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ABSTRACT

A continuum theory of polarized media is presented. The electromagnetic
field is incorporated into the balance equations and an expression for the
energy dissipation of the medium is obtained. Reversible and irreversible
phenomena are separated. The final equations serve as a basis for setting
up the constitutive equations for chiral smectic C* liquid crystals.

AHHOTAIIUSA

MpencTasnseTCsad KOHTHHyalbHasA Teopusa MOJIAPHU3OBAHHLIX CPpel. S371eKTPOMarHuT=-
HOe mnoJie NMOIACTAaBAfgeTCHs B YPaBHEHHA CcOoXpaHeHHSA U BHpaxaeTcsa OUCCUNMUTHBHAA
GyHKUMA CpenH. Pa3nuuanTca obpaTHMHE H HeoBpaTuMule NPOLEeCCH . KoHeuHHE ypaBHe-
HUSA CJIYXaT OCHOBOW HanuCaHUsa MaTepHaJIbHHX yPaBHEHHUH CHMHUPaJIBHHX CMeKTHUYEeCKHUX
C® XMOKUX KPHUCTAJUIOB.

KIVONAT

Polarizalt kdzegek kontinuum elméletét ismertetjiik. Az elektromagneses
teret beépitjilik a mérlegegyenletekbe, és kifejezziik a kdzeg energiadisszipéa-
ci6éjat. szétvalasztjuk a reverzibilis és az irreverzibilis folyamatokat.
Egyenleteink alapul szolgdlnak a csavart szmektikus C* folyadékkristalyok
anyagegyenleteinek felirasahoz. .



1. INTRODUCTION

Since the discovery of liquid crystals a lot of work has been
devoted to the study of macroscopic, "bulk" properties of these material:—*..l_5
Parallel with experiments several continuum theories have been developed to
explain experimental da‘ca.l'23
Perhaps the best known of them is the powerful Ericksen-Leslie
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theory of nematic and cholesteric liquid crystals. Though it has been

criticized from some points of view and other theories for these phases also

t,lz_Zl the Ericksen-Leslie theory can give an account on many reversible
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exis

) as well as
8"11)

phenomena (e.g. elastic deformations, Freedericks transitions
some irreversible ones (e.g. viscous flow, thermomechanical coupling
Unfortunately it cannot be generalized easily to describe smectic phases,
while other theories of smectics usually deal with some special aspects
only.2'3’5’22

~ An alternative approach to the problem is the unified hydrodynamic
theory of Martin, Parodi and Pershan.16 Within the framework of this theory
a rigorous formulation of the reversible dynamics of various liquid crystal-
line phases has been worked 0ut’18,20,23—24 but much less attention has“been
paid to irreversible phenomena.19 However these theories are primarily devoted
to describe fluctuations and light scattering in the absence of external
electromagnetic fields, thus unfortunately are less applicable to explain
effects due to the external fields. Irreversible phenomena connected with
electromagnetic fields, e.g. dielectric relaxation, are a priori .neglected
arguing that relaxation of polarization takes place on a microscopic time
scale while hydrodynamics is valid only for characteristic times much longer
than the time between molecular collisions. Though this argument holds for
most cases, there are exceptions since in smectic liquid crystals especially
in ferroelectric chiral smectics C* there are relaxational phenomena at very

25-26 4o,

low frequencies
A combination of electro- and thermodynamics of polarized media

can be found in two books of de Groot.m’31 However their equations are valid

for systems without internal degrees of freedom but are not for liquid crys?

tals. A generalization for nematic and cholesteric phases has been done
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within the framework of micropolar continuum theories , but to our know-
ledge no such theory exists for the smectic liquid crystals.
Very recently we have found an experimental evidend827 that

irreversible phenomena due to electromagnetic fields may play an important
role in the ferroelectric chiral smectic L liquid crystals. This moved us
to try to combine hydro-, electro- and thermodynamics of chiral smectics C*
in a two-part paper establishing theoretically our observation.

In Part I. we focus on the basic equations of the continuum theory.
Incorporating electrodynamics into hydrodynamics we follow the conception of
de Groot30 but we use a different representation and the SI system of units.
We derive equations valid for any inhomogeneous anisotropic polarized media
having internal degrees of freedom.

33 we construct the constitutive

In the subsequent Part II.
equations for chiral and achiral smectic C liquid crystals covering rever-
sible and irreversible phenomena as well and discuss the relationship

between chirality and the existence of new cross-effects in these méterials.

2. STATE VARIABLES OF THE MEDIUM

A continuum is characterized by its motion and its internal thermo-
dynamic state. We pretend that, as it is usual in non-equilibrium thermo-
‘dynamics, our medium is in local equilibrium. The motion can be described
by the velocity field v(r) but the usual thermodynamic state variables
(internal energy pu, entropy ps, density o, temperature T, pressure p) alone
do not give a complete description of the thermodynamic state of the medium.
The electromagnetic field, when interacting with the medium, modifies its
internal state, consequently one has to incorporate into thermodynamics some
electromagnetic state variables too (e.g. polarization and magnetization or
electric field and magnetic induction). Furthermore liquid crystals or any
other ordered systems have further internal degrees of freedom which have
to be taken into account (e.g. director for nematics or qisplacement of
layers for smectics e.t.c.).

As it is usual in field theories, two frames of reference will be
used. 28-30
magnetic field and the motion of the medium. However the thermodynamic

The laboratory frame serves for the description of the electro-

quantities characterising the internal state of the medium will be given in
the material frame, i.e. in the frame co-moving with the medium. This choice
makes possible an easy formulation of a Galileian invariant electro- and
thermodynamics. The electromagnetic fields detected in these two frames are
different, since the frames are moving relatively to each o‘cher.m_31

To make a distinction, dashed quantities will be used to denote electro-



magnetic variables in the material frame and these dashed gquantities will
appear in thermodynamics. We pretend throughout this paper that the velocity
of the medium is small enough to remain in the non-relativistic approximation.
The rules of transformation between frames for the electromagnetic quantities

are given by Eg.(A.1.) in Appendix 1.

3. CONSERVATION LAWS

Since the electromagnetic field interacts with the medium, neither
of them alone can be regarded as a closed system. The conservation laws can
be written only for the system being composed of the medium and the electro-
magnetic field. Though it could be done in both frames, the laboratory frame
is preferred because of the presence of electromagnetic terms. However the
transformation rules of the fluxes are taken into account, i.e. the convective
terms are separated in the balance equations. In the non-relativistic approxi-
mation the electromagnetic mass is neglected thus we have conservation laws
for the mass, the total linear momentum and the total energy. The integral
form of these equations in the laboratory frame are

9[pdv = -§ ovda et (3.1)
35 Cox v af®1av = ~§ (g tpyey - Ddg (3.2)
g_tg (%plv2 s pu + t1€ldhgy - _§ 3%0g (3.3)
where g?ield and ¢f1®19 are the linear momentum and energy of the electro-

magnetic field respectively, ¢ and T are the mechanical and the Maxwell
stress tensors respectively. The total energy flux ge is not specified at
this point, it will be given later via a constitutive equation.

The above conservation laws have to be supplemented with the
entropy balance.equation

d
Sifesdv = ¢ G a+ pswida + J Boav (3.4)

where g is the heat current and R is the energy dissipation.



4. BALANCE EQUATIONS FOR THE ELECTROMAGNETIC FIELD

The electromagnetic field can be described in the laboratory frame

by the Maxwell equations given in SI.32 '
L3I 8LE *
78 =0
98
UxE =-— 1)
ot
2D
IxH =3+ —
ot

where Pe is the charge density, J is the current density and -

Dis g€ *.1
H=21p-M (4.2)
BB - M

defines the polarization P and magnetization M of the medium.
These equations can be rewritten into the form of a momentum and
energy balance as shown in Appendix 2 and 3. :

d tmd s - § (4.3)

3t -1 1) i
9  field _ _ g jfield |  field (4.4)
at s

field

where F is the force exerted on the medium by the field, J is the
electromagnetic energy flux, rfiehjis the rate of transformation from field

. energy into kineticor internal one, and the summation convention on repeated
indeces has been used. However the definition of the electromagnetic momentum
and energy is not unique, the medium and the electromagnetic field cannot be
separated unambiguously because of their interaction.31 We have chosen the
repre-aen'lcation}1 where

Qﬁﬂdz e EXB (4.5)
and

field ‘1 229 11 .2 it

. sy&t +xo B BM | (4.6)

since it has led to a consequent Galileian invariant treatment of the
thermodynamics of polarized media in the non-relativistic approximation.
For further details including the definition of the other quantities of
Eqs. (4.3) and (4.4) we refer to Appendix 1-3.



5. BALANCE EQUATIONS FOR THE MEDIUM

Using Eqs.(4.3) and (4.4) the conservation laws Eqgs.(3.1)-(3.3)

can be converted into balance equations for the mass, linear momentum, kinetic

energy and interinal energy of the medium.30 In the material frame they read

g_tp = Vyvy (5.1)
4 oV, == V.o0.. - pV. V.v. + F. ’ (5.2)
dt 1 J 1] 137 1
d 2 1 2
—— = - V(v,o0,.) - = V.v. + F.v. VA 5.3
dt2pv VJ(v1 °1J) va V3 * Fivi + 03374y ( )
and
d _ € _ N T _ _
gT ey - Vj{‘]j Vg oy 7PV puxj} ou Vjv\j |
(5.4)
field field
%3 Vjvi + V3 - T - Fivy
where %T = g% +v ¥ is the material time derivative.

From Eq.(3.4) the entropy balance is

aja
+

, 2 _ R
ps = - Vj (T qj) oS Vjvj + 7 (5.5)

6. CONSERVATION OF ANGULAR MOMENTUM

The only conserved quantity, which we have not yet paid attention
to, is the angular momentum. Employing Egs.(4.3) and (5.2) the balance

equations for the angular momentum of the field and the medium are respec-
tively ’

9 field, _
¥ (rxg )i =7 (eijkrokl).(gxf_)i - Eijkaj (6.1)

(gxu)i = - V1 (e

QF.
+

13k Ty okD) + @xE)j + g5 04 (6.2)

Adding these two equations and comparing with Eg.(3.2) it follows immedia-
tely that the conservation of the total angular momentum requires



ik %3 T Sigk k3t V1%i3k Tkal (6.3)

where zjk1= -zkjl is an arbitrary antisymmetric tensor. In our representa-
tion the Maxwell stress tensor is not symmetric consequently the mechanical
stress tensor must have an antisymmetric part too. In the absence of electro-
magnetic field Eq.(6.3) reproduces the usual argument that a symmetric stress
tensor automatically meets the requirement of conservation of angular momen-
tum.16’28

In Egs.(3.2),(5.2) and (6.2) we pretended that the medium had no
_extra internal linear or angular momentum. This means no restrictions in case
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of liquid crystals, since on contrary to the Ericksen-Leslie or the

micropolarlz'lh theories which have to introduce such quantities, hydro-

16-20,23-24

dynamic theories can describe the same phenomena3 without the

need for such extra momentums.

7. GENERALIZED FREE ENERGY

The internal energy is the thermodynamic potential belonging to
the set of independent state variables ls,E:Mf,“.l. However it is more
practical to use for independent variables the temperature instead of entropy,
the electric field instead of polarization and the magnetic induction instead
of magnetization. This transition in variables corresponds to the Legendre-

-transformation

o t*(T,E.B') = pu(ps,P.M') - Tos - P E - MB (7.1)
where the generalized free energy of* is the new thermodynamic potential for
the new set of independent state variables {T,g:g:...!. Though either of the
above two representations could be applied to describe the same phenomena,
we prefer the latter one since it has many advantages when setting up the
constitutive equations for chiral smectics in Part II.}?

Besides T,EI and g' a medium has some other independent state
variables too. These are the density, temperature gradient, velocity gradient
and the internal degrees of freedom denoted by X% (a=1,2,...). These latter
quantities-should be specified separately for each media.

With the above arguments the general form of pfx is

i

of® = of*(T,E ,B ,0, UT,Vev,X®) (7.2)

This expression is Galileian invariant since it contains only quantities giv-

en in the material frame but not the velocity of medium.



8. THE ENERGY DISSIPATION

The basic equation of irreversible phenomena is the expression for
the energy dissipation.

Using Eqgs.(5.4),(5.5),(7.1) and (A.21) one gets for the energy
dissipation

] ]
oV (-a) - of*Vv, -1q.0.T+ LE - o, V.v, -
R g g =85 = Bl Valy =y Ty Ry T Ty g o1
dpf* d7 , dE. , dB. -
e = fiEE, =P, = m W, —d
dt dt J dt J dt
where the notation
X _ qE€ 1 2 X ! ! _
N LT vj{2 v + ot + pTs + P.(vxB )i-} (ExH) (8.2)
was introduced.
With indirect derivation of Eq.(7.2) one gets
8ofx [
R=- V.(*-q.) - (pf*- Vv, - Lq. 0.7+ J.E. -
DGR UL ronnt M Tl T U
1 | o
. et dE. . aef® dB. aof* dx
oijvjvi'_ (Pj + ) —l - (Mj + T, [ - — -
9, dt 88, dt ‘a ax " dt (8.3)
dof*  dT  of* dV.T apf* d V.v.
- (ps + ) QA J J1

o7 av. oV.v. d
dt JT dt Jv1 t

‘which has to be supplemented by the constitutive equations describing the
time evolution of the internal degrees of freedom.lé’18

[=8

2. x% = - 2° a= 1,2,... (8.4)

a

9. SEPARATION OF REVERSIBLE AND IRREVERSIBLE PHENOMENA

In general reversible and irreversible processes coexist in a
medium. Their description requires different tools so one has to separate
them. This separation can be done on the basis, that reversible processes
are invariant under time reversal, while irreversible ones are not. Neverthe-
less this invariance concerns the equation describing the process and not the
individual physical quantities. In general any physical quantity can be

splitted into an equilibrium, reversible anag a non-equilibrium, irreversible



part. Reversing the time these two parts of the guantities have to transform
in an opposite way. It is quite natural to regard the independent state
variables as purely reversible ones. Moreover the generalized free energy and
entropy describe equilibrium systems consequently they are also reversible as
well as *heir partial derivaties. The reversible parts of the other quanti-
ties are determined by the requirement, that in equilibrium, where all irrev-
ersible terms vanish, the balance equations (5.1)-(5.5) must be invariant
under time reversal.

To summarize, the purely reversible variables are

T, ,B, D,X,Xa,pf’(, pS

as well as their time derivatives and gradients, while others split into two

parts
R = Rr_Fer ; gx _ Qgr g_xir g = EF + oif
(9.1)
E' =.E'r +‘E'1r , M' . M}r N M‘ir 7%= T soir
3 - 0* lir . g =0 « 9ir

where the latter two, namely the electric and heat currents have only irrev-
ersible parts.

We illustrate the above mentioned method of separation on the energy
dissipation term. The entropy is reversible and is invariant under time rever-
sal. Owing to the derivation with respect to time the left-hand side of
Eq.(5.5) changes its sign if time is reversed. In equilibrium this entropy
balance equation is invariant under time reversal, consequently the reversible
part RT of the energy dissipation has to change its sign, while the irrev-
ersible part Rir has to be invariant if time is reversed. Similar speculations
can be followed for the other guantities in Eq.(9.1). For chiral and achiral
smectics C the resulting transformation rules are listed  in Table 1. of

Part II.33



After separating reversible and irreversible phenomena one gets

from Eq.(8.3)

X % ¥
i Gof " dF.
Roe- W etolt -l D 0y, DVpE il o) — -
9r :
J
1 % 3
N o dof dof® dT
- (Mr +‘—|—') —-‘l—' + Zar . (DS * ) o (9-2)
J %, dt o oxng a1  dt :

* *
gof™ 0V.T Bof™ dV.v;

av. .v.
V.7 dt v dt
and
P T . o) e BT 6Dk, - 0ll T
i Sogtne qp i 34 B Sl TRk
: : i (9.3).
e i T i
£ Pl.lr-—-]——MJlr——J—+E;¢Zulr
J o dt dtio (0¥

10. SECOND LAW OF THERMODYNAMICS

Second law of thermodynamics introduces one more distinction be-
tween reversible and irreversible phenomena. It states that the energy dissi-
pation has to be zero in all reversible processes while in irreversible ones

energy dissipation is always positive.
RT = 0 and BiE g g AT gand Biet (10.1)

Since the material time derivatives of the independent variables
can be adjusted arbitrarily and independently from any other quantity,
Eqs.(9.2) and (10.1) yield

dof™ 4 dot™
a = a &“f)
v V.v.
\ 3
* x %
apf Spf e opf 'r
—— e DR e S — M : (10.2)
ar an J ESBj J

i.e. the generalized free energy has to be independent of temperature gradient
and velocity gradient. Thus in general the infinitesimal change of the



Z ¥0 -
1] '
o™ w ap g B ) (10.3)

generalized free energy can be written as

3ot Zapf"
do +
. 0

*— !r 1 lr 1
dof=- psdl - P, " dE; - M, dB + dx* (10.4)

ae
and there is a constraint between reversible guantities
£* 30t X

o of
oo U _of, Vv - (pf* -p —2) Vv, F . .
R Wy =iy Yoy o Gt -0 I ) Uyvy + %; e 0 (10.5)

Up till now the medium under consideration has not been specified
at all thus the equations derived above are valid for any polarized conti-
nuous media, i.e. for liquids, crystalsor liquid crystals as well. However
these general equations do not give a complete description of the behaviour
of the materials, one still has to set up a series of constitutive equations
giving the dependence of physical quantities listed in Eg.(9.1) on the
independent state variables. The construction of these constitutive equa-
tidns for chiral and achiral smectic € liquid crystals is described in the
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subsequent Part II. of our paper.

11. SUMMARY

The continuum theory of polarized media described in this paper is
a generalization of former hydrodynamic theories.ls’18 We. incorporated the
‘ electromagnetic field into the conservation laws which has led to the modi-

fications listed below.

a, There is an electromagnetic force in the equation of motion
of the medium /Eqs.(5.2),(A.8) and (A.11)/

b, The conservation of total angular momentum requires the

mechanical stress tensor to be asymmetric /Egs.(6.3),(A.7)

and (A.10)/. '

In the presence of an electromagnetic field the adequate

|0

thermodynamic potential, describing reversible phenomena in
the medium is the generalized free energy, which contains
electromagnetic contributions too. /Egs.(7.1),(10.3) and
(10.4).

d, After separating reversible and irreversible processes three
irreversible electromagnetic terms remain in the expression
of energy dissipation, which are related to the Joule-heat,
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dielectric and magnetic relaxations. /Eg.(9.3)/
Egs.(B.4),(9.3) and (10.3)-(10.5) stand for the starting point in construc-
tion of the constitutive equations for different media.

Appendix 1.  TRANSFORMATION RULES OF ELECTRQMAGNETIC FIELDS

The transformation rules of electromagnetic field between moving
frames can be determined from the fact that the Maxwell equations (4.1) are
Lorentz invariant. In the ron-relativistic approximation neglecting terms

proportional to %d<<l one gets the transformation rules31 in the SI system
of units

Pe = Pe d=J+ ey

B=8 E =E - vxB ‘

(] (] [} L4 (Al)

D =D H = H o+ vxD

P=F M=M- vxP

~ { a_dl '__d

&=L gt~ W =gt W

where the dashed quantities are the ones measured in the material frame, mov-
ing with the velocity v relatively to the laboratory frame. _

With this transformation rules the Maxwell equations (4.1) can be rewritten
in the material frame as

VD = »g
VB =0 i
- dB . . k. 2)
UxE = - —+ (B WDy -8 (Iv)
dt

' ' dg ' '

UxH =3 + — - (DV)v - D (Wv)
dt

which shows that in the non-relativistic approximation the Maxwell equations

become Galileian invariant /The extra terms containing velocity gradients
disappear in a Galilei transformation, where v = constant/.
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Appendix 2. BALANCE OF ELECTROMAGNETIC MOMENTUM

Deriving the balance equations we follow the method of de Groot

and Mazur30 but we use SI and define the electromagnetic momentum as
gfleld = e, (E_X_@l-31

Its time derivative

9 _field _ 0

— g = — g, (ExB) = 2 (DxB) =2 (PxB) (A.3)
ot ot ot ot
From the Maxwell equations (4.1) follows, that
3 oD 2B
— (DxB) = — xB + Dx — = (VxH)xB - JxB - Dx(VxE) =
ot ot ot ‘
(A.4)

Introducing p = %ﬁ and using the definition of the material time derivative

B (pxB) = & o (xB) = p-S(pxB) - T [vo (PxB)] (A.5)
ot ot dt

Thus we get the balance equation of the electromagnetic momentum in the form

0 field
— = U.T.. - F. A.6
at 93 ji) i ( )
* where
- 1 1 -

Tij = DJ.E.1 + BjHi + vj (Ex@)i - 6ij (Zu,BkBk + 2€°EkEk BkMk) (A.T7)

and
- d
Fi = DeEi + (\_-J_Xg)l + Pj ViEj + Mj ViBj + P dt(p—XE) (A.8)

The Maxwell stress tensor and the electromagnetic force can be
expressed with the dashed quantities too. Using the transformation rules

(A.1), neglecting terms of the order -%<<1 and using the identity
VJ(P xB ), + BJ(vxE %*'Ej(E-XX)i: 84 v(P xB ) (A.9)
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one gets

T =DE +B.H -6..(: BB +icE
Ly = DLEL + BH, .

ij ! i) 24, K 2 E

] 1 ' 1
KBk - BkMk ) (A.10)
and

1

_ 1 1 ' ' 1 1 1 v d
Fi= pgfy + (A xB ) + Pj ViEJ - Mj ViBj + (P xB )j Vivj +ogg ®xB )y (A.11)
Appendix 3. BALANCE OF ELECTROMAGNETIC ENERGY
The formal balance equation for the energy of the field is
5 Jfield —‘E'QfIEId . piield (A.12)
From the Maxwell equation (4.1) one can get easily the Poynting
theorem
aD aB
E— + H— + V(ExH) + JE = 0O (A.13)
ot ot
We define the energy flux of the field as
ateld - Ex - s (A.14)

which is the Poynting vector.

Using the transformation rules (A.1) Eq.(A.13) can be rewritten
into the form

at at = (A.15)

Neglecting terms of the orderA%<<1 it can be transformed further

1 ' 1 ' [ 'af_l |aMI ' '
2, £ 2 begs v b—v 8=+ v e
AL ek H (A.16)

Comparing Eq.(A.16) with Eq.(A.12) now we can define the field energy el 1%



and the energy supply term rfield as
field _ 1 o2 1 BT G 2 1 27 :
. s £r0 vl B M sty £Rk G0 Y (A.17)
and
field .aP' v OM o) ' ' N ' ' '
r = - £ -B— -vy—@®xB)-JE-r,vE+J (vxB) (A.18)
ot ot ot i

The balance equation of the internal energy of the medium (5.4)

contains the electromagnetic terms

!gfield < I,field

variables.
From Eq. (A.11) one gets easily -

Fv_ , which can now be expressed with the field

o ' ) ' : BT | gl | 1 ' d ] .l
Fivi = pg Ejvy + (IxB vy Yy {VinEj + ViMij + vivj(ﬁ xB )j } +viegp® xB ) -

) ] ' ] 1] ' ] Al ] 1 L}
.[EjPj ¥ MJBj + vj(g xB )j]ViVi - EjViVin - ijiViMj-vjviVi(g xB )j (A.19)

and finélly

L} ] ] ] 1 L] 1] 1 1]
Fivg = pg Eyvy - 33 (vxB ); + vi{vi [PiE, + My + vy(B xg_?]]}- (EJPy + BMOT,v; +

: b |
' aP. ' o. aM' 9 X ' dPt ' th
+E, =48, —l+v, —(PxE ), -E—L-8, —I (A.20)
J at Jat Joat . Jat.. 48

With the definitions (A.14) and (A.18) one gets
1

M- (EP. +BMOY, v,
5 BJMJ)} (EPy + BMI Vv ¢

field field = -
vafierd _ eld ey 0 { @), - v CEgP

: _ ' (A.21)

which yields a simple, Galileian invariant expression for the energy
dissipation of the medium. /Eq.(8.1)/.
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