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INTRODUCTION

During the last few years chiral smectic C (SE) liquid crystals
have found themselves in the centre of interest because of their
unique macroscopic "bulk" properties. They exhibit spontaneous
polarizationl, which is linearly coupled to the electric field
thereby resulting in delicate electrooptical effectsz’lo.

While investigating electrooptical properties of planar oriented

K #hat the reorientation of the di-

SE samples we recently found
rector is accompanied by a vibrational motion of the material.
At first glance this electromechanical effect looks similar to
the effects observed in piezo- and ferroelectric crystalslz_la.
However there are important differences and their physical origin
is also different.

The aim of the present paper is to describe the detailed
experimental results and to interpret them on the basis of the

recently developed electrohydrodynamic continuum theory of
Sx15—17
C :

EXPERIMENTAL

The behaviour of a planar SE liquid crystal in an applied
quasistatic electric field was investigated. The experimental set-
up is shown in Fig.1.

A sandwich cell was used without any spacer. The lower
glass was fixed whereas the upper one was allowed to move against
a spring in the direction parallel to the lower glass and perpen-
dicular to the helical axis.
iwt

A harmonic electric field E:Eoe was applied to the

sample in a direction perpendicular to the glasses.

As reported earlieril, in addition to the well known

switc:hingz_5 and helix unwindingé_10 a new electromechanical

effect was observed, namely the vibration of the upper plate

against the spring.
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Fig.1 Experimental set-up. The orthogonal vectors n,E and u

indicate the direction of the helical axis, the electric
field and the displacement of the upper plate respectively

Experiments were carried out on a liquid crystal binary

mixture FK418 with the phase sequence:
% %
I --- Ch --- SA -——— SC - SI

67°c  63°% 29°C 16°C

The pitch in the SE phase was about 5 /um and an unwound
sample of 10 sum thickness was used. The sample thickness was
controlled with an accuracy of t2/um and checked by capacitance
measurement. The sample was thermostated and visually observed
by polarizing microscope.

The vibration of the upper plate was detected by a ceramic
pick-up sensitive to any displacement below 5 kHz (with a typical
sensitivity of 6—102%5 ;

When the sifjnal of the pick-up was displayed on an oscil-
loscope as shown in Fig.2. it was found that the freguency of the

vibration of the upper plate was equal to the frequency of the



Elg . 2 Typical oscillogram. The lower curve corresponds to the
applied voltage (U =55 V , f=1 kHz, attenuation x 10).
The upper curve sh8££ the signal of the pick-up. Its
amplitude is proportional to the displacement of the
upper plate

applied electric field. A lock-in amplifier was used to analyse
the signal of the pick-up as a function of the amplitude and
the frequency of the applied electric field as well as versus
the temperature of the sample. Our experimental results are
presented in Figs.3-5.

Figure 3 shows the vibrational amplitude as a function
of the applied voltage. A linear dependence was found for each
of the frequencies. '

In Fig.4 the vibrational amplitude is plotted versus the
frequency of the applied electric field for different voltages.
Below a few hundred Hz a proportionality was observed while at
high frequencies a saturation was found.

In Fig.5 the temperature dependence of the electro-
mechanical effect is shown. The vibrational amplitude is plot-
ted versus temperature for different frequencies. These results
show that the electromechanical effect in the 5, and S? phases
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Fig.3 Amplitude of pick-up signal vs. applied voltage for
different frequencies
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Fig.4 Amplitude of pick-up signal vs. frequency of the applied
electric field
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Fig.5 Amplitude of pick-up signal vs. temperature. (The sensi-
tivity of the pick-up used here differs from that used in
experiments shown in Fig.3,4).

is at least one order of magnitude weaker than in SE and is within
the limits of the experimental error.
We would mention that the shape of the curves is similar

to that of the shear induced polarization measured by Pieranski

et 3119.

Moreover in the SE phase the curve is reminiscent of the tempera-
ture dependence of the helical pitch20 or that of the dielectric
permittivity21. But in the last case the permittivity increases
with decreasjng frequency while the electromechanical effect
becomes more intensive at high frequencies.

The electromechanical-effect was detected for different
sample thicknesses (5 jum<d <70 sum), and similar dependences
on the electric field and temperature were observed.

In the case of a homeotropic structure no electromechani-
cal effect was found. '

Finally we should like to mention a very simple but power-
ful method for qualitatively detecting the electromechanical
effect. If one uses a rigid connection between the upper plate



and the membrane of a loudspeaker, the membrane replaces the
spring. The motion of the glass plate then makes the membrane
vibrate - an effect that can simply be detected by listening to
the loudspeaker. In fact in the SE phase the pitch of the note
produced by the electromechanical effect corresponds to the
frequency of the applied field. In the SA, Ch and isotropic phases
this basic harmonic could not be heard and only a considerably
weaker sound could be detected but it was an octave higher, i.e.
the frequency of the vibration was twice that of the applied
electric field. This second harmonic indicates the existence of
a quadratic electromechanical effect in the higher temperature
phases.

Though this quadratic effect exists in the SE phase too,
it is hidden there by the linear electromechanical effect dis-
cussed above. Consequently it can be detected only at relatively
higher fields and lower frequencies in the form of second harmo-
nic distortions of the pick-up signal (Figs.6,7).

The main features of the experimental results are the
following:

(a) The linear electromechanical effect exists in the
chiral smectic C* phase only.

(b) At low frequencies the amplitude of vibration is
proportional to E=iwE.

We should now like to offer an interpretation of the

phenomenon.

INTERPRETATION

Since the upper plate of the set-up moves parallel to
the smectic layers this motion should result from molecular
displacements within the layers. Usually a smectic C layer can be
regarded as a two-dimensional liquid bécause of the lack of
positional ordering, consequently the molecular motion in the
layers may be considered a shear flow rather than an elastic
displacement. This means that the physical process resulting in
the observed electromechanical effect of Sg must be different
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Fig.7

Oscillogram from the’ electromechanical effect. The lower

curve corresponds to a tenth of the applied voltage '

(Ueff=40 V, £=540 Hz). The upper curve shows the signal
of the pick-up ’

Oscillogram from the electromechanical effect. The lower
curve corresponds to a tenth of the applied voltage
(Ueff=70 V, f= 540 Hz). The upper curve shows the signal

of the pick-up. The appearance of the second harmonic can
he apen



from that which is present in piezo- or ferroelectric solidslz'la.

This is also reinforced by the fact that, in contrast to solids,
there is no static electromechanical effect in SE phase.

A continuum theory has been developed recently in order
to explain the behaviour of uniformly layered SE in the presence
15-17 "'1¢ has been shown that due to
chirality and the biaxial symmetry of SE liquid crystals there

of an electromagnetic field

exists a cross-effect between dielectric relaxation and viscous
flow. This electromechanical coupling leads to the appearance of
a mechanical stress proportional to the time derivafive of the
applied electric field thus inducing a periodic shear flow of the
material. Due to this flow the liquid crystal exerts a force on
the upper plate resulting in a forced oscillation of that plate.

In the following simplified calculation we demonstrate
quantitatively that in our geometry the above mentioned cross-
effect can actually explain the existence and the frequency
dependence of the observed linear electromechanical effect. (The
non-linear, quadratic effects, leading to frequency doubling will
not be considered).

The upper glass plate moves against a spring which exerts
a restoring force proportional to the displacement u of the plate
(Fig.1). The upper plate thus performs a forced oscillation
governed by the equation of motion |

mu=-ku-+F™" (1)

where m is the mass of the plate, k is the spring constant, and
f“’is the force exerted on the plate by the liquid crystal.

This force is a surface force
Ph-fgoa (2)
N

where @ is the mechanical stress tensof of the SE, dn is a
surface element pointing outward from the sample, and the integ-
ration should be carried out over the whole surface JL of the
upper plate.

The flow velocity v can be determined from the equation



of motion of the SE

gV, = -V, 6, + A (3)

where ¢ is the density, and F el is the density of the electromag-

15-17

netic volume force This dlfferential equation must be sup-

plemented by the boundary conditions:

v =0 at the lower plate
(4)

=2

v = at the upper plate

The SE material is taken to be incompressible and in-
sulating; moreover the uniform layered structure does not appear
to be distorted as is supported by the optical observations.
To procéed further, the continuum ’cheoryls_17 states that the

mechanical stress tensor must be written as

_al  _ 65 &
i3 =% " LigkEk 1Jkl Vv, (5)

where ng is its reversible part, Eé is the electric field in

the co-moving frame, ngk is the electromechanical coupling tensor,

and Ligkl is the viscosity tensor. (From here onwards the nota-
tions of Refs. 15-17 are used).

Our calculation will be carried out in the laboratory
frame, (Fig.8), with axes given by the electric field E(x-axis),
the direction of displacement u(y-axis), and the smectic layer
normal n(z-axis). Thus

= (E

0,0) ; wu=(0,u,,0) ; n=(0,0,1) (6)

X)

The position of the C-director ¢ is characterized by the azimuthal
angle ¥ (Fig.8).

c = (sin¥ ,cos? ,0) (7)

The fixed lower plate corresponds to the plane x=0; the upper
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Fig.8 Smectic C* coordinate system. The smectic C* molecules
form a layered structure; the z axis is parallel to the
layer normal. The average direction of the molecular long
axes defines the unit director field d. The molecules
tilt away from the layer normal n by angle ~¥. The pro-
jection of d into the layer plane defines the ¢ -director
c, which makes an angle ¥ with the y direction. The
ferroelectric polarization P is perpendicular to c and
lies in the layer plane.

plate is positioned at x = d.
Let us now introduce some simplifying assumptions:

(a) The dimensions of the sample in the y and z direc-
tions are much greater than the sample thickness and the pitch;
this means that there are no side effects so the y dependence can
be neglected. :

The electromechanical effect has been observed for thick samples
having undistorted helical structure as well as for thin ones
where the helix is unwound by the surfaces. This suggests that
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the z dependence of the C-director in the sample does not influ-
ence essentially the effect, conseguently the z dependence can
also be neglected, i.e. in our simplified calculation all physi-
cal quantities depend on x only.

(b) A material flow normal to the layers is incompa-
tible with the smectic structure thus Vo A 0. As long as My * 0
at the glass plates (see Eq.4) and the incompressibility requires
Vit 0, it follows that Vi@ @k 85

v o= (0,v,,0) (8)

(c) It is supposed that the velocity of the material
flow is small, i.e. it is sufficient to keep terms linear in v
“and E . This makes it unnecessary to differentiate between the
laboratory frame introduced above and the co-moving material
frame which was used when developing the continuum theory15'17.
It means that the electric field in the two frames is identical
E = E'; the magnetic field is zero.

iwt

(d) If a harmonic vdltage U= Ug.e 'is applied, the
electric field in the medium is
£, (x,t) = ECet ! (9)

We are interested only in the linear electromechanical effect;
thus, neglecting higher harmonics, we can take

uy(t) . upt Wk g vy(x,t) = vix)al®t (10)

(e) 6%. in Eq.(5) is connected with the reversible
ij |

deformations of the SE material, i.e. with the reorientation of
the C-director, while the other terms describe irreversible
processes. Visual investigations have shown that the electro-

2-5 or helix unwindings-lo, are

optical effects, like switching
not influenced by the vibration of the upper plate. It suggests
that the reversible changes of the C-director can be handled

separately from the irreversible shear flow, thus we can take
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Gij 0.
' In our experimental geometry with the above assumptions

one gets for the equation of motion (3) of the SE material

N

X

lewev(x)=- {—(/ull+/ussin2?coszP)Jg¥ w

; (11)
'[3‘5‘( T,+2 rs)cosz V]sin‘f in(X)}

where /Us, sUp; are viscosities, and Yo, ¥ are electromechani-

cal coupling constants. P(x) would describe the C-director in the
sample , but this function is unknown. It should be calculated

16,17 but unfortu-

from the equation of motion of the C-director
nately it cannot be soclved exactly. Since the sample has a planar
orientation, the C-director has to be parallel to the plates
(strong anchoring at the boundaries), i.e. Y= 0 or s -1

must be fulfilled at x = 0 and x = d. This means that the terms
in Eq.(11) can be expanded into a Foufier series. Supposing that
it is sufficient to retain the first nonvanishing harmonics,

Eq.(11) finally becomes
feo@ueigld = o WL deiy 20 ginc X4y (12)
§v=-ax }/Vetf ax * Wierr goini—g
with the boundary conditions (see Eq.(4) )
v(0) = 0 ; v(d) = iwu

With the approximations listed above the equation of
motion of the upper plate becomes

2

av
- o> — —.n
mw-u = ku /U £f

Ox | x=d (13)

These equations can now be solved exactly resulting in the‘
following expression for the amplitude of vibration:
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where A= ’F—%ﬁﬂi— .
N /" eff .

In the low frequency limit Eq.(14) yields the asymptotic
formula

U
u (w—> 0 )=iwﬁff%“%% (15)

This formula shows that for low frequencies the displace-
ment - of the upper blate is proportional to « in accordance
with our experimental results (see Fig.4). Equation (15) gives
a good approximation of Eqg.(14) below the natural frequency

- Lk
fo- 7% = of the system.

f0 has been determined experimentally applying a voltage to the
loudspeaker and measuring the amplitude of yibration of the
upper plate versus frequency. Depending on the guality of the

alignment and the sample thickness we obtained f0=300—600 Hz ,
a value which is in good agreement with the data in Fig.4.

SUMMARY

A periodic electric field induced mechanical vibration
of the same frequency was detected in a SE mixture. It was proved
experimentally that this linear electromechanical effect exists
in the ferroelectric phase only. In contrast to piezoelectrics,
a static field does not induce deformation.

The phenomenon is interpreted as a result of a new cross-
effect termed electromechanical coupling. Our model is in good
qualitative agreement with the experimental results.
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