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INFLUENCE OF ZIG-ZAG DEFECTS ON ELECTROMECHANICAL

*
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Abstract The resonances found in the frequency
spectra of the electromechanical responses of various
planar S; liquid crystal samples are explained
theoretically. The theory supplements the continuum

* . .
theory of uniform S liquid crystals by taking into

C
account the influence of zig-zag defects, which are
between the oppositely bent domains. The influence of
focal-conic defects present in non perfectly aligned

textures is discussed too.

INTRODUCTION

In the last some years planar S: liquid crystals have been
investigated very intensively.

Due to their special symmetry properties they are
ferroelectric and also piezoelectric. Ferroelectricity (the
presence of spontaneous polarization) results in strong
interaction between the director and the external electric
field, consequently it promises fast electrooptical
responsesl. The electrooptical investigations helped not
only to invent practically applicable devices, but, in
addition clarified the picture about the sample structure.
On the basis of these studies it has turned out, that the
smectic layers are bent, producing the so called '"chevron"
structurez’s.

Piezoelectricity results 1in interesting electrome-

chanical4—7, and mechano—electricale’9 effects. As it was
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pointed out4, applying alternating electric fields onto
planar aligned S; liquid crystal samples mechanical
vibrations appear in the direction perpendicular to both
the electric field and the smectic layer normal. The
inverse of this electromechanical effect (the mechano-
electrical effect) means that an external shear of a
sandwich cell induces electrical charges on the electrodes
of the bounding substrates.

Experiments have proved the presence of several
resonances in the frequency spectra of the above

6,7,9

phenomena. In cases of homogeneous alignment the

frequencies of the observed resonances f1 and f2 were
independent of the mass of the moving plate, while if
focal-conic defects were present an additional resonance
appea;ed at a frequency fo which was shifted with the
mass. In samples of both type zig-zag defects were
observed under the microscope.

The resonance frequencies were found to be in the kHz
range and decreased slightly as the SA - S; phase
transition temperature was approached.

Comparing the resonances found in the spectra of
linear and quadratic electromechanical as well as the
mechano-electrical responses it was suggested6 that the
resonances may be related to the chevron structure of
plahar Sz samples.

In this paper we present a theoretical model which
supports this relation. We point out that the resonances at
fl and fz frequencies are due to the elastic behaviour of
the zig-zag defects, while the one at fo is the result of

focal-conic defects.

MODEL

Geometry of planar S; liquid crystal ifmples.

The latest investigations on planar SC samples pointed out
that both in thick and in thin samples the smectic layers
are not simply planes standing perpendicularly to the

2,3

bounding plates, but are bent The creation of bent
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layers can be explained as followslo. At the SA - S; phase
transition temperature the smectic - layer thickness
decreases due to the director tilting (6) from the layer
normal (n). To keep the density constant, either the number
of layers or the area of each layer must be increased.
Since the Nambu-Goldstone mode10 of smectic layer
undulation is easily excited at the phase transition a bend
occurs in order to increase the smectic layer area. The
most favourable bent structures are the chevrons. Two kinds
of oppositely bent layers (<<< and >>>) may be present in
planar samples. These form domains which are separated from
each other by the so called zig-zag defects ( <<<¥>>> type
forms the so called "lightning", while >>>*%<<< type yields
the "hairpin" defects.)

According to the model worked out by Clark et al11 a
planar sample is schematically illustrated in Figure 1.
Though the details have not yet been clarified, we can say
that the "zig-zag" defects are composed of straight parts
running parallel to the smectic layers, and of zig-zag
parts which are nearly perpendicular to those.

As the mechanical vibration is parallel to the layers
of the monodomains, the effect of straight defect lines is
negligable. Nevertheless the zig-zag parts (presented in
Fig.2) will respond elastically to mechanical vibrations.

The force induced on the unit length of a =zig-zag
defect can be calculated as follows.

Let us denote the displacements of a monodomain <<<
and >>> by §+(x) and s (x) respectively. During vibration
the defect line separating the two domains becomes deformed

if the difference of displacements
+ -
As(x) = s (x) - s (x) (1)

does not equal to zero. Following the notation of Ref.(11)
and analyzing Fig.(2) we can obtain for the variation of a
smectic layer thickness (Ad) that in case of small

displacements
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FIGURE 1. Schematic representation of the chevron
*
structure of planar SC liquid crystal samples.
a.) Typically lcm2 area sample with three domains.
b.) Typically 1mm” area sample representing one
zig-zag defect between oppositely bent domains.

Cs ) Typically 30umx30um area representing the

structure of one zig-zag line.
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FIGURE 2. Deformation of one zig-zag line due to the

electromechanical vibration in the centre of the
sample. The difference of displacements of the two
oppositely bent monodomains is As.

Ad As(x)

3 5%} -tan(a-y )sina A8 &« )., (2)

In this expression d is the smectic layer thickness, h(x)
the width of the defect line and the meaning of angles a
and 7 are seen in Figs.lc and 2. The leaning angle & of the
bent layers is generally11 5<6 (6 is the tilt angle of the
director). According to observations the above relation is
independent of temperature, furthermore 7<20-30° and axy.
Taking into account the diamond shaped cross-section of the

defect line simple geometrical considerations yield

hix )% [L-lel]-—fi’ﬂé— (3)

sind

where L denotes the thickness of the sample.

The contribution of the smectic layer compression into
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the free energy density W reads

. [Ad 2~§. As . 2a_tan(5-r) Z_B. As-E . 4
d) "2 |T=ZTxr1 8'» tans ) -2 (T-zTxT) © (4

Then the force density induced on one zig-zag line reads

i
ol

+ _ _ow_ _ 13 T -
g (x) = 5;; = B [E:ETET] (s -s )
a (5)
S IR A I S U o+
g(X)——g—: I3 Tx (s -8 ) = - g (x)
s

i.e. the forces exerted on the neighbouring domains are
opposite.

There are several zig-zag defects in the sample
covering a total area of 0% at x=0. Their joint effect can
be taken into account by an average force density it(x).
Owing to the diamond shaped cross section of a zig-zag

defect

Z
) = gt [FHE < -k erx)- (5787 (6)

where Q is the total sample area.
This expression indicates an elastic force with the
effective "spring constant" c(x). The form of c(x) follows

from Egqs.(5) and (6)

=
elx] = e-[1—zlx'] . (6a)

Let us estimate the magnitude of ¢. From microscopical
observations6 we know that the average dimensions of
monodomains are very different in various materials, e.g.
in FK4 0%107%n? while in cs1011 Q%107 %n?

account that generally the diameter of a zig-zag defect is

. Taking into

in the order of sample thickness (~10_5m) we can estimate
aZ/0~10"%-1073, Taking B%IOSNm-z, and using typical
values11 for the other parameters present in the expression

of &, we obtain &%101% o1 na ",
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Equation of motion of substances

We regard the material as an incompressible and electri-
cally insulating continuum and we use the description
worked out for monodomains in Ref.(12). Though a real
sample is a complicated composition of <<< and >>> domains
and the separating zig-zag defects, in our model we have to
1imit ourselves to monodomains whose interaction will be
taken into account by the volume force introduced above and
the boundary conditions being discussed later on. Thus the

modified balance equation of the linear momentum reads

p—'= - vjo*ij B (7)
Here oij is the i,j-th component of the mechanical stress
tensor of the medium, fj the i-th component of the force
density originating in defects, p the substance density, V‘j
the space derivative with respect to the j-th coordinate
and the upper indices (t) refer to the type of the domains.

We can suppose that the monodomains are homogeneous
in the yz plane and we investigate only displacements in
the y direction . Then §t=(0, si(x), 0) and only ovx enters
into Eq. (7).

Following the notation of Ref.(12)

+
ot _ L661 v dsy " 651+ dEx (8)
yx  yxyx x| dt yxx dt
is obtained where L66t and LGSt are the Onsager
YXYX YXX

coefficients corresponding viscosity and electromechanical
coupling respectively.

Considering the sample geometry presented in Figs.1
and 3a the vectors of electric field E, smectic layer

normal n, and C-director c can be expressed as

1t

5 (E, 0, 0) H n = (t+sgnx-sind, 0, cosd)

E

+
c

1"

(sing-cosd, cose, - t+sgnx-sind-sing), (9)



k1P) A. JAKLI, N. EBER AND L. BATA

——
L X
2
b.
Asin?{-sgnx
-
L
5 X
c. d.
sinf.-cos?y Asindy
L" ‘-1
s?né_ sinjé 8in3s
sine sin%s 3
% g . sine
L L x| _L L x
2 | 2 2 2
-1 -1t
e f.
FIGURE 3. The

geometry of a surface stabilized
sample and the x dependences of the azimuthal angle ¢,
and its various functions.
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PLi%50
where sgnx ={ .
-1 if x<0
Using Eqs.(3.23) and (3.22) of Ref.(12) we obtain from
Eq.(9) that

66% g3 an 2 i1 Qe 2
P, cos 6sin ¢ (uscos ¢+u11) + sin’6 (u8cos w+u12)
2 y ; '
+ ullcos @ + tsgnxsin2dsing (ugcos ¢+u13) (10)
6b% Be oo 2 s 2 .
Lyxx = cos 6sing (72005 ¢+750052¢) + 7831n &sing

- tsgnxsinécos&-(r4coszw+76c032¢—r7sin2¢). (11)

In a typical chevron structure the azimuthal angle ¢
of the C-directors on the bounding plates differ from each
other by m. Furthermore the same difference can be found on

the same surface but in different domains.

<<< domain >>> domain
x:l".. P = = +
2 %o g
X'"E P = + o =
a3 2 %o ¢ %o

Going along the x direction this rotation of the
C-director takes place at the centre of the sample (x=0)
within a very short distance 21 (,\SO.Olum)11 which can be
'neglected with respect to other characteristic distances.

siné
whole sample except in the centre. As shown in Fig.3 all

Thus either ¢xp or ¢=¢o+n with s'1nq¢>°=§--1-2é holds for the

functions of ¢ appearing in Eq.(11) can be approximated by
the function H(x)
=L

=10 i @ xmd
H(x) = { (A — 0).
I1°3f x5

Thus instead of Eqs.(10) and (11) we can use the formulae

66+ ~ il L651

e ¥ ik ~ - ty+-H(x). (12)
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With these relations the equation of motion of the

substance Eq.(2) can be rewritten as

dzst 2 dsi

. =<3 JdE, gk B By g T
P o2 =-u Vx[dt ]+17 at U, H(x) i;jiT;T (s -s ). (13)
L

We are interested in the linear electromechanical
response to a harmonic electric field E(t)=E-elwt, so

Eq.(13) can be transformed into the set of equations

wzp-(s++s“)=mu-vi(s++s‘)
(14)
wzp'(s+—s—)=iwu'Vi(s+—s—)-2iw7E-5(x)+——%%;T'(s+—s—)
Ao
where
J'% if Ixl < A

6(x) =V _H(x) = A — 0.

x l 0 if Ixl > A

These formulae show that the electric field interacts
with the substance only in a very thin region in the middle
of the sample, where the smectic layer bend and the
director rotation takes place. Furthermore the electric
field is coupled to s+—s_ only while the response of s++s-
is purely viscous.

We have to mention that in the strict sense of word
the treatment outlined above is applicable only for surface
stabilized ferroelectric samples since we neglected the =z
dependence of various quantities and this does not hold in
the presence of a helix. However, if we are not interested
in phenomena taking place on the length scale smaller than
the pitch an averaging over the pitch can be done (coarse
grained description). It is expected that in this limit we
should obtain similar equations but with different,
averaged material parameters (e.g. <u> and <> instead of pu
and 7 in Eq.(12)). This suggests that our results are

applicable for thick samples as well.
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Boundary conditions

To solve Eq.(14) we also need to consider the boundary
conditions.

The bottom plate (x=-%) is fixed, thus s+(—%J=0 and
s—[—%)=0. The top plate (x:%] performs an oscillation
forced by the vibration of the 1liquid crystal. The
displacement of the top plate is described by the vector
u=(0, u, 0). Since the top plate is common for domains of

both type

u = s+[+—]£-] = s_[+12"-] . (15)

The displacement u is governed by the equation of motion

2
.d_P_=FQ , (16)

at? y

m

where m is the mass of the plate, and Fg the force exerted
on the plate by the liquid crystal. This force is a surface

force

o= [a da_ . (16a)
Yy ¥Xx X

Q

Here de is the surface element pointing outward from the
sample, and the integration should be carried out over the
whole surface Q of the upper plate.

It is very important to note that, as the cross
section of gzig-zag defects is diamond shaped, at the
boundaries all the smectic layers are parallel to the
vibration. Consequently Q=Q++Q_, where Q+ and Q@ are the
total surface of <<< and »>>> domains respectively. Then

Eq.(16) can be transformed into the form
2 . + + Ly . - =y . + -
mw “uzieuQ sz [§)+1wp0 v sx[§]—1w7E(Q -Q ) (17)

It can be seen that in this geometry the 1liquid
crystal can transmit only viscous and electromechanical
coupling forces onto the bounding plates. We will see later

that this fact causes that the resonance frequencies are
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independent of the mass of the bounding plate.

Calculation
To perform calculations the sample is divided into three

parts : a, b and c along its thickness.

a; -A < x <X (A —> 0) (the centre of the sample)

In the X — 0 limit Eq.(14) can be replaced by the set

of equations

2, +, - iwp 4, -
Vx(s +s ) + 7 (s +s ) = 0 (18a)
12(stos") 4 iwzp—Zié.(S+_ -) . 22E (18b)
x Wi = - Al

Since A — 0 the solution is expected to be constant,

s++s_ =0
+ - _ -iwyE (19)
s -s = =5,
W p-2¢

i.e. in the middle of the sample the <<< and >>> domains

are vibrating with a phase difference of m.

b; 2 < x < LE (A — 0) (the upper half of the sample)

2

Since &(x)=0 in this interval the equations of motion

(see‘Eq.(14)) read:

iwp +

g 4 —
Vx(s +s ) + 7 (s +s ) = 0 (20a)
2, 4 - dwp + - 2i¢ st-g”
VX(S =S ) + m '(S -S ) = —(S'E'T'-X—i— =0 (20b)

which is supplemented by the boundary condition Eq(15) at
x=% and Eq.(19) at x=1—0.

Equation (20a) has the solution of

s*4sT = 20 = 2¢ -ch(i/Tr)  with x = ’9%-% (21)

In order to find the solution of Eq.(20b) first we will
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use the substitutions

. T 2%
st-s7 = [g%—l]-e—l/T'(_E-l)-w(n)

(22)
= zi/Tx-[3§-1] - A= 1[%19
W p
to transform Eq.(20b) into
n-w’(n) + (2 -n)-win) - a-w(n) =0 (23)

which is the confluent hypergeometric differential

equation. Its solution is the Kummer functionlaz
w(in) = CZ'F(B,Z,H) ) (24)

where the coefficient C2 is to be determined from the

boundary condition Eq.(19). Returning to Eq.(22) we obtain

4x s o rdx
x yOE- [—E—Z]'F[a,z.lﬂxt——u-Z)J.e_iﬁ,gz

ek 5 L (25)
A(0%p-2¢8) F[a,z,-Ziﬂ'n]

Substituting Eqs.(21) and (25) into the equation of
motion of the upper plate Eq.(17) we can calculate the
coefficient Cl' Finally the amplitude of the displacement

of the upper plate can be expressed as

4 o7 ) 16%0-20)
_yuE(@*-07) | Fla,2,-iyix) -

miA(2p-2¢) | , _4/Tnut0’+0”)
Lmw

(26)

tanh(iyix)

cy -% < x < =\ (A, — 0) (lower half of the sample)

The equations of motion are the same as those in the
case of b; except that the sign of x in the denominator of
the interaction term in Eq.(20b) must be changed to
opposite. However, we are not interested in the solution of
them since within the approximation we use it has no

influence onto the motion of the upper plate.
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CONCLUSIONS

Equation (26) seems rather complicated, however the main
characteristics are visible. It is clear that the
displacement is proportional to the electric field, the
electromechanical coupling constant and the difference of
the <<< and »>>> domain surfaces, while it 1is inversely
proportional to the mass of the bounding plate and the
thickness interval, where the bend of smectic layers takes
place.

It is also easy to deduce that the displacement
possesses a resonance at a frequency fr which is determined

by the equation w2p - 2¢ = 0. This yields

£ = __1_..- 2¢

r 2 m I} (27)

i.e. the resonance frequency depends on material parameters
but is independent of the mass of the moving plate. Since ¢
describes the influence of the =zig-zag defects, this
resonance originates in the chevron structure.

The characteristics mentioned above can be checked by
numerical calculation of the spectrum of the absolute value
of the displacement |u|. We have chosen typical values for

the material and sample parameters as listed below:

p=10xgn? . e=10Nm* 5 u=10"%pas ; m=10"2%kg
r=10"12a8?m? ; E=10%vm? . 1L=2:10"%m ; a1=10"%nm
ats=107%m2 5 (et-07)/zet+07)=0.1

The calculated spectrum is shown in Fig.4. Comparing
it to the measured spectras's, we can draw the following
conclusions.

First, since the resonance at fr is mass independent,
it may correspond to the measured resonances at f1 and fz.
However, our model yields only one resonance in the
spectrum. This may be due to the approximations used in our
model, namely that we have taken into account the effect of

chevrons in an averaged form.In a real sample there may be
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FIGURE 4. Calculated theoretical spectrum of the

electromgchanical vibration of a typical homogeneous
planar SC liquid crystal.

inhomogeneities in the zig-zag defects (various ¢ values at
different places) which can result in multiple resonances.

Second, the calculated resonance is sharper than the
experimental ones. It may be caused by two facts. In a real
material the displacement is limited by the nonlinearities,
which are not incorporated 1in this calculation, while
Eq.(26) diverges at fr' The other cause may be the
inhomogeneity mentioned above (i.e. a distribution of ¢)
which can result in wider resonance peaks.

Third, the amplitude is proportional to Q+—Q— which
means that there is no vibration if the domains of two
kinds are of equal size. Since the nucleation of <<< and
>>> domains is a more or less accidental process, Q+—Q- may
take rather different values. This can give account of the

scattering of amplitude data measured on various samples of
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the same compounds.

Furthermore there may be a correlation between Q+—Q_
and the average domain size. This latter quantity varies in
a wide range depending on the compound, e.g. in FK4 it was
in the cm2 range, while in CS1011 domains of typically 1mm’
area were observeds. The larger a monodomain the greater

Q+—Q_ and hence the larger the amplitude of vibration. This

. . . . . . . 6,9
conclusion is in agreement with experimental findings '".

Focal conic texture

*x
C
samples, now we would like to touch shortly upon focal

In the previous sections we discussed homogeneous planar S

conic textures.

There is a crucial difference between the two textures
in the packing of smectic layers. In the focal conic
texture the majority of smectic layers are not parallel to
the vibration direction and this holds even at the surfaces
of the bounding plates. Though a precise deduction is by
far bevond the scope of the present paper we expect that in
this case an elstic force is transmitted from the liquid
crvstal to the substrates too. This means that into the
boundary condition Eq.(17) one should introduce a restoring

force -ku yielding
2 . + +Ly . g =Ly . + -
(mw-k)u=iwpQ sz [§)+1muu v SX(E)_ler(Q -Q ) (27)

where k is an effective "spring constant" characterizing
the elastic response of deformed focal conics. This

equation describes a resonance at a frequency of

¢ 1 k

R 2n m
which may correspond to measured resonance at f0 since it
depends on the mass of the bounding plate. The presence of
focal conic defects requires a modification of our model as
well, however we think that its main feature — the
existence of a mass independent resonance — would be

preserved. This means that in focal conic samples the

, 6

5 .
resonances of both type can be explained.
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SUMMARY

The influence of zig-zag defects on the electromechanical
responses of planar S; liquid crystals was considered. The
calculation was based on a phenomenological modification of
the continuum theory of uniform planar S; samples. This
modification has taken into account the influence of
zig-zag defects by an effective volume force acting on
monodomains. This force is due to the fact that in domains
with oppositely bent smectic lavers the electromechanical
vibration occurs with different phases and so the smectic
layers in zig-zag defects must be compressed. According to
the geometry of zig-zag defects, in homogeneously aligned
planar samples the elastic response of defects is
restricted to the interior of the sample, consequently the
resonance frequency is not sensiltive to the mass of the
moving plate. In focal conic textures, however the elastic
response extends to the boundaries allowing for another
resonances.

Our model has pointed out that the domain size plays a
determining role in the electromechanical response of SC'
Tt would be very interesting to find out which factors
determine the sizes of domains. On the basis of our
experimental findings we guess that the monodomain areas
decrease as the spontaneous polarization increases. It
would be also very interesting to investigate the influence
of the antiparallel SiO obligque evaporation, because it was
reported14 that this type of boundary treatment yields
uniform tilted structure. This structure change should
modify the frequency spectra. (Probably no resonance is
present in this case.)

As a summary we can say, that we could explain the
resonances found 1in several planar Sz liquid crystal
samples. All main characteristics are explained by a

continuum theory taking into account the effect of zig-zag

domains and the focal-conic defects. On the basis of this
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calculation, we state, that by the analysis of the
electromechanical responses, it is possible to determine
some material parameters and to deduce certain consequences

regarding on the sample structures.
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