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A linearized continuum theory combining electro-, hydro- and thermodynamics of
smectic C liquid crystals is presented. Electromagnetic field is incorporated into the
balance equations and generalized free energy is introduced. Reversible and irrever-
sible processes are handled separately. Constitutive equations are derived for both
chiral and achiral smectic C phases. The connection between chirality and the existence
of cross-effects is discussed. A physical interpretation of the final equations is also
given. Itis shown that in the chiral smectic C* phase a new effect, viz. electromechanical
coupling, may exist.
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1. INTRODUCTION

Chiral smectic C* (S{) liquid crystals have found themselves in the
centre of interest during the last few years, this interest refers both
to the theoretical and the experimental point of view. As these liquid
crystals are chiral and biaxial, they are usually “ferroelectric.”' Their
spontaneous polarization is linearly coupled to the electric field re-
sulting in delicate electrooptic effects such as helix unwinding®>~> or
bistable switching.®~?

The behaviour of an S§ near to the S& <> S, phase transition is
generally discussed by a continuum theory based on a Landau-Ginz-
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burg type series expansion of the free energy.*>!°-13 However, in most
cases investigations are carried out far from the phase transition. If
one wishes to interpret experimental data on textures and electro-
optical responses the most simple approach is to borrow the expres-
sion of the Frank’s free energy of cholesterics.*#14 It should, how-
ever, be pointed out that there is no full analogy between the two
phases, though both have a director and a helical structure: S& is
locally biaxial whereas cholesterics are uniaxial. This difference in
symmetries has, to some extent, been taken into account by intro-
ducing extra terms into the free energy®® but there is no guarantee
that all the possible effects of biaxiality have been covered.

A much more rigorous formulation of the dynamics of S& has been
performed within the framework of hydrodynamic theories.!>~17 Un-
fortunately this is applicable only to the situation when the helical
structure of S¢ is not distorted or, at most, is slightly perturbed, i.e.
when the characteristic length for spatial deformations is much greater
than the helical pitch.!”

This may be a reasonable assumption for some cases (e.g. light
scattering induced by thermal fluctuations in thick samples) but it
does not hold for the majority of electrooptical experiments since the
electric field may completely unwind the helix** or in case of surface
stabilized samples the thickness is smaller than the pitch. Furthermore
a “‘coarse grained” description like the one in Reference 17 can by
no means be applied to compensated S¢& mixtures which are still chiral
and ferroelectric but have no helical structure.!® These arguments
have motivated a recent reformulation of the free energy expression
of: Sg.%

Recently a new electromechanical effect, a shear flow, induced by
an alternating electric field has been observed in our laboratory.?
The frequency characteristics of this linear effect has shown that it is
not analogous to the piezoelectricity of solids. An attempt has been
made to interpret the phenomenon within the framework of the hy-
drodynamic theory as arising from a reversible cross-coupling be-
tween flow and electric field,** however it still needs further verifi-
cation whether experimental data are in agreement with this supposition.
Since experimental data suggest that the effect may be a result of a
still unknown irreversible interaction between the electric field and
the rheological behaviour of the S& phase we would like to point out
the possibility of an alternative interpretation needing a continuum
theory which is able to handle irreversible phenomena in the presence
of an electromagnetic field.

Such theories exist for isotropic liquids®’-?! and within the frame-
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work of micropolar continuum theories for nematic?? and cholesteric*
liquid crystals, but the hydrodynamic theories of smectic C phases'>~"7
can not fully cover irreversible phenomena connected with electro-
magnetic fields.

In this paper we present a hydrodynamic-like but “non-coarse-
grained” continuum description of uniformly layered smectics C
which incorporates electrodynamics and can be applied for achiral S¢
as well as chiral S¢ independently of the thickness-pitch ratio.

In Section 2 we combine equations of electro- and hydrodynamics
following the procedure common in non-equilibrium
thermodynamics®’-?*; in Section 3 we derive the constitutive equations
pointing out the differences between chiral S and achiral Sc.*
Section 4 attempts to give a physical interpretation of our equations,
and the possible cross-effects are discussed. In order to facilitate
comparison, we list the “non-coarse-grained” constitutive equations
for cholesterics in the Appendix.

2. BASIC EQUATIONS OF THE CONTINUUM THEORY

2.1 Frames of reference and state variables of an S¢

Our purpose is to describe a smectic C liquid crystal which is moving
in an electromagnetic field with a velocity v(r) relative to the fixed
laboratory frame.

The orientational order in smectic C is usually taken into account
by a director d, which has a non-zero tilt angle ¥ with the smectic
layer normal n (Figure 1). In such systems two types of deformation
are possible.

First, the layered structure may be distorted, e.g. producing un-
dulation of the layers.?”® However in the majority of experiments
no perturbation of the originally aligned layers has been detected
therefore for simplicity we will not allow this type of deformation
here, i.e. we restrict ourselves to uniformly layered S¢& samples.

Second, the director may rotate around the layer normal. Far from
the second-order S, <> S& phase transition the tilt angle is practically
unaffected by external influences so it can be regarded as a temper-
ature dependent constant. In this case the rotation of the director can
also be described by the unit vector ¢, the C-director,'* which indicates
the direction of the projection of d onto the smectic layers. In this
paper we shall prefer this representation since the vectors n, ¢ and
n X ¢ form an orthonormal triad thus the construction of the con-
stitutive equations becomes easier.
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The material is under the influence of an electromagnetic field
which is described by the Maxwell’s equations® in the laboratory
frame

B
ot

. oD
div B = 0; curlH=J+E

divD = p,; curlE =
(2.1)

where p, and J are the electric charge and current densities respec-
tively and
1
P =D - ¢E; M=—B-M (2.2)
Ko
defines the polarization and magnetization of the medium. As a direct
consequence of Equation (2.1), the electric charge is conserved

ap.
ot

+divl =0 (2.3)

The thermodynamic description of the system requires the defi-
nition of some further variables characterizing the internal state of
the medium. As is usual, we expect the medium to be in local ther-
modynamic equilibrium.?! Galileian invariance of thermodynamics
can be ensured in the most simple way if the whole description is
carried out in the material frame, i.e. in the frame co-moving with
the medium. Besides the usual thermodynamic state variables (den-
sity p, temperature T, densities of internal energy pu, entropy ps,
etc.) some electromagnetic state variables (e.g. polarization and mag-
netization or electric and magnetic fields) also have to be introduced
since the electromagnetic field modifies the internal state of a polar-
ized medium. However the electromagnetic quantities in the fixed
and the co-moving frames differ from each other. Since the velocities
are small enough to remain in the non-relativistic limit changing the
frames the transformation rules

Pe = Pas J =J +py
B = B’; E =E —v x DB

(2.4)
D =D, H=H +vxD

P =P, M=M —v xP
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can be used, where the dashed quantities correspond to the material
frame and should answer Maxwell’s equations in the material frame.

’

dt

divD' = p); curlE' = — + (B'grad)v — B'(div v)

(2.5)

’

dD
divB' =0; curlH' =J + i (D'grad)v + D’(div v)

where d/dt = d/dt + v grad is the material time derivative.
The conservation law of the charge transforms as

5P+ divy = —pl (divv) (2.6)

Equations (2.5) and (2.6) shows explicitly that in the nonrelativistic
approximation the form of the basic equations of electromagnetism
is Galileian invariant, but in the presence of a velocity gradient, extra
terms must be included.

2.1.1 Constraints on the variables Since we are restricted to uni-
formly layered S¢ the unit vector n is used as a fixed reference di-
rection. Using the summation convention on repeated indices

d
np = 1 Vin= 05— =0 (2.7)

The C-director can vary in space and time but meanwhile it must
be perpendicular to n, thus

C,C;

Il
——
o
<

£

Il

<
o
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o

Il
)

(2.8)

n,c;

™~

Il
=2
=

<
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|
o
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A velocity normal to the layers would destroy the structure, con-
sequently

n.yv:. = 0’ n.V.V, = O’ n: —v. = 0 (29)
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must hold. Thus, the interlayer distance is constant and the material
can be regarded as incompressible, i.e. p = const.

2.2 Conservation laws

Conventional hydrodynamics usually starts with the conservation laws
for the mass, energy, linear and angular momentums of the me-
dium.'®2 If there is an electromagnetic field the medium can no
longer be regarded as a closed system because of their interaction.
Consequently only the rotal mass, energy, linear and angular mo-
mentums of the field and the medium are conserved.?’ Naturally these
conservation laws can be split into separate balance equations for the
field and the medium.

2.2.1 Balance equations for the electromagnetic field In the non-
relativistic approximation the electromagnetic mass can be neglected.
The Maxwell’s equations (2.1) can then be rewritten into the form
of momentum and energy balances.?'-**

Defining the linear momentum density of the field as

ghed = ¢ E x B (2.10)
and the field energy density as

i 1 1
el = — e EE, + — BB, — BM| (2.11)
2 2

one gets in the laboratory frame*

d
&EU(E X B);, = V;I; — F

{4

(2.12)

a (1 1 .
—|zeEE, + — B;B, — BM] | = —V/(E x H); + rfic¥ 2.13
ot (2 €y =l Z}L() (! i 1) /( )/ r ( )

where T, is the Maxwell stress tensor, F; is the electromagnetic force
density, and rf" is the supply term describing conversion of the
kinetic or internal energy of the medium into field energy. Using the
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transformation rules (2.4) these can be expressed by means of dashed
quantities,** viz.

1 1
T,=D/E + B/H -3, (-B,’\.B,’\. + —e ELEL — B,:M,'\) (2.14)
2py 2

F,=pEl + (J) xB'), + PPVE, + M/V.B]

d (1
P BT, (5 P x B’) (2.15)

1
and

JoP! oM
e 20 g 20

, )
Pl = —F] — e V,—%[(P' x B'),
O O

13

—JiE; — pviE; + Ji(v X B'), (2.16)

2.2.2  Balance equations for the medium In the following the
thermodynamic description of the medium is given. From now on all
equations will be written in the material frame, unless otherwise
stated.

Since uniformly layered S& is regarded as incompressible, the bal-
ance cquation of mass simplifies into

d
—p=—pVy, =0 2.17
7P pVv, (2.17)

Then the balance equations for the lincar momentum and energy
of the medium in the material frame read

—pv;, = — Vo, + F (2.18)

1 )
= -V {Jf =5 PVYY T puy; - (E x H),} — rfied(2.19)
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where o;; is the mechanical stress tensor of the medium and J¢ is the
total energy flux of the medium and the field.

From Egs. (2.9) and (2.15) balance equations can be constructed
for the angular momentums of the field and the medium respectively,
which may be combined into the balance equation for the total angular
momentum (lab.frame)

)
ot X (pv + ¢E X B),

= —Vieuri(on — Tw) + p(r X v)v}+ €ulo; — Ty) (2.20)

Since the total angular momentum is conserved, a constraint is im-
posed on the mechanical stress tensor?*

€ix0x = €uly; + €3V,Z4, (2.21)

where 2, = —X,, is an arbitrary antisymmetric tensor.

Though not subjected to conservation laws, the variables charac-
terizing the broken symmetries (i.e. the C-director and its gradients)
also need some dynamic equations to describe their time evolution.!¢

They are usually given in the form

2.22)
d
Evici = =V,Z, - (Vv)(Vic)

where the director “torque” Z, will be provided later via a constitutive
equation.

2.2.3  Entropy balance The entropy of a system is generally not
" conserved:

d 1 R
;t ps = —Vj <? qj> & ? (2.23)

where g; is the heat current density and R is the energy dissipation
of the system.?°
According to the second law of thermodynamics

R=0 (2.24)
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must be fulfilled for any system. This inequality is the starting point
of non-equilibrium thermodynamics. For the further calculations it
is useful to choose an adequate thermodynamic representation. The
internal energy of the medium is the thermodynamic potential be-
longing to the natural set of independent state variables
{ps,P;,M; c;,Vc}. However in experiments the temperature, and the
electric and magnetic fields are generally under control rather than
entropy, polarization and magnetization. It is therefore much more
convenient to use the new set of independent state variables
{T’Exl ’Bl’ 7ci’Vji}'

A new thermodynamic potential, the generalized free energy pf™,
is then introduced via the Legendre-transformation®*

pf*(T7Ezvai,’Ci’Vjci)
= pu(ps,P;,M;,c;,V;c;) — Tps — PiE; — M;B; (2.25)

Combining this definition with the balance equations one gets an
expression for the energy dissipation

= —-V,{]f- - (E X H); — vio; — g

1
- v,‘[z pvv; + pf* + pTs + Pi(v X B’)ijl}

1 99 d
5 ?qufT + JiEj — oV, — Etpf*
dT dE] dB;
ol R e B0 '
pa il M =0 (2.26)

The constraints on the velocities (2.9) and (2.17) and the C-director
(2.8) may be taken into account by adding

dc; dc

[Bin; + Bac; + Bs(m X €)|n,Vyy; — pV; + Buc; — + Bsn; Ft[ v

0
odl

to Eq. (2.26). Here By, . . . , Bs and p are arbitrary Lagrange mul-
tipliers. With indirect derivation of the generalized free energy finally
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one gets from Eq. (2.26)
R = —V,{Jf - (E X H); — vio; — q; — ¢, Z;

1
= vjl:— pviv; + pf* + pTs + Pi(v X B’),]}

2
l ! ! ! apf* dE;

- =—gVT +JE - |P + 2| <
T 4T Ik (P ' aE;) d

, . 9pf*) dB; apf*) dT

= ! el — + —) —
(Mf & aB;) & \" 7% &

— (h — Vb + Buc; + Bsni)Z,;
= (Vwo,; — duVic, — Binn; — Bong;
— Bsn(n X ¢);, + pd,;} =0
where the notation

_ dpf*
aV,c

a *
n, = %
ac;

5 d)ji

T.E;,B;.Vic; il T,E},B) cx

was introduced.

3. CONSTITUTIVE EQUATIONS FOR S¢

25

(2.27)

(2.28)

The non-negativity of R requires the divergence term of Eq. (2.27)
to disappear, which may be ensured by the proper definition of the

total energy flux Js.

During construction of the other constitutive equations the local
symmetry properties of the medium must be taken into account.?
Chiral smectics C* are biaxial thus they have only a twofold axis in
the direction n X c¢. This corresponds to the transformation
n,c < —n, —c¢, consequently the constitutive equations must be
invariant under the simultaneous inversion of n and ¢.'® Achiral smec-
tics C have, in addition, a centre of symmetry too, thus for them an

invariance under spatial inversion is also required.
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3.1 Reversible dynamics

Although reversible and irreversible processes generally coexist in a
medium, they have to be separated since their description requires
different tools. The separation can be done on the basis that reversible
processes are invariant under time reversal while irreversible ones
are not.>* The variables describing our system can also be split into
reversible and irreversible parts. Naturally the independent state var-
iables and the generalized free energy are regarded as purely re-
versible.

3.1.1 Generalized free energy of S¢ The generalized free energy
of S& is a function of the independent state variables
{T.E!,B],c;V,c;}. Our aim is to develop a continuum theory of lowest
order in spatial gradients and in electromagnetic field thus we look
for the most general expression containing terms of at most second
order. Allowing for the material symmetries and the constraints (2.8)
finally one gets that with uniformly layered S¢& phases pf™ is composed
of “elastic,” magnetic, electric and flexoelectric terms>’

1 1
pf* = 5 K,(div ¢)* + 5 Ks(c curl ¢ + ¢,)°

1
+ > K;(n curl ¢ + g3)* + K,(c curl ¢)(n curl ¢)

1 1 1
- 5)(’,”B’2 - §x§4(cB’)2 - Exé”(nB’)2 — x¥(cB")(nB’)
1 - ) 1 - "2 1 E N2 2 ’ ’
- Ex{‘E 2 - Exﬁ‘(cE )% — ix;(nE) — x5(cE")(nE")

— P(n X ¢)E" — ¢,(cE')dive — e,(nE")div ¢

— es(c X curl )E' — ey(n x curl ¢)E" + pf§ (3.1)
where the elasticmoduli K, . . . , K,, the susceptibilities x;, . . . , xy,
the tlexoelectric coefficients e, . . . ,e,, the helical wave vector g,

the curvature ¢; and the spontaneous polarization P, are temperature
dependent phenomenological constants.
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The expression of pf* in the director representation—which can
be obtained using the relation d = cos 9n + sin dc¢—has the same
form as Equation (3.1) except that ¢ should be replaced by d and the
phenomenological constants are different.

Equation (3.1) is the biaxial equivalent of the free energy of cho-
lesterics (cf. Eq. (A.1) and Refs. 14, 31, 32). The number of sus-
ceptibilities and flexoelectric constants is doubled. The term with g5
may correspond to a spontaneous bend’-®; K, describes a coupling
between twist and bend deformations. However the final elucidation
of the physical meaning of these new terms needs further investiga-
tions. The “elastic’” and flexoelectric parts of our expression coincide
with the one derived recently.*

In the case of achiral S material the generalized free energy must
be invariant under spatial inversion. It means that with

q, = 0; qg; =0 and P, =0

Eq. (3.1) can be used for achiral S¢ phases too. In case of uniformly
layered achiral S our expression for the “‘elastic” part of pf* coin-
cides with that of the hydrodynamic theory.!¢

It follows immediately from the requirement of vanishing entropy
production in reversible processes that the thermodynamic relations

_ft e fT e O

; - (32)
aT JE! 3B,

ps =

must hold, where superscript r denotes the reversible part of the
relevant quantity.*

The principle of frame indifference® requires that the generalized
free energy of smectics C must be invariant with respect to rotations,
leaving n unchanged.!® Thus

dpf* = —ps dT — P/dE! — MdB, + hdc, + &,dV,c, (3.3)

must vanish for any infinitesimal rotations around n having a trans-
formation matrix

Qij = 6,] + OLG,-/-knk; o << 1
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As a result the equality
et i —hic + &V + biVie; + P'E; + MB/} = 0 (3.4)

holds for the derivatives of pf*.?

3.1.2  Reversible stress tensor In order to complete the reversible
dynamics of S one needs an expression for the reversible director
“torque,” which is linear in the spatial gradients (V,c;,V,T,V,v;) and
fields (E/, B!), changes sign under time reversal or the simultaneous
inversion of n and ¢, and is in accordance with the constraints (2.8)
as well as the requirement of the vanishing entropy production. The
most general form of Z; reads:*

Z; = (n X ¢)(n X c)j{(z;lnk + ézck)Ak/‘ + (G + §4Ck)wk,} (3.5)

with Ay, = 12(Vy, + V) and wy; = 12(Vy, — Viv)).

The vanishing entropy production then defines the reversible stress
tensor unambiguously, i.e. from Equation (2.27)

o = Bqninj + Bhne; + Bin(n X c)j - prBI/ o d)jkvzck
1
+ E(hk — Viby)(m X ) {g[nn X ¢), + ny(n X ¢),]

+ Gle(m X ¢); + ¢(n X ¢)] + Glni(n x ¢), — n;(n x ¢)]
+ Lyle;(m X ¢); — ¢;(n X o)} (3.6)

Due to the conservation of angular momentum, constraint (2.21)
must be satisfied. Combining Equations (3.4) and (3.6) it yields
¢, = 1 and the Lagrange multipliers B5 and @5 should be chosen
as??

B = € (m X ¢); {E/P + BIM" — &, Vic, + bV, + ¢ Vibyt
By = _EijkCA{E;P,‘” + B,’M/, - & Vi, + d)uvl(',

]

+ C,V/d)/i + G(h — V/(bn)”,} 3:7)
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Consequently instead of Equation (3.5) the constitutive equation for
Z" reads

Z; = (n X ¢)(n X e){({ing + Lep)Ay + (L + c)ogt  (3.8)

Egs. (3.6)—(3.8) are valid for chiral S¢ and achiral S¢ as well.

3.2 IRREVERSIBLE PHENOMENA

3.2.1 Onsager linear relations Irreversible thermodynamics is based
on the expression for the irreversible energy dissipation. From Eq.
(2.27)

’

: 1 a8
R"= —q;=V,T + JE] - M; 71’ + Zir(h; — Vb + Baci + Bsny)

!
: ; i
. an; : : ]
3 Pj 7 Tr |:0';';S =ipinn: — Eﬂlzr(cj”t oF Cinj)

o ;
on EB?((“ X c)jn,» + (n X c)inj) s plraij:IAij

B e _1. ir e
0 5 Z(Cjni Ci”j)

= %Bg’((n X ¢)n; — (n X c)ini):lw,.j>0 (3:9)

. livi A : T :
where o} = 3 (off + o) and o} = 5(03’- - o).

Our aim is to describe the behaviour of a system which is not far
from the equilibrium thus we follow the method usual in the linear
approach.? Equation (3.9) is separated to products of thermody-
namic forces X* and conjuged fluxes J*:

RE = 5 X~ (3.10)
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The Onsager linear relations can be adopted between fluxes and
forces,

J° = 3 LeFXP, (3.11)
B

which ensures that R will be of second order in the thermodynamic
forces. However due to the conservation of the fotal angular mo-
mentum Egs. (2.21) and (2.14) define o as

i
i 1 1 prir 1 prir 1 7/ rir ’ rir ir
0= E(Ein BRIy E(BiMj - BiM;") + V, 25

This means that the last term of Eq. (3.9) would contain terms of
third order which must be neglected in a linear theory. Then the
arbitrary quantities By, By and ZJ, can be chosen to zero, yielding
that only six basic transport processes have remained in Egs. (3.9)
and (3.10) with the thermodynamic forces defined as

1 dB]
¥lw =V Kl N) e oL
i F Yil 3 ) E; X; =

and the conjuged thermodynamic fluxes as

Il=qs H=1 H=M; K>
(3.13)

5 - pik 6. e s irs  _ Qir
I =3 5y =dg =og + phy 111

The Onsager coupling tensors L*? in Eq. (3.11) may depend on the
temperature and the vectors n and ¢ only. Taking into account the
transformation rules of the fluxes and forces with respect to time
reversal® it immediately follows that

L*f = LP* = () for a=1234 and p=356

It means that irreversible phenomena split into two groups. Heat
conduction, electric conduction, magnetic relaxation and relaxation
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must be fulfilled too yielding

1
Lit =« = 3, (3.19)

i

(iii) Applying again Eq. (3.18) one gets for L*!, L** and L*
L = (8%¢c; + 83n)(n X ¢); (3.20)
Then the reciprocal relations (3.15) yield for L4, L?* and L**
Lg* = (8%¢; + 8sn)(n X ¢); (3.21)

This type of coupling is forbidden in achiral S¢ phases.
(iv) For L® one gets

L?ji = L?i?c = (n X c)k{"llsij + ¥:6iC; + yann; + 'Y4(Cinj + C/”i)}

+ (vs¢x + Yeu)len X ¢); + ¢;(n X ¢)} (3.22)

+ (y7¢ + vsm){n(n X ¢); + n;(n X ¢)}

while L*¢ is related to L% via the reciprocal relations (3.15). This
type of coupling is forbidden in achiral S, moreover there must not
be analogous effects in uniaxial systems, since the existence of this
coupling is due to biaxiality.
(v) For L% one gets
L?,‘?d = Lfi?cl = Lf}?k = L/??i,‘ = 00 + Ma(d;ckc; + dycic))
+ @y, + dnny) + wa(d;cm, + d0my
+ dcin; + dyycm) + WwsCiCicC + petinN,

+ wi(cienn + cepny) + pg(en; + cn)(cny + cny)

+ wolcci(cny + cny) + ceein; + cny)l
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of the C-director are in one group, dielectric relaxation, and viscous
flow are in the other one. There may be cross-coupling terms within
each group but coupling between groups is forbidden.

4
A R RO
g=1

and

i = LPX; + LS XS (3.14)

Ji = LE X + LuX3,
which must be supplemented by the Onsager reciprocal relations?

LO‘B - LBO‘ o, = 1, o ,4
P =1L B (3.15)

55 155, 56 — J65. 66 — 66
Lij = Lj[ > Lijk = ijia L= Lklij

3.2.2 General form of the coupling tensors According to the Curie
principle the coupling tensors must be invariant with respect to the
symmetry transformations of the S& material.?°

According to the transformation rules® of fluxes and forces there
are different type of coupling tensors.

(i) For L'2, L?!, L3, L3, L® and L*? one gets
LgP = vy, + vsbcic; + v§Pnn; + viPen, + vePen,  (3.16)
(ii) For L', L??, L and L> one gets
Lg* = Lg* = k§°9; + k$°cic; + k§onn; + k§(cn; + ¢ny)  (3.17)
L* also belongs to this group. However the Lagrange multipliers 3,
and Bs in Eq. (3.12) may be chosen as B, = —(h; — V,d;)c;
Bs = —(h; — V,;d;)n;, so X* will have a component along n X ¢ only.

Furthermore due to the constraints (2.8) the requirements

nJt=nZr =0 and b= ¢Zr =0 (3.18)
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+ polnn(ceny + i) + men(en; + cny)l
+ l‘l‘ll(sikc/cl + 93¢ + 8jkcicl + 8jlcick)

+ wp@unn, + dgnny + dunny + dynny)
+ p[Bulen + cmy) + Sylcny + cny)

+ dylem + cny) + dj(cmy + )] (3.23)

4. INTERPRETATION

Finally we should like to summarize the equations which have to be
solved simultaneously when describing the behaviour of a uniformly
layered incompressible chiral smectic C* liquid crystal in an electro-
magnetic field.

The equation of motion (2.18) reads

dv;
PE =F,—-Vp— ninjVjBI
(4.1)

dE;
—V,-{of,-* - Lt — LG E’i}

with o7 = o} + p'd; — nnPl.

F, is the force (2.15) exerted on the material by the electromagnetic
field. The Lagrange multiplier p = p” + p” corresponds to the hy-
drostatic pressure while the appropriate choice of B, = B; + BY
ensures that there is no resultant force normal to the layers, conse-
quently the acceleration normal to the layer is also zero, just as it is
required by the constraints (2.7). o}* is the part of the reversible
stress (3.6) which contains derivatives of the generalized free energy
(3.1). LS, is the viscous stress, with 13 viscosity coefficients as pre-
dicted in Ref. 15.

The last term, L§; dE;/dt, is the electromechanical stress. It de-
scribes a cross-coupling between dielectric relaxation and viscous flow
which has not previously been reported. According to Eq. (3.22) the
electromechanical coupling tensor of S& contains 8 independent coef-
ficients. This electromechanical coupling exists owing to the chiral
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and biaxial nature of the S¢& phase. Analogous cross-effects are not
permitted in the biaxial but achiral Sc, or in any uniaxial phases
(nematics, cholesterics, smectics A), or in isotropic liquids. It has
been shown in a recent paper* that this electromechanical coupling
is responsible for the electric field induced vibration, observed re-
cently.!?

Earlier in this paper we stated that the material can be regarded
as incompressible. Due to this fact the constants w,, w,, w; and pu,
of Eq. (3.23) and v, of Eq. (3.22)—though need not be zero—play
no role since the relevant terms can be included in the arbitrary
Lagrange multiplier p” or vanish due to Eq. (2.17). Consequently in
case of incompressibility only 9 viscosities and 7 electromechanical
coupling constants enter actually into Eq. (4.1).

The equation of motion of the C-director (2.22) reads

dc; 1
7[ = —er = ;(/’ll = V/'d)ji o+ B4Ci + BSni)

1 dB,

+ LY = V,T — LYE; + L} i

i T (4.2)

Z; is the reversible director “torque” (3.8), which describes flow
induced orientation. The next term is the restoring ‘“‘torque” due to
distortions of the director field, containing derivatives of the gener-
alized free energy where m is the orientational viscosity. The re-
maining three terms describe cross-effects present in chiral liquid
crystals only. L} is the thermomechanical coupling tensor. The anal-
ogous effect in cholesterics has been discussed?!*2-**-3% and measured**-*’
recently. L;}? and L}’ describe ‘“‘torques™ exerted on the C-director
by electric and time dependent magnetic fields respectively.*® These
are also new cross-effects, however there is no experimental evidence
as yet. In accordance with Eqgs. (3.8) and (3.21) dc/dt is parallel to
n X c expressing the fact that the unit vector ¢, which lies in the
smectic layer plane, may change only via a rotation around the layer
‘normal n.

The temperature distribution of the sample is governed by the
entropy balance Equation (2.23) which reads

dps R 1 1 1 dB;
— == -V - LM =VT 4+ = LR2F — 137
ai T ’{ vr TV T d

1
+ ?Lilj“(hj - de)kj + B4C,‘ + Bs”j)} (4.3)
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The entropy and the energy dissipation are given by Egs. (3.2) and
(3.9) respectively. The first contribution to the heat current originates
from the heat conduction, i.e. L} is linked with the heat conductivity
tensor; L} describes the Peltier effect; L}? describes again a new
cross-effect, a heat current induced by time dependent magnetic field,
whose physical significance is not understood at the moment. The
last term is allowed in chiral liquid crystals only, it is the inverse of
the thermomechanical coupling mentioned above.

Finally the electromagnetic field is determined by the Eqgs. (2.1)-
(2.6) where the electric current density, magnetization and polari-
zation are defined as

’ 2 1 dB’
Ji = LPE] - Li' 2 V,T = LF 71‘]

+ L3#(h; — Vidy; + Bac; + Bsny)  (4.4)

M,’ = M’ - L;B@— L}ll

.~ L 7V + LYE]

+ Li(hj — Vidy + Bac; + Bsny) (4.5)

’

; i ij dt ijk4 2t jk ( : )

In Eq. (4.4), L2 is the electric conductivity tensor; L' 1/T V,T
corresponds to the Seebeck effect; the remaining two terms describe
cross-effects which still need experimental verification. The last of
the four terms is allowed only in chiral liquid crystals.

In Eq. (4.5), M] is the reversible part of the magnetization. In
accordance with Egs. (3.1) and (3.2) it corresponds to the induced
magnetization. L}* dBj/dt describes magnetic relaxation. For a har-
monic magnetic field/e*/derivation with respect to time is equivalent
to multiplication by iw, consequently L;}? is connected with the im-
aginary part of the complex magnetic susceptibility. The remaining
three terms describe cross-effects, which have not yet been observed.
The last of them may exist only in chiral liquid crystals.

In Eq. (4.6), P!’ is the reversible part of the polarization. According
to Egs. (3.1) and (3.2) it comprises spontaneous polarization, present
in S& only, flexoelectric polarization, which is the result of distortions
of the C-director, and the usual induced polarization. L;> dE//dt de-
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scribes dielectric relaxation, L3’ is connected with the imaginary part
of the complex dielectric susceptibility. Finally the last term describes
flow induced polarization. It is a new cross-effect, the inverse of the
electromechanical coupling mentioned above. It may exist only in
chiral and biaxial systems like S¢.

In an experiment of Pieranski et al.* a shear flow induced polar-
ization has actually been observed. According to their interpretation
the flow orientates the director and thus the spontaneous polarization
too, since it is bound to the director rigidly.! In our formalism this
orienting action is described by the Z; term of Eq. (4.2), establishing
a reversible coupling between flow and spontaneous polarization.
However Eq. (4.6) shows that besides this indirect action there is a
direct irreversible coupling between flow and polarization in S§ and
thus the sum of the two effects was actually observed in the experi-
ment. The above mentioned reversible cross-coupling has been pro-
posed recently*? to explain the electromechanical effect, however this
explanation seems not to be supported by experimental data.*?

5. CONCLUSIONS

We have developed a continuum theory for uniformly layered S.
phases in order to extend the validity of hydrodynamic description
to time dependent electromagnetic fields and to length scales com-
parable to or smaller than the pitch. Our theory may be generalized
to take into consideration the curvature of layers as well as non linear
terms, following the procedure outlined in Refs. 16 and 40.

The proper handling of the electromagnetic field has required the
introduction of a new thermodynamic potential to describe reversible
dynamics. It has been shown that in chiral smectic C* phases the
generalized free energy contains some additional terms which have
not been taken into account previously. For achiral smectic C phases
our result agrees with the former theory.

Special attention has been paid to irreversible phenomena taking
place in the presence of an electromagnetic field.

It has been proved that the symmetry of chiral smectics C* allows
a new cross-effect, the electromechanical coupling, which has recently
been found experimentally too.

It has been shown that just as in cholesterics, thermomechanical
coupling exists in chiral smectics C* too.

Other cross-effects, allowed either in S& or in both S and S, are
also predicted though their physical meaning is as yet not understood.
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APPENDIX. Constitutive equations for cholesterics

Since the hydrodynamic theory of cholesterics'® can be applied only
to length scales larger than the pitch, i.e. it is not valid for compen-
sated cholesterics, we derive here the main equations of the hydro-
dynamic-like but “‘non-coarse-grained”” continuum theory of choles-

terics.

With cholesterics the director d is the only extra quantity which
characterizes the broken symmetry. Following the same procedure,
used above for S{, one gets for reversible dynamics (cf. Ref. 16).

1 1
pf* = EKl(div d)? + 3 K,(d curl d + go)?
+ 2K, X curl d)? — 3 X¥B™ — 2 xM(dB')? — 1 XEE?
2 3 2 4 2 a 2 1

7
~3 XZ(dE')? — e,(dE’) divd — e5(d x curl d)E’ + pf5 (A.1)

dof* = —psdT — PIdE! — M/'dB, + hdd, + &,dV,d, (A.2)
o = —pd; + by Vid, — 2adddi (b, — Viby)

+ al(h; — Vbyd; + (b — Vby)d]
+ 2 [ = Viby)d; — (b, — Vb)) (A4)

Irreversible dynamics of cholesterics are governed by Eqgs. (3.10)—
(3.15) except for the definitions

X! =h, — Vib; + vd, and J§ = ol + p"y;

where the Lagrange multiplier is chosen as vy = —(h; — V;d;)d;
yielding d;, X} = 0.
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The general form of the coupling tensors is simpler than that of
Sé& since cholesterics are uniaxial.

i.,For L2 g2t E13 g3l 123 j32
L:-’;‘s - V?BSU + Vgsdid,' (AS)

TR s P s Bade Ry

Ly = Lg* = k§*d; + k3°dd; (A.6)
For L*
T44 T s 1
g KOy = ey (A7)
mn
it Forlit fil Sleds o 42 g4 )48

iv. For L%
L% = mddy + ma(d;did; + 8,dd)
+ padiddid; + wa(8,8; + 8,9;)
+ ns(®pdd, + d,dd, + 8,dd, + 8,dd,) (A.9)

where, due to incompressibility, w, and w, do not contribute.
v. Finally

LS =0 and L% =0, (A.10)

i.e. electromechanical coupling is not allowed in cholesterics. These
equations are equivalent with that of the Ericksen-Leslie theory of
cholesterics®'? in the same manner as it was proved for nematics in
Reference 41.
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. L*> may perhaps correspond to the dissipative cross-coupling introduced in Ap-
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