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ABSTRACT '

The constitutive equations of chiral and achiral smectic C liquid crys-
tals are derived for reversible and irreversible phenomena in order to com-
plete the continuum theory. The connection between material symmetries and
the existence of various cross-effects is discussed. It is shown that there
is a new electromechanical coupling between dielectric relaxation and viscous
flow which is allowed only in chiral smectic C* phases.

AHHOTAUIUA

INIE TOro, YTOGH 3aBEPUHTbL KOHTHHYAJIBHYI TEOPHI, 3anHCHBAKTCA MaTepHalnb-
HHEe ypaBHeHMs, NEeACTBUTeJIbHHE IJIA OCPATHMHX M HeOoOpaTHMHX npoleccos B ciyudae
KMpalbHHX ¥ HEKHDaJIbHHX CMeKTHYeCkuX C XUIKHUX KPHCTaNNoB .JUCKYTHPYEeTCH BO3-
MOXHaf CBA3b MeXAy CHMMETPHMAMM BemecTBa M Pa3IMUHHMU B3aWMHHMH ABJIeHUsAMH , [To-
Ka3HBaeTCs CymeCTBOBaHME HOBOM 3JIeKTPOMEXaHHYECKOR B3aWMOCBASH Mexay OusJIeK=-
TPpUYECKOR pejlakcauvel M BSA3KMM TedYeHHeM, KOTOpad paspemleHa TOJNBKO B KHPaJIbBHHX
cMexTHYeckux C XMIOKHX KpPHCTasUlax.

KIVONAT

A kontinuum elmélet teljessé tétele érdekében felirjuk a csavart és nem
csavart szmektikus C folyadékkristéalyok reverzibilis és irreverzibilis jelen-
ségekre érvényes anyagegyenleteit. Taglaljuk az anyagil szimmetridk és a kii-
18nbdz8 kereszteffektusok léte k&zdtti kapcsolatot. Megmutatjuk, hogy a di-
elektromos relaxicid és a viszkézus aramlds kdzdtt fennall egy uj elektro-
mechanikai csatoléds, mely csak csavart szmektikus C folyadékkristalyokban
megengedett. )



1. INTRODUCTION

During the last few years chiral smectic c* (smc™) liquid crystals
have got into the centre of interest because of their unique macroscopic,
"bulk" properties. They have spontaneous po]arization,l which is linearly
coupled with the electric field resulting in delicate electrooptical ef-
fects. 2-11

There are different theoretical approaches for the description of

the behaviour of these SmC” materials. Many authorsl-o_12

have used a series
expansion of the Ginzburg-lLandau free energy to explain the SmA «~—=5SmC*
phase transition. This theory allows a deeper inspection into the nature

of the spontaneous polar'1zationm_12

and is useful to investigate critical
phenomena or dielectric relaxation13 near the phase transition but is less
applicable to describe texture distortions.6
A hydrodynamic theory14 has also been worked out for achiral15
16 %
SmC
effects connected to the chirality of the material are dropped a priori,

while the latter one is applicable only if the helical pitch of the Smc ™

smectic C (SmC) and chiral phases. However in the former one several

material is undistorted which is in general not fulfilled in experiments.
Moreover the helical pitch of the compensated SmC* mixtures can be even
infinity, further limiting the validity of such a "coarse grained" theory.
Both hydrodynamic theories were mainly devoted to describe fluctuations
around equilibrium and to interpret light scattering but are less suitable
to explain electrooptical phenomena.

In experiments one usually has a uniformly layered, oriented smC™
sample and only the field induced rotation of the director is investigated.2_9
To describe such distortions an expression analogous to the Frank’s free
energy of the cholesterics may be used. However this is not a rigorous deriva-
tion of the free energy of the SmC™ phase, so it has led to different formu-
lae by different authors.*™2»777

All the above mentioned theories are common in one point. They deal
with static deformations and at most with reversible dynamics, but hardly pay

attention to irreversible phenomena.



Investigating electrooptical properties of planar oriented smc*®
samples we have recently found that the reorientation of the director is

17 The frequency of this

accompanied by a vibrational motion of the material.
vibration was found to be the same as the frequency of the exciting field
while its amplitude was measured proportional to the field and vanishing

with the frequency, i.e. no static effect was found. The experimental results
have suggested that this effect must be due to an irreversible linear cou-
pling between viscous and electromagnetic phenomena which is not analogous to
the piezoelectric effect of crystals.

The aim of our paper is to establish theoretically this interpreta-
tion. In the former Part I.18 we have already derived the basic equations of
the electro- and thermodynamics of polarized media. On the strength of those
equations in this Part II. we derive the reversible and irreversible consti-
tutive equations for SmC and smC* liquid crystals and demonstrate that the

suggested coupling does exist in a chiral smectic C* phase.

2. INTERNAL DEGREES OF FREEDOM OF SMECTICS C

In smectic C liquid crystals the director d has a nonzero angle 9
with the layer normal n. /Fig.l./ It is pretended that, as in a two-dimensi-
onal liquid there is no restoring force on the molecules, if they are dis-
placed within a smectic layer.

smectic layers

Figure 1. Geometry of a smectic C



In such a system two types of deformation are possible; the layer
structure may be distorted and the director may be rotated. Forming a helical
structure this latter deformation is spontaneously present if the smectic C
liquid crystal is composed of chiral molecules. There are cases where an

19, but in the majority of

undulation of the smectic layers takes place
experiment, just as in our onel7, no distortion of the layers has been
detected. Therefore in this paper we will not consider the distortion of the
smectic layers.

This means that the layer normal is fixed in space and time, it
will be used as a reference direction.

nyn, =13 V.n. = 0 -E»n. = 0 3 —g‘n. =0 (2.1)

J1 ot ! dt !

The tilt angle isnot affected by external influences except a short
temperature range near the SmA <— sme™ phase transition, which is out of our
interest, so 9 can be regarded as a temperature dependent constant. The
rotation of the director is then fully characterized by an azimuthal angle ¢
/Fig.1./. However we would like to maintain frame independence in our descrip-
tion so instead of ¢ the poéition of the director will be described by the
unit vector c, the so-called C—directorzo, which indicates the direction of

the prbjection of the director onto the smectic layers i.e.
d = cosg n + sing ¢ (2.2)°

The C-director can change in space and time but meanwhile it has to
remain always perpendicular to n, i.e. the constraints

. & i : a % d 3
c;cy = 1 Civjci =0 ; Ciggoi =0 ; cig;ci 0 (2.3)
njc; = 0 niVjci = (i n15{c1= 0 ; nigzci = 0 (2.4)
must hold.

The C-director and its gradient Voc describe fully the deformed
state of a uniformly layered smectic C material thus they will be regarded
as the internal degrees of freedom of the medium under consideration.
Their time evolutlon have to be given via constitutive equations (see Eqg. (8 4)
of Part I._ )

—c, = - 7. (2.5)
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—C‘jTt-VJCI = - V‘)Zl = (VJvk)(kal) (26)

c.2. =0 and n.Z. =0 (2.7)

have to be satisfied.

The blocking of the smectic layers imposes constraints on the
velocities too. A flow normal to the layers would destroy the layer structure
thus it is forbidden.

nov, =0 5 nV.v. =0 ;3 n—v, =0 5 n—y =0 (2.8)

Since the layers are fixed the density can be regarded as constant. Using

Eq.(5.1) of Part I.18 one gets the incompressibility condition

— =0 ; Vo, =0 (2.9)

The constraints (2.3),(2.4) and (2.7)-(2.9) have to be taken into
account when forming the constitutive equations.

3. INVARIANCE OF THE CONSTITUTIVE EQUATIONS
The constitutive equations have to satisfy some general principles?l
In order to guarantee frame independence the constitutive equa-

19 using tensorial notations.

tions will be constructed in the material frame
Galileian invariance then requires the velocity v not to appear explicitely
in the equations. The constitutive equations have to be invariant under
change of frames leaving the fixed layer normal unchanged i.e. they must be
invariant under rotations around n. .

The symmetry properties of the medium under consideration have an
influence on the constitutive equations too. In the chiral smC* phase,
belonging to the symmetry group CZ’ the only symmetry oberation is a rota-
tion by 180° around the axis nxc. It corresponds to the transformation
n,c — -n,-c, i.e. the constitutive equations have to be invariant under
the simultaneous inversion of the vectors n and ¢. In the achiral SmC phase,
belonging to the symmetry group‘CZh, however besides this twofold axis there
is a symmetry plane normal to it and a center of symmetry too, imposing
further restrictions on the constitutive equations.



In Part I.18 we have separated the physical quantities, describing
reversible and irreversible processes /see Eq.(9.1) of Part I.lB/. When
forming the constitutive equations one has to take into account, how those
variables transform if time is reversed /Table 1./.

Reversible Irreversible
guantity tee=% 0 ,6=» sns¢ re-F guantity tee ot n Ce-n,-C P~ -T
T + + +
1
Ei + + -
'
Bi - + -
ViT 4 + -
Vjv1 - + +
ny s = -
4 * - =
Vjci + - +
(gx_c_)i + 3 +
d '
dtti . * .
'
%?Bi . . 2
pfx * W (+)
pS + + (2% )
h.1 + - «( -)
°ji + = ( +)
' 1
et + N R - + G
' 12
M, " - + [Py 1o Mt + + e
RE - + T Rir + + A
i - + el e N . ik
cij . + ) Oji‘g - + A )
23 - - t w3 2t . X ¢ 56D
a; + # (=
3 + . (=)

Table l..Transformgtion rules of state variables and other reversible and
1rrever31ble.quant1ties. /+:invarant; -:change of sign; signs in parenthesis
apply to achiral SmC only, for chiral SmC”inversion is not a symmetry operation.



4. THE GENERALIZED FREE ENERGY

Having defined the internal degrees of freedom of incompressible
smectics C as the C-director and its gradients, one can write for the gene-

ralized free energy /see Eqs.(10.3)-(10.4) of Part I. 8y
of* = p£*(T,E.B,c,Voc) (4.1)
X 't
of ——psdT - P dE - Mi dB + h dc, 4-¢J vaCi (4.2)
where
dpf™ v aot ™ E apt”
- ps = ; —Pi = T ; -—Mi = ey 2 (A.B)
oT BEi 28,
i
2t dpt™
hi = g > °ji =
dcy BVjci

We would like to set up a continuum theory, which is linear in
spatial gradients and external fields so we look for an expression for the
generalized free energy which contains at most quadratic terms. The most
general form of the géneralized free energy is

% v E ! B ! EE
pL”= ?iJVj i 1E1 181 . 13k1(V i) (¥ Ck) % IJElEJ
(4.4)
BB ! VB !
+ B B + le(V Ci) Ek + wijk(vjci) Bk

JEB
YiyB8i8y £ 8, 4 il

1J 1.3

where the ¥ tensors are still functions of ‘the temperature T, and the vectors
n and ¢ while pnf is a temperature dependent constant.

It is shown in Appendix 1. how the ¥ coupling tensors have to be
constructed taking into account material symmetries and constraints. Finally
one gets that the generalized free energy of uniformly layered chiral smec-
tics c*® conta1n$ elastic, magnetic, electric and flexoelectric contributions.
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v Ky(eourig)nourie) - Axe' - Bx¥ e dxten'h? -
FAEPMELC S RENL RN g ] 7X2 ‘82 7%3 ‘02
1 ' ' '
- My - Life'? - b eeh? - aE neH? - xf (e ED) -

' 1 1 1
- Pg(nxe)E - e, (cE ddive - e,(nE )dive - e3(gxcurlg)g -

1
- e, (nxcurlg)E + % 04 (4.5)

where the elastic moduli K,, the susceptibilities xE, ! and the flexoelectric
coefficients e; are temperature dependent phenomenological constants.
From Eq.(4.3) the reversible magnetization and polarization are

respectively
MT =M Glle + (e« «fn s xMerms ) (4.6)
P T fE v 0B e ey v abn xEe)mED) ¢ P tnxe) + (4.7)

+

(elg + ezg)divg + (ejg + e,n)xcurle

Eq.(4.5) is the equivalent of the Frank’s free energy of the
uniaxial ch’olestericsls’20 for the biaxial chiral smc*® phase. Because of
biaxiality there are two first—qrder elastic terms with constants a, and Qs
/instead of one, and one more second-order elastic term is present with modu-
lus Ka. The number of susceptibilities and flexoelectric constants is doubled
and the generalized free energy contains the linear coupling of spontaneous
polarization P (nxc) with the electric field.

From the expression 'generalized free energy of chiral smC* one
can get the corresponding formula for achiral SmC by imposing the requirement
of invariance under inversion. It can be seen immediately that this leads to
the disappearance of the first order elastic terms and the spontaneous

polarization, i.e. with the restriction of
9, =0 ; g3 =0 and P, =0 ' (4.8)

Eq.(4.5) can be used for SmC as well.



5. THE REVERSIBLE STRESS TENSOR

The description of the reversible dynamics of smectics C is comp-
leted only if the constitutive equations for the reversible part of the time
evolution of internal degrees of freedom and the stress tensor are also
constructed. The vanishing reversible energy dissipation (see Eq.(10.5) of

Part I.lB) yields
ro_ Xr T r ‘oL -
RY = -03057 - ajyUyvy + hyZ5 + ey | V2; + (Vv ) (e} = 0 (5.1)

where Egs.(2.5),(2.6) and (4.3) were also taken into account. Allowing for
the constraint (2.8) and (2.9), Eq.(5.1) can be rewritten into the form

) XT _ r -
R = Vj(Jj ¢..2:) + (hi Vj ®

r L r r _
31 30071 - Oyl ey Tie, - 8y +p 613} =0

(5+2)

where pr and 35 are arbitrary scalar and vector Lagrange multiplicators
respectively.

Paying respect to the constraint (2.7) and the transformation rules
listed in Table 1. one gets the most general form of the constitutive equa-
tion for Zr

1 (0% 3 Cogmye + e A 5 + Coagme + 5400 wyy |+

i
! (5.3)
+ (nxe)y BJ( Lsny + Cgcj)
where ¢ are phenomenological constants and
A= A = 2 (Tv, + Tive) = P SR (5.4)
ij ji o7 M s Bl AR “ij o gl O AL b | i) ’

are the symmetric and antisymmetric parts of the velocity gradient tensor
respectively.

wij\and Bj can be adjusted arbitfarily and independently from
one another, Eq.(5.2) requires Lg = 0 B = 0 and‘

Since Aij’

T _ r
Jj = °jizi (5.5)

rs 1 T r _1l.r r r 1
oj3 = 2¢ *oogi) = 26305 ey - P 655+ 2oy Y 0 ey U0 ¢+

(5.6)

+ 5y -9y o9 (nxe)y {cl[ni(gxg)j + nj(gxg)i]+ ;z[ci(gxg)j + cj(gxg)i]}



S R r 1 '
o) 7(8j”i - Binj) + -7( ijvick - oikvjck) € : :
: 57

+ %(hk - Vl¢1k)(gxg)k{;3[ni(gxg)j - nj(gxg)i] + ;4[ci(gxg)j - cj(gxg)i]}

The above equations define the reversible part of the mechanical
stress tensor. However one has to check whether this definition is in .accord-
ance with the general principle of conservation of angular momentum.

/see Eqs.(6.1)-(6.3) of Part 11% _
It is shown in Appendix 2. that the total angular momentum is

conserved only if

¢ =1 and gr = Bi‘ﬂ + BEE +_3§(gxg) (5.8)
with

3 (nxe)y {E.P.5 + BiM,T - V.c, + V,c, + c.V (5.9)

B2 S DNRIN ARy s 051 7iC1 + 0137185 * S375015) :

r 5 - ] lr 1 lr E :

B3 = - €3G 1By + BiMy - oy 0icy w0y, 0100+ By + gy (hy- Tyeyyiny)

(5.10)

and si being arbitrary scalar.
Consequently instead of Eq.(5.3)

g ; : : ;

Ziim (gxg)i(gxg)j |(;1nk + Czck)Akj + (gyny + Ck)“kj‘ . (5.11)

should be used as the constitutive equation for Lr.

It is emphasized that Fqs.(5.1)-(5.11) are applicable to achiral
SmC and chiral SmC* as well, the different behaviour of these two systems
originates in the different form of the generalized free energy according
to Egs.(4.5)-(4.8). : :

6. IRREVERSIBLE PHENOMENA

Recalling Eq.(9.3) of Part 1.18

tion of smectics C reads

the irreversible energy dissipa-

s : £y : i Mk
MU e o da b dE, - iy, - Pl
e i i v e L T e A

1

dB (6.1)
Sogedr ir ir
Mj = +hiZy + °31iji | >0



A

where Egs.(2.5)-(2.6) were employed too. Taking into account the constraints
(2.8)-(2.9) by the Lagrange multiplicators p1r and glr one gets

: . dB.
ir *ir 1r 1 ey
= = V(. -qQ. - V. T J F :
. i holan qJT PURIS sl 7
(6.2)
D 3 J irs 14 ir ir .
+ 7y (hy VJ. °ji) [ 5 ( n + 85 nj) +p éij] Aij
ire "k, ir 9y
"[0 lJ -7(33 I’li "Bl ﬂj)]mij >0
where
Irs L Sairg oL i§3 ir iga o dpB LS 4P ir
OIJ - UJl - 2 (UlJ + Jl) and 01_'] e o_]l o 2(01‘] Jl) (6-3)

are the symmetric and antisymmetric parts of the irreversible stress tensor
respectively.
The ‘first tPrm vanishes if
xir
e i
J

then the remaining terms are products of thermodynamic fluxes and forces as

7ir : (6.4)

L Ryl

J
it is usual in irreversible thermodynamics. Since we want to develop a theory
linear in spatial gradients and electromagnetic field, we can adopt the
Onsager linear relation522 between fluxes and forces. However it follows
immediately from Eg./A.12) that the conservation of the total angular momen-

ira to be a second-order quantity so it should be neglected.

tum requires ¢
Then the arbitrary vector ﬁir may be chosen as zero thus the last term of
Eq.(6.2) vanishes, i.e. only six basic transport processes have. remained,
namely heat conduction, electric conduction, magnetic relaxation, relaxation
of the C-director, dielectric relaxation and viscous flow.

Introducing the thermodynamic forces as

dB.
1 1 2 x 3 i
Xyow =2 T ; X: &k ; X5 == —=
i Y i i i dt
(6.5)
dE;
& 2 R e GNP e 2
X; = (hy vj¢ji) Y. = TaL T Ai“_.|

and the thermodynamic fluxes as



I _ 2 3 'ir 4 _ Sir
Ji = q; ; 1j Ji : Jl M.1 : Jj = Zj
(6.6)
<5 _ stin 6 . +6 . iFs _ _iF
J.1 = Pi ; Jij : in = 053 tp 6ij
the irreversible energy dissipation has the form
~ L)
RET = 5> ¢ >0 (6.7)
T =xtl] |
The Onsager linear relations then read
6
g“:> 8 X8 a=1,...,6 (6.8)

where the coupling tensors L%f depend on the temperature and the vectors n
and c. Since T,n,c are invariant under time reversal these tensors are invar-
iant too, thus they can connect only fluxes and forces transforming in a
similar way under time reversal /see Tahble 1./.

Consequently
Lo = IB* = 0 with a= 1,2,3,4 and g= 5,6 (6.9)
i.e. irreversible phenomena split into two groups. Heat conduction, electric
conduction, magnetic relaxation and relaxation of the C-director are in one
group, dielectric relaxations and viscous flow are in the other one. There
are cross couplings within each group but coupling between groups is for-

bidden, i.e.

4 ;
a af B %
%= Lgf X8 = 1,2,3,4, (6.10)
B=1
and
5 _ 55 5 56 6
Ji = LiJ Xj + Lijk Xjk
(6.11)
6 _ 65 5 66 6
3%, = Xo o+ LE5a X

1] 19k Tk

The Onsager reciprocal re]ation522 impose some further restrictions

on the coupling tensors, namely



1) 9

af  _ aB P
Lij = Lji a,8 = 17,2,3 4
! (6.12)
5§ &% i 56 .48
kiy = Ly Lijk1 = Lkiij Ligk = Liki

7. GENERAL FORM OF THE COUPLING TENSORS

According to the Curie principle22
to be invariant under symmetry transformation of the medium. Allowing for
the transformation rules of Table 1. and the definitions of thermodynamic
forces (6.5) and fluxes (6.6) the coupling tensors can be constructed as
listed below.

the coupling tensors L  have

LIZ,L21,L13,L}1,L23,L32 are second rank tensors, which are even in n and c.
aff - .. 6B af B a B af

Lij vi 6ij + V5 BB W ninj + vy Cinj + v§fnc, (1)

gll,gzz LB,L“,L55 are second rank tensors, which are even in n as well as

in ¢ and are symmetric due to the reciprocal relations.

L?% = “T“bi' + nz““cicj +ﬂn3“°‘ninj + xz“(cinj + nicj) £1:2)
gla’£01’£24’£42’£341243 are second rank tensors, which are odd in n and c.

LaB = (51"'801 + 6“8ni)(p_xg). + (5“80

” +54a5nj)(ﬂx2)i (7.:3)

J

67 .96

1% ,g are third rank tensors, which are even in n mswellas in ¢ and are

symmetric in indeces i and 3

§5 1. 6%
bidk = Lyak ® (OXEXfwdiy + va 0105 vnilty & yy(0ehgh ngey)] +
-+ (y50, +.Y6nk)[ci(gx_q)j - éj(gxg)i]+ : : (7.4)

+ (e, + Yank)[ni(gxg)j‘ + "j(.leE)i]

65 -
/Tensors g and LSG are related by the Onsager reciprocal relations
L6:12) /.



ol L9

L% is a fourth rank tensor, which is even in n as well as in c and is sym-

metric in indeces i and j, k and 1 and in index pairs ij and kl

66

Ligka = M8530k1 * wp(6535C * €040 + u3(o53memy +6p9n;ny) +

+ou[og5(eny + o)+ 5y,(ciny + nygy)] 4 M5 C1C46Cy *

+ u6 ninjnknl * u7(CiCjnkn1 + ninjckcl) + ]JB (Cinj & nicj)(cknl + nkcl) +
+ w[cy0y0m + mey) +:68 (0)ny ¢ nyoy) ]+

: (7.5)
* o[Miny (G * miey) * mapleyn, + ni6g) ]+

*Hy1[81KC5% * 831550 * E3C1C * 64161C ]*
il %Mt Syt ¢ 84,00, ]

+Li3[éik(cjn1 +Anjcl) + 6il(cjnk + njck) + 6jk(cin1 + nicl) - Gjl(cink +'nickﬂ

Egs.(7.1)-(7.5) give the most general form of the Onsager coupling tensors

of SmC*. However in our simplified geometry, where the smectic layers are

fixed, the phenomenological constants Y, of LSG,LGS

M, Wy of géé in Eq.(7.5) do not play any role and thus can be regarded as .

in Eq.(7.4) and HisHos

zero, either due to the incompressibility condition (2.9) or because they
can be included into the arbitrary Lagrange multiplicator pir.

From Eqs.(7.1)-(7.5) one can get the form of the coupling tensors
for achiral SmC by imposing again the requiremént of invariance under inver-
sion. It can be seen immediately, that Eqs.(7.1),(7.2) and (7.5) remain
unaltered since they are invariant under'inversion, but Eqs.(7.3) and (7.4)

are not invariant, consequently

R ¢ i ) e B %
Lygombyf zeB b4% Bbnger D Li.= L33 2.0
£3. 6)
6. 5
Ligk = Lyki = O

must hold for SmC.
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8. SUMMARY

Finally we want to summarize the equations which have to be solved
simultaneously when describing the behaviour of a uniformly layered incom-
pressible chiral smectic c™ liquid crystal.

The electromagnetic field is determined by the Maxwell equations
/see Eqs.(4.1) and (A.2) of Part.I.le/.

The temperature distribution in the sample is governed by the
entropy balance equation /see Eq.(5.5) of Part.I.lB/.

The equation of motion is /see Eq.(5.2) of Part.I.lB/.

dv. dE
1 i B § 66 65 k
P at = F + Vi(p +p ) - n, nJ j 1 - Vj[OIJ @ L1Jk1 kl Lijk;;;'] (8.1)
' r
where o3 * +D 613NNy 81

The equation of motion of the C-director /see Eq.(2.5)/

]
de: dB.
i__ .0, 41 1 v.T - L42E . LAB 3. 4h(h

s = & . 8.2
at Ly T - Lagfy 2 b bty T Vg (8.2)

These equations are supplemented by the constitutive equations giving the
generalized free energy /see Eq.(4.5)/, the other reversible guantities

/see Eqs.(5.6)-(5.11)/ and by the constitutive equations for the heat and

electric currents, magnetization and polarization listed below.
l

9; = - Lij 7 VjT + LijEJ LlJ e + L; i3 ( 3 °k3) .
3= -2 gy 2 L23i?1+L24(h—V¢.) (8.4)
i T i T ) ij 7 ij dt i3 V3 k7kJ
LI 52 33_1 34 fPRG L T
Mpo= - Liy T V4T Ly By - L dt+LJ(h Teors) * X338 (8.5)
and
'o_.y 96 55__1 pflexo (8.6)
Pi = Lijk Ajk LlJ - + x E + P (nxc) 1

Now we try to give the physical meaning of the individual terms
in the above equations.

In the equation of motion (8.1) F is the force exerted on the
medium by the electromagnetic field /see. Eqs (A 8) and (A.11) of Part I. 14 /.
The sum of the Lagrange multiplicators p and p corresponds to the hydro-
static pressure, while the appropriate choice of B{ ensures that there is no
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acceleration normal to the smectic léyers. ogg is the reversible stress,
containing derivatives of the generalized free energy /see Egs.(5.6),(5.7)/.
The next term is the viscous stress, where ;66 is given by Eg.(7.5) containing
13-4=9 independent viscosity coefficients.

The last term of Eg.(B8.1), ngkdE;/dt, describes a cross-effect
which has not been reported on yet. It represents a hidden cross-coupling
between dielectric relaxation and viscous flow. The electromechanical coupling
tensor of SmC*, £65 given by Eq.(7.4) contains B8-1=7 phenomenological coeffi-
cients. The existence of this coupling is the result of the chirality and the
biaxial nature of the SmC* phase, consequently it does not exist either in
the achiral SmC or in the uniaxial nematic, cholesteric and smectic A phases.
This electromechanical coupling is not analogous to the piezoelectric effect
of crystals, since it results in a force which is proportional to the time
derivative of the electric field. This cross-effect is thought to explain our

17 mentioned in the introduction.

experimental observation

In the equation of motion of the C-director (8.2) Zi is given by

Eq.(5.11), this term describes the flow induced orientation. The last term,
with gaa given by (7.2), is the restoring "torque" due to distortions of the
director field. These two terms arc present in all liquid crystals, only the
number of the phenomenological coefficients depend on the actual symmetry of
the phase. The remaining three terms describe hidden cross-effects which are
41 [42 43/ L41

describes a "torque" exerted on the C-director by a temperature gradlent This

present only in chiral liquid crystals /see Eq.(7.3) for L

is the thermomechanical coupling, its equivalent in cholesterics has been

23-24 Z2~2b

discussed recently theoretically as well as experimentally

182 gng 43

'
a time dependent magnetic field respectively. Since dB /dt results in an

describe "torques" exerted en the C-director by an electric and

‘induced electric field these two cross-effects are of common origin. They
should have equivalents in cholesterics too but there have not been experi-
mental indications yet.

The heat current of the medium (see Eq.8.3) is composed of four

U given by Eq.(7.2)

terms. First of them corresponds to the heat conduction, L
= 12

is in connection with the biaxial heat conductivity tensor. L describes an

electric field induced heat current, which is the Peltier-effect, while L'’

12 and 513_

see Eq.(7.1)/. These three phenomena have equivalents even in isotropic

is its equivalent for the time dependent magnetic field /for L

materials. gla describes again a cross-effect which is the result of the
chirality, /see Eq.(7.3)/ namely it is the inverse of the thermomechanical
coupling mentioned above.

Eg.(8.4) determines the electric current. Besides the usual elec-
tric conductivity LZZ /see Eq.(7.2)/there is a correction for induced electric

fields given by L?>. L2} describes the Seebeck-effect which is also present
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even in isotropic materials. The last term, gza, is a result of chirality
describing the current induced by distortions of the C-director /see Eq.(7.3)/.
It should have an equivalent in cholesterics too.
The magnetization of the system is described by Eq.(8.5) containing
a contribution which is proportional to dg'/dt. In case of harmonic fields
/eiwt/ derivation with respect to time is equivalent with a multiplication

33 describes magnetic loss corresponding to the imagi-

by iw , consequently L
nary part of the complex magnetic susceptibility, while xM /see Eq.(4.6)/ is
its real part. Tensors gBl and L}z given by Eqg.(7.1) describe the magnetiza-
tion due to temperature gradient and electric field respectively while £34
/see Eq.(7.3)/ corresponds to a magnetization produced by distortion of the
C-director. The presence of this latter term is the result of chirality but
the former two ones may exist even in isotropic materials.

The total polarisation of the smC* material /see Eq.(B8.6)/ is
composed of five terms. There is a spontaneous polarisationl PS perpendicular
to both the layer normal and the C-director which is the result of chirality
and biaxiality. There are flexoelectric terms which are connected to director
gradients. The term proportional to dg'/dt describes dielectric loss, i.e.£55
is in connection with the imaginary part of the complex dielectric suscepti-
bility, while KE is its real part. Finally £56 given by Eq.(7.4) describes
a direct coupling between shear flow and polarization. This effect is the
inverse of the electromechanical effect mentioned above and observed in our

17

laboratory It is a result of chirality and biaxiality thus it is present

only in. the chiral smectic gt phase. In a delicate experiment of Pieranski
27
et al.

pretation the flow distorts the helical structure by orienting the C-director,

a shear flow induced polarization has been detected. In their inter-

consequently the spontaneous polarization of the smectic layers is summed up
to a non-zero average polarization perpendicular to shear. Our continuum
theory shows that besides this mechanism the above mentioned direct coupling
between flow and polarization also has to be taken into account and the

resultant of them has been actually observed in the experiment27.

9. CONCLUSIONS

In this paper we have presented a continuum theory of uniformly
layered chiral smC* and achiral SmC liquid crystals, which are subjected to
an slectromagnetic field.

In order to describe reversible phenomena we have derived an
expression for the generalized free energy of the system. Considering its
elastic part only, in case of achiral smectics C our formula agrees with that

15

of the hydrodynamic theory However in case of chiral smectics c* our
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formula contains new terms which have not been taken into account when start-
ing from analogy with cholesterics.* 22777

We have paid a special attention to irreversible phenomena taking
place in the presence of an electromagnetic field and discussed the possible
cross-effects.

We have proved that in the biaxial chiral smectic c* liquid crys-
tals there exists a cross-coupling between dielectric relaxation and viscous
flow. It manifests itself in a shear induced polarization and in a new elec-
tromechanical effect which has been found experimentally t0017.

We have shown that just like in cholesterics there exists a thermo-
mechanical coupling in chiral smectics C*, i.e. a temperature gradient can
distort the C-director.

Some other cross-effects, connected with electromagnetic field and
having equivalents either in cholesteric or in isotropic materials, have been
found too, but lacking experimental data their physical significance has not

yet been understood.

Appendix 1. CONSTRUCTION OF THE CONSTITUTIVE EQUATION FOR pf*

Up to second-order terms the generalized free energy of* of smC* is
given by Eqg.(4.4) where the ¥ tensors depend only on the temperature and the
vectors n and c.

pfx has to be invariant under time reversal. Since the magnetic

F |
induction gi is not invariant, the tensors W?, ngk and WE? have to alter

their sign too if time is reversed. As they are functions of invariant
' quantities only /see Table 1./ the generalized free energy must not contain
terms linear in Bi’ i.e.

= VB _ EB _ .
y. =0 Wijk =0 wij = (A.1)
Now one has to find the most general forms of the remaining tensors
which still have to satisfy the requirement that pfx is invariant with respect
to the symmetry operations of the medium. Due to Eqgs.(2.1) and (2.3)-(2.4)
n,c and nxc are orthogonal unit vectors. Any vector can be written as a linear

combination of them. Since of* must not change if n and c are inverted simul-

taneously /see Table 1./ one gets

y: = - P_(nxc). (A.2)
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Owing to the orthogonality of vectors n,c and nxc any second rank tensor can
be expressed as a linear combination of the nine possible diadics, composed
of the above three vectors. For example for the unit tensor 6ij one gets the

equality
byy = P4y * €0, ¢ (gxg)i(gxg)j (A.3)
Tensors LEE and iBB are symmetric and they are even in n and ¢, thus using

Eq.(A.3) their most general form is.

£ . ... 238 E £ E
*ij = = f{xlaij * x2cicj + XBninj % xa(cinj & njci)} (A.4)
: E B L i BB
and replacing xj by x; @ similar equation holds for wij'
When constructing the tensors connected with director gradients (LV’iVV,iYE)
the constraints (2.3)-(2.4) have to be taken into account.
1V is a second rank tensor, odd in n and c:
wv = (nxc).(-K,q,n; + K.g-C.) CA:S5)
T e O 393%3 !
1VE is a third rank tensor odd in n and c:
WE = - (nxc), |(e,c, + e,n )(n?c) - (eqc, + e,n.)(nxe) } (A.6)
ik it | 17k 2 ki 33 Bogdiaeistk :
vy

8 ¢ is a fourth rank tensor, which is even in n and c,and is symmetric in

index pairs ij and kl:

“’ggkl : *ﬁ‘fij = 7 (oxe); (nxe)y [Ky &5 + Kpnyny + Kgegey = KyCeyny+ nye,)]
Eq.(4.4) together with Eqs.(A.1)-(A.7) define completely the generalized
free energy of smc* subjected to an electromagnetic field. However it is
sometimes more practical and easier to survey, if one has an expression
given in vectorial form.

Since the constraints (2.1) and (2.2)-(2.3) must hold one can derive the
following identities.

([\_x_g)injvjci s deurl e ; (c curl ¢)(nxc) = nxcurl ¢
(gxg)icjvjci s Nourl e -(n curl c)(nxc) = cxcurlc (A.8)
tnxg) curl ¢ = 0
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Employing these identities the constitutive equations (4.4), (A.1)-(A.2)
and (A.4)-(A.7) yield the expression (4.5) for the generalized free energy.

Appendix 2. CONSERVATION OF ANGULAR MOMENTUM

It was proved in Part I.18

that the conservation of the total
angular momentum of the medium and the electromagnetic field requires

/see Eq.(6.3) of Part I.lB/

¥ Vl(eijk ) (X.9)

“i3k %3 T Cijk'ij i1

where zijl = - %il is an arbitrary tensor and according to Eq.(A.10) of
Part I.18

1 ' 1 ! 1 1 ' 1 1 A ' 1
Tij = DjEi + BjHi - 5ij( 7 BB * 7 SEE - BM) (A.10)

is the Maxwell stress tensor.

Since the conservation of angular momentum has to be fulfilled
for reversible and irreversible phenomena separately, Eq.(A.9) splits into
two equations

B ra by ety T 5 :

£he- epu {oij - £ P R ‘712131} “ P (A.11)
it ira LhoAR S Ty -

Sk = Sk {"ij - Byfy - nRslas - ¥y ’-ijl} 0 (A.12)

The antisymmetric part of the reversible mechanical stress tensor has been
defined by Eq.(5.7). Since n,c and nxc are orthogonal unit vectors, the
Lagrange multiplicator jr can be written as

[ d Big S t%g + Bgﬂxg (A.13)

Using Eqs.(5.7) and (A.13) then Eq.(A.11) reads
£ \ B r
S = (hy- Vn®1m) (0xe), (gynp = t5c, ) + Bo(nxc), - B3c, +

s < Bl Al pruls : (A.14)
+€ijk{¢jlvicl Eghy o By =i, Z131} Y
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This equation holds only if

Eﬁ n =0 ; q:ck=0 and E'E (DX_C_)k =0 (A.15)

hold tbo,’i.e.

A e (e w o)+ dusWicn = BB e Bl s Wy nt }:o (A.16)
Ex M = ek §5C1 My - V1oy) * epn¥iC - & My~ NEin :

' lr ' lr

r - = - % B i r _al -
efo, = eijkck{ G0y (g = Ty 0y;) + 03,50y ExPyT-ByMy Vsl )83 =0 (A7)

T(nxc), = thxed fosi0.cy - EP.T - BME < BiEE }+ 6 = 0 (A.18)
Ei \OXEJp = e X2k %9171 i3 i3 1“£43 2 :

The latter two equations define the parameters Bg and Bg i.e. one
has to investigate Eq.(A.16) only.

As we mentioned in the third paragraph, the generalized free
energy of smC® is invariant under rotations around the layer normal. The

matrix of such an infinitesimal rotation is

QO35 = 633 * aeijk "k Uik = 043 (A.19)

where o <<1 1is an arbitrary infinitesimal scalar.
In such an infinitesimal rotation of® must not change, thus using

Eq.(4.2) one gets’

v - lr ' _ 'r ] ol
d pf” = P.1 dEi M.1 dBi + hidci + °jidvjci =0 (A.20)

where according to Eq.(A.19)

OF; = - aeyp Ny E,
4By = - & ¢y Ny By (A.21)
dci = - a € 3k nj C,
d750; = aCeym %y + eqpn Mk U5 0
Since a is arbitrary, Egs.(A.20)-(A.21) yield the constraint
€5 3Kk {- hyoy + o505 + o3 oy * Pgr E, + M;r B }= 0 (A.22)



Adding Egs.(A.16) and (A.22) one gets

r

EkMk

- — o ‘r ™ - ~ -
Iy {( ey - Dhiey + o) Wie) - Ty[a] 5y - e yley g5 - g ‘”13)]} 0 (A.23)

It is satisfied if

b4

r = =
and Zijl = Cj¢li Ci@lj (A.24)

which finally yields Egs.(5.8) -(5.10)
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