may vary in the sample.
Consequently the EC pattern is spatially disordered even at the onset. Moreover,
oblique roll patterns always vary with time due to the presence of an inherent torque
acting on the rolls; for normal rolls this dynamic disorder starts slightly above Vc

[10–14]. This behaviour is a special manifestation of spatio-temporal chaos, called
soft mode turbulence in order to distinguish it from the usual route to chaos marked
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by the generation and violent motion of increasing number of defects as found in the
planar EC.

The occurrence of chaos at onset can be easily blocked if one breaks the
degeneracy of the orientation by applying a small magnetic field H parallel to the
surfaces [15]. Then the director will tilt towards H at the Freedericksz transition and
the EC rolls appearing at V>Vc will be nicely ordered too, exhibiting the same
pattern morphologies found in planar samples (see figures 1b and 1c).

The aim of our experimental studies was to explore how the magnetic field
strength affects the characteristics of the EC pattern. The measurements were carried
out using a standard nematic mixture (Phase 5A, Merck), which allowed access to
the ‘conductive’ regime in a wide frequency range. The pattern was observed with a
long-range microscope using either a single polarizer (shadowgraph technique) or
crossed polarizers [16]. The EC threshold voltage exhibited the usual increase with
the frequency for any magnetic field, as expected. While studying the magnetic
field dependence of Vc, however, a non-monotonic behaviour was detected at low
frequencies [17], in contrast to the monotonic increase of Vc(H) found for higher f as
shown in figure 2(a).

This behaviour can be explained as follows. Though at low f the EC threshold
voltage is the lowest, Vc>VF must always hold, as a minimum tilt angle is required
for the Carr–Helfrich mechanism to work. The magnetic field tends to orient the
director parallel to H, hence the field reduces the Freedericksz threshold voltage.
Then the required tilt can be realized at lower voltages; thus Vc(H) follows the trend
of VF(H) for small fields. At higher H, however, the further increase of the tilt at
the same time suppresses the modulation of the tilt, so Vc must increase. For
high frequencies Vc�VF, consequently one has already a quasiplanar structure at
the onset, thus the stabilizing effect of the magnetic field dominates in the full H
range.

The in-plane wavevector of the pattern q¼ (q, p) was measured too [16–19].
Figure 2(b) shows the obliqueness p/q¼ tan � of the convection rolls versus f and
H. It depicts an unusual morphological transition for small H, and the reappearance
of normal rolls ( p¼ 0) at diminishing frequencies. Such a transition has neither been
reported for planar cells, nor for homeotropic samples of other nematics. Theoretical
calculations have confirmed that the material parameter set (elastic moduli,
viscosities, etc.) of Phase 5A allows for the presence of two Lifshitz points [17, 18],
while for other sets (e.g. for N-( p-methoxybenzilidene)-p-butylaniline, MBBA) the

Figure 1. (a) Geometry of the homeotropic electroconvection. (b) Oblique rolls. (c) Normal
rolls. Snapshots were taken with polars parallel to H.
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usual single Lifshitz point has been obtained. At increasing magnetic field the Lifshitz
point(s) are shifting towards lower frequencies, so the regular behaviour with one fL is
recovered.

3. Behaviour above the EC threshold

When electroconvection is studied at applied voltages above Vc, it is convenient to

introduce a dimensionless control parameter "¼ (V 2
�V 2

c )/V
2
c which characterizes

the relative deviation from the threshold. For ">0 the morphology of the pattern

may change and further instabilities may reduce or destroy the initial order of the

convection rolls.
One example of such instabilities is the transition from NR to AR (abnormal

roll). While q is the same for both AR and NR, in ARs the director rotates away
from its initial direction along H [20]. Theoretical explanation of the phenomenon
can be given using a weakly nonlinear description (Ginzburg–Landau equations,

GLE) based on the recognition that the pattern amplitude (the tilt modulation)
may be coupled to the azimuthal angle ’ of the director. While at the onset ("¼ 0)
and for small " values, ’¼ 0, if " exceeds a critical value "AR>0 it allows for a
symmetry breaking in the form of a forward bifurcation (the NR–AR transition),
leading to an azimuthal angle ’ ¼ ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð"� "ARÞ

p
continuously increasing with "

[21, 22].
Though this NR–AR transition is not an exclusive feature of the homeotropic

alignment (it has also been observed in planar samples), the azimuthal degeneracy of
the homeotropic alignment offers an easier detection, as ’ 6¼ 0 means a net rotation
of the optical axis of the sample [23]. While NR and AR look very similar when
viewed with light polarized parallel to H, they can be distinguished if one breaks the

left–right symmetry by rotating the polarizer by an angle � 6¼ 0. Experiments have
shown that ARs form domains with ’<0 and ’>0 with a smooth variation of ’
between the domains [16, 19]. These domains form a secondary (quasi)periodic
structure of large wavelength for "� "AR.

Figure 2. (a) Magnetic field dependence of the threshold voltage for the Freedericksz
transition (measured: solid squares, calculated: solid line) and for the electroconvection
at f¼ 50Hz (open circles) and at f¼ 800Hz (solid triangles). (b) The frequency dependence
of the obliqueness ( p/q) of the EC roll pattern for small (H¼ 0.249HF, solid squares) and
high (H¼ 1.028HF, open circles) magnetic field. The solid line is the theoretical prediction for a
small (H¼ 0.32HF) magnetic field. HF is the magnetic Freedericksz threshold field at V¼ 0.
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We have also developed another method based on digital image processing for

the visualization of the abnormal rolls [16, 18, 19]. Snapshots of the pattern were

taken with a CCD camera at various polarizer settings, i.e. while increasing � in

equidistant steps. The same selected row of subsequently digitized images was

copied at video rate into the subsequent rows of a new image. The resulting x–�
image demonstrates how the transmitted intensity depends on the polarizer angle,

as well as on the spatial direction normal to the rolls. Figures 3(a) and (b) show

the x–� images of NR and AR, respectively, using crossed polarizers. This method

allows a quantitative determination of the azimuthal angle. Measuring ’(") the

theoretical prediction for a forward pitchfork bifurcation could be justified

[16, 18, 19], as shown in figure 4. Moreover, the measured frequency dependence

of the parameter � characterizing the opening angle of the pitchfork exhibited a

divergence when approaching the Lifshitz point, in agreement with the theory [18].

The expected "/H2 dependence of the threshold of the NR–AR transition could

also be proved [17].

Figure 4. " dependence of the azimuthal angle ’ of the director at the NR–AR transition.
Open squares denote the measured points, solid lines represent a least squares fit yielding
"AR¼ 0.006 and �¼ 110o. f¼ 1000Hz, H¼ 0.26HF.

Figure 3. x–� images of (a) normal rolls and (b) abnormal rolls taken with crossed polars
(� is the angle of the polarizer made with H). Extinction occurs if the polarizer is parallel or
perpendicular to the director. The curvature of the extinction lines indicates spatial variation
of the azimuthal angle of the director.
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Besides the NR–AR transition there are other possibilities for the ordered roll
pattern to become unstable. The most common example is the appearance of defects
(dislocations). Generally defects play an important role in adjusting the proper

wavevector if – e.g. after a sudden change – the actual q of the pattern does not
match the ideal one (qid) belonging to the actual values of the control parameter(s).
The relaxation of the pattern to qid occurs via generation and motion of defects.
Motion along the rolls (climb) modifies |q|, while motion normal to the rolls (glide)
changes the direction of q. The GLE mentioned earlier can provide a solution for
the motion of a single defect, predicting a defect velocity v perpendicular to the

wavevector mismatch �q¼ q� qid as well as a logarithmic divergence of |v| when
|�q|! 0. The homeotropic geometry offers an easy way to create a wavevector
mismatch by simple rotation of the cell (and the pattern) in the magnetic field by
an angle � (see figure 5). In this case the defect motion is mainly a glide with a little
climb component. The measurements on Phase 5A and on MBBA proved both
v?�q and the logarithmic behaviour [24].

4. Patterns of large wavelength

The wavelength of the EC roll pattern in the ‘conductive’ regime is typically

�� (0.5–1.5)d, and it is even less in the ‘dielectric’ regime (for the usual sample

thicknesses d>10 mm). Nevertheless, occasionally one can observe patterns with

much larger wavelength than that of the rolls. The abnormal roll domains

(figure 6a) mentioned above serve as an example [19].
Another classical representative is the chevron pattern which is mainly seen in

the ‘dielectric’ regime. It again represents a superstructure, where the direction of the
convective rolls as well as that of the director (being normal to the rolls) alternate in

the neighbouring domains, resulting in a zigzag structure. The domains are separated
by ordered chains of defects (dislocations), indicating that this pattern occurs at
fairly high " values. It has been shown [19], however, that chevrons are not an
exclusive feature of the ‘dielectric’ regime; they could be observed also in the ‘con-
ductive’ regime of homeotropic samples without (or with small enough) magnetic

Figure 5. (a) Snapshot of a defect in a roll pattern (image taken after rotating the cell by an
angle � in the magnetic field). (b) Directions of the wavevectors and the defect velocity for the
same geometry.
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field (figure 6b). A higher magnetic field seemed to suppress the tendency of the
defects ordering into chains.

Recently another type of chevrons – the ‘defect free’ chevrons [25] – has also been
identified in the ‘conductive’ regime. Though their main characteristics are very

similar to the ordinary – ‘defect mediated’ – chevrons, there are no defects at the
domain boundaries; rather the rolls seem to have a curvature (figure 6c). Reducing
the applied voltage in the presence of ‘defect free’ chevrons, the rolls disappear but a
pattern with a large wavelength (called ‘prewavy’ pattern [26], PWP, figure 6d)
persists for some voltage range. The ‘prewavy’ pattern is characterized by an azi-
muthal modulation of the director, as opposed to the tilt modulation in the EC rolls.
Consequently the PWP produces no shadowgraph image; it can be observed with
crossed polarizers only. PWP can exist in a wide frequency range, even at f much

above the cut-off. The frequency dependence of the threshold voltage is nearly linear,
definitely weaker than either in the ‘conductive’ or in the ‘dielectric’ regime. The
voltage dependence of the azimuthal angle in PWP exhibits a pitchfork-like bifurca-
tion [27], similar to that at the NR–AR transition. Up to now PWP has been
observed in nematics with high electrical conductivity only. With proper adjustment
of the conductivity one can obtain ‘conductive’ rolls, ‘dielectric’ rolls and the
‘prewavy’ pattern in a sequence in the same cell when increasing the frequency, as
shown in figure 7. For samples with higher electrical conductivity (e.g. at higher

temperature), usually the ‘conductive’ rolls switch to PWP directly at a frequency
fpw [28]. The ‘defect free’ chevrons are actually observed at frequencies slightly above
fpw indicating that they are a superposition of two patterns, the PWP and the normal
rolls. From the above observations one can conclude that the formation of the
PWP is not due to the Carr–Helfrich mechanism, but unfortunately its actual
mechanism has remained unexplored yet.

5. Substances with ra<0

Though for most nematics �a>0 there are a few compounds – some of those having

a smectic phase below the nematic – which possess �a<0 in some temperature range.

The Carr–Helfrich mechanism stops working for substances with "a<0 if �a! 0

or becomes negative. However, if a substance has "a>0 and �a<0 (i.e. the signs of

both anisotropies are inverted compared to the standard electroconvecting nematics)

Figure 6. Snapshots of large wavelength patterns in homeotropic nematics. (a) Abnormal
roll domains (crossed polars, �¼ 8�). (b) Chevron pattern in the ‘conductive’ regime (parallel
polars, �¼ 0�). (c) ‘Defect free’ chevron (crossed polars, �¼ 0�). (d) ‘Prewavy’ pattern (crossed
polars, �¼ 0�).
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and additionally we start from the homeotropic initial state (instead of the planar

one), the Carr–Helfrich mechanism becomes operational again, and a direct transi-

tion from the uniformly oriented to the patterned state can be observed [29, 30].

The peculiarity of this transition is that the azimuthally isotropic symmetry of the

homeotropic alignment is broken during the appearance of the EC pattern, which is

in contrast to the classical case discussed in the previous sections, where it occurred

already at the Freedericksz transition preceding the onset of EC. As a result, the

morphology of the patterns is different; rolls exist only at low frequencies, while at

higher f various types of square grid patterns are observed. It has been shown

that these morphological variations as well as the frequency dependence of the

threshold voltages can be satisfactorily described theoretically by the standard

model of EC [31].

6. Conclusions

We surely could not give a full coverage of all phenomena related to homeotropic

electroconvection in the present review; yet the results shown above provide

examples for the two typical scenarios occurring as a consequence of changing the

initial alignment.
On the one hand, there are features where no qualitative change of the behaviour

is observed. We have mostly the same morphological transitions when frequency or
voltage is varied; however, the threshold voltages or the Lifshitz point differ quanti-
tatively (e.g. the threshold "AR for the NR–AR transition is about an order of
magnitude smaller in homeotropic cells than in a planar one).

On the other hand, some features are closely connected to the homeotropic
alignment, either through the splay-bend Freedericksz distorted state preceding
the onset of electroconvection (as the re-entrant low frequency NRs and the
minimum in the Vc(H) curve), or via the azimuthal degeneracy of the alignment
(e.g. chaos at onset).

Figure 7. Frequency dependence of the threshold voltages for various EC patterns in a
mixture of Phase 5 and Phase 5A. Solid squares, open circles and solid triangles correspond
to the ‘conductive’ rolls, the ‘dielectric’ rolls and the ‘prewavy’ pattern respectively.
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The most challenging field is, however, electroconvection in homeotropically
aligned nematics of �a<0, where the translational invariance and the isotropic
in-plane symmetry of the orientation should break simultaneously at the onset,
thus requiring an unusual theoretical treatment.

Acknowledgements

Fruitful discussions with L. Kramer, W. Pesch, A. G. Rossberg, S. Kai, Y. Hidaka,
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