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LOW FREQUENCY DIELECTRIC RESPONSE OF CHIRAL SMECTICS Cx
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Abstract The low frequency dielectric response of
SmCx is analysed within the framework of the electrody-
namic continuum theory. The electric field induced dis-
tortion of the structure is calculated. The macroscopic
contributions in the dielectric susceptibility are de-
termined in fields parallel as well as normal to the
helix. These contributions originate in the presence of
the spontaneous polarization, the helical structure and
the electromechanical effect.

1. INTRODUCTION

Chiral smectic Cx (SmCx) liquid crystals have got into the
centre of interést in the last some years.!~* They exhibit
several electrooptic effects which open wide prospects for
their application as electronic displays.“"%® pDue to the
helical structure and the presence of a non-zero spontaneous
polarization their dielectric response, i.e. the behaviour in
infinitesimal AC electric fields, shows some specific fea-
tures too. In SmC* substances a dielectric relaxation - the
so-called Goldstone mode - was found at low frequencies,
which was assigned to the relaxation of the helical struc-
ture; ¥—1e

An interpretation of the phenomenon has been given on
the basis of a Landau expansion of the free energy.''-*=
Rigorous calculations have shown that near the SmA-SmC* phase
transition the situation becomes more complicated since the

tilt angle may also be influenced by the electric
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field.*® 1% However in the great majority of experiments the

electrooptical properties of SmCx are investigated far from
the SmA-SmCx phase transition. In this range the tilt angle
usually can be regarded as a constant depending on the
temperature only. Then the hydrodynamic*=-*+" or other

continuum theories®-1%-1%* gare more convenient for the

interpretation of electrooptical phenomena than the Landau
expansion. ' Unlike the high frequency dielectric relaxation

modes, which provide information on molecular dynamics, the
Goldstone mode is connected to a variation of a macroscopic
texture. Thus an obvious claim may arise to describe it by
means of the same continuum theories what are used for the
interpretation of other macroscopic phenomena. Such an ap-
proach would allow a comparison of data collected by dielec-
tric and electrooptic methods.

Inspired by the detection of an electromechanical ef-
fect=®- =1 gn electrodynamic continuum theory## %% has been
derived recently which includes some novel irreversible
cross-couplings as e.g. the electromechanical one. In the
present paper this theory is applied to analyse the low fre-
quency dielectric response of SmC¥ liquid crystals.

Section 2 is a summary of the basic assumptions of our
treatment and a list of the basic equations of the continuum
theory. In Section 3 we calculate the distortion of the heli-
cal texture produced by an infinitesimal AC electric field
and determine the bulk polarization. In Section 4 our formu-
lae are discussed in various geometries, i.e. when the field
is either perpendicular or parallel to the helical axis, in-
cluding the case when a large DC bias field is applied normal

to the helix. Section 5 is a brief summary of our results.

2. BASIC ASSUMPTIONS

The orientation of the SmCx liquid crystal is characterized
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by two vector fields, the layer normal n(r) and the C-direc-
tor c(r). The material flow is described by the velocity
field v(r). We are choosing a Cartesian frame with its

z-axis along the layer normal, thus®=. @9

n=(0,0,1) g;(cx,c ,0) ; wv=(v_,v ,0).

In dielectric experiments the SmCx liquid crystal is
usually placed in between parallel plane electrodes held at
different potential. In a homogeneous material it would yield
a homogeneous electric field normal to the electrodes which
we shall call applied field Ea=(Eax'an'Eaz)" However if the
sample is not homogeneous - as we shall see it later - the
actual electric field §=(EX,Ey,EZ) which enters our equations
need not coincide with the applied one.

Usually the boundaries of a cell influence the orienta-
tion of an SmCx liquid crystal.=-€.1% Hoyever it may be a
reasonable assumption to neglect this influence in thick sam-
ples. Therefore throughout this paper we are considering the
behaviour of an infinite, oriented SmCx sample, or by other
words a sample in which no constraints are prescribed on
either orientation or flow at the boundaries.

In the absence of an applied field the infinite SmCx
sample possesses an undistorted helical structure without any

flow which we shall refer to as the ground state ¢, (r). An

infinitesimal applied electric field may induce both0 a dis-
tortion of the texture and a flow, however it can be supposed
in this aproximation that these distortions are homogeneous
in the x-y plane, i.e. any physical guantity may depend on
the z-coordinate only. Thus E=(0,0,VZ) and the material and
partial time derivatives must coincide.

Neglecting terms gquadratic in the infinitesimal fields
with these assumptions the main equations of the electrody-

namic continuum theory##.#< read in our geometry:
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Maxwell’s Equations

curlE=0 VaEBE =0 ;. ViE=0 (2 1)
= Z X y

divD=0 V_ (g E_+P_)=0 (252)
= z zZ.Z

0

Equation of Motion of the C-director
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R o xachx+}acyEy+(Xl+xé)Ez_*%chx—*aCyEy
= (M1+4%)Ez+?écy(vzvx)—2écx(VZVy) (2.8)

Here 41, 63 describe a reversible coupling between flow
and orientation, d;, d& an irreversible one between electric
field and orientation. “ is the orientational viscosity, K

2
the twist elastic constant, PS the spontaneous polarization.

/“8'/“11 and /“12 are viscosities, ga, 97 and 7b electrome-
chanical coupling coefficients, X, ,.., 14 dielectric suscep-
tibilities, e, a flexoelectric coefficient and '“1""'K4 are
connected with dielectric loss ( 255 in Ref.24).

In the ground state the net bulk polarization - i.e. the
polarization averaged over the pitch - is zero indicating

that SmC* liquid crystals are improper ferroelectrics. t—=

3. CALCULATION OF THE DISTORTION

Let us now apply an infinitesimal harmonic AC electric field
ga of arbitrary direction to the sample. The induced flow and
the distortion of the helix should also be infinitesimal and
harmonic.

Since the C-director of the perturbed ground state can

be written into the form

€= Cc  ToOhxga) o

£ =gy 0 =(cosqz, sinqgz, @) £3::1)

o
where g is the helical wave vector (q2 in Ref.24) and the

derivation with respect to time is equivalent to a multipli-

‘cation by iw, EQ.(2.2) can be rewritten as

E_ = A-B(E_cosqz+E sinqz)+C[}osqz(V v )-sinqz(V_v )} 3.2)
z X y zy Z- X
where A is an integration constant to be determined later and

B = 2 e 8

so+xl+7%—iw(«1+4(3) 50+‘)(1+X3—iw(4(l+k3)

X —iwK 9’8
(3.3)
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Then combining Egs.(2.3)-(2.5),(3.1) and (3.3) one gets

iwd = —(V V )+

+ JZC [sinqz( Vzvx )—cosqz( Vzvy )]

p
=)
,L+ - a (E cosqz+Eys1nqz) JA (3.4)

. ¥ by_bs :
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+(41;43

—mg*) Q(E, cos2qz+E, 5in2q2) (3.5)

¥ by _4
. _ 1-93 . ‘
1wgvy o (VZVZvy) . K2VZ [cosqz(Vzd)] 1w78qu1nqz

1 < :
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L
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where we introduced
X . *_ _
,u ‘/‘8+/“11+2/‘12+“"?80 and 7 —?4-?77 788'

The solution of these coupled differential equations can
be written into the form of a Fourier series. After some al-

gebra one can get the nonvanishing Fourier coefficients

ol = XOA = Xl(EXcosqz+Eys1nqz)
L UlAcosqz + U2(Excos2qz+Eys1n2qz) (3.7)
Vy = UlAsinqz + U2(Exsin2qz—Eyc052qz)

where we used the notation

41—63 2_ 2 . £ 1
X, = 1w78q 2/”12q 8% (3.8)
- ) 2,. 2 . )
1wg+/412q +1w980q iw
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= huaéq
u, = 5 5 (3.9)
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Combining Eqgs.(3.2) and (3.7) one gets the expression for EZ

Ez = (1+qCU,)A - (B-2qCU )(Excosqz+Eysinqz) (3.12)

1 2

showing that unlike Ex or Ey’ EZ varies periodically along
the helical axis. However this modulation integrates to zero
over distances equal to the pitch thus a relation can be
obtained between the electric field in the sample and the

applied field.

E =E =€ ; E_-=E

=E =E_ ; E__=E_=(14qCU A (3.13)
ax x X ay y vy az z 1

Here and in the following a dash above a variable indicates
averaging over the pitch.

Finally the net bulk polarization is calculated from
Egs. (2.6)-(2.8) and (3.7) yielding
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P, {( Xl+ = ) = (K~ )} E, XE,
. Y
- (94+77—7(4C+1w4l40)qU2Ey = XiE,y (3.15)
- — Y _ X
P, = [(X1+X3)—1ww1+4<3)}52 —WEZ N 7(“Eaz (3.16)

4. INTERPRETATION

4.1. Applied Field Perpendicular to the Helical Axis

An applied AC electric field perpendicular to the helical
axis (Eaz=0) induces an oscillating deformation and an elec-
tric field along the helical axis which both have a spatial
periodicity equal to the pitch. The induced flow is also os-
cillating with the same frequency w, but has a spatial peri-
odicity equal to the half pitch (cf. Egs.(3.7) and (3.12)).

As can be seen in Egs.(3.14) and (3.15) the bulk polar-
ization is proportional to the applied field and all direc-
tions normal to the helical axis are equivalent, i.e. an in-
finite SmCx behaves macroscopically as a uniaxial material.
The effective complex dielectric susceptibility ji is com-
posed of three contributions.

i. The elements of the local biaxial dielectric suscepti-
bility l and the loss K tensors are combined to a uniax-
ial contribution. They describe relaxations due to fast
molecular motions which usually take place at higher
frequencies. Their influence on the low frequency behav-
iour usually can be neglected, i.e. one can regard K as

zero and X as constant.
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ii. The distortion of the helical texture leads to a partial
ordering of the spontaneous polarization of the layers.

This corresponds to the Goldstone-mode.”-® The factor

1/(iw+K2q2/n) in X1 (cf.EqQ.(3.10)) would alone describe

a relaxation of Debye-type with a critical frequency

w0= JKZqZ/n . However this frequency dependence is al-
tered by other factors which are mainly originating in
the field induced flow.

iii. The third contribution is the flow induced polarization
which is the result of an irreversible cross-coupling,
the inverse electromechanical effect.®+. ==

The low frequency dielectric response of chiral smectics Cx

is characterized by the last two macroscopic contributions

whose presence is due to the chirality and the local biaxial
symmetry of this phase. Unfortunately the orders of magnitude
of several material parameters are still unknown therefore it
is not yet predictable theoretically which term dominates the
frequency behaviour. Experimental data™ % suggest that this
low frequency dielectric relaxation is nearly Debye-type

however deviations have also been observed. =%

4.2. Large DC Bias Field Normal to the Helical Axis
A large DC bias electric field gb destroys the helical struc-

ture completely.*~¥-#% In this homogeneous unwound state the
spontaneous polarization points toward the direction of the
field. If the bias field is along the x-axis the unwound

state can be characterised by

gb=(Eb,0,0) s gb=(0,—sgn(PSEb),0) ; V=0 Ez=Ey=® 4.1

with a net bulk polarization of

px=Pb= XlEb + Pssgn(PSEb) ; P =06 ; P_=0 (4.2)

A superposition of an infinitesimal applied AC electric

field normal to the helical axis E_=(E__,E_,0) can not in-
a ax’ "ay
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fluence the structure of this unwound state but contributes

to the bulk polarization.

ﬁx=Pb+(x1—m4«1)Eax : 5y= [(7(1+7(2)—m(«1+«2>]5ay i Pm0 (4.3

As it can be seen there is no macroscopic contribution
to the dielectric susceptibility due to the bias field which
is in accordance with the experiments.*® This geometry would
allow measurement of two elements of the local biaxial sus-
ceptibility tensor gg however for technical reasons usually
the applied field is parallel to the bias one. It means that
only one eigenvalue can be obtained, the one belonging to the
eigenvector pointing in the direction of the spontaneous po-
larization, i.e. in the direction of the bias field.

It is worth noticing that no field is induced along the
helical axis (Ez=0) since the texture is homogeneous. EZ can
appear only in biaxial systems which possess inhomogeneous

textures.

4.3. Applied Field Along the Helical Axis
An applied AC field along the helical axis (Ex=Ey=®) results

in a homogeneous oscillating rotation of the whole undistor-
ted helix and in an oscillating flow with a spatial period-
icity equal to the pitch (cf.Egs.(3.7) and (3.13)). As can be
seen in EqQ.(3.16) the effective complex dielectric suscep-
tibility Kﬁ is composed of two terms. The first one corres-
ponds to fast molecular motions and contains elements of the
X and « tensors. The second one is a macroscopic contri-
Safion ;hich is owing to the presence of the irreversible
electromechanical coupling thus it mainly contributes to the
dielectric loss.

It should be emphasized however that according to
Eqg. (3.8) the amplitude of the oscillating rotation of the
helix diverges at w =0. This indicates that our approach used

in Section 3 was not really adequte for this geometry at low
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frequencies. Therefore we present here an another approach
which is valid for a small DC applied field.
If a DC field is applied along the helical axis the

C-director can be written as
c=(cos(qz+lt), sin(gz+it), @) (4.4)
Then Egs.(2.3)-(2.5) yield immediately

ML= —JE ; v=0 (4.5)
2 az

which predicts a continuous rotation of the whole undistorted
helix around the helical axis with an angular velocity L
proportional to the applied field. It is a result of a direct
irreversible coupling between electric field and the C-direc-
tor.®®.#+ It jg analogous to the Lehmann-rotation caused by
thermal gradients. "

In case of a low frequency applied field the probable
distortion of the structure is an oscillating rotation of the
helix with a finite amplitude accompanied by a flow, however
we could not provide an analytical solution for this inter-

mediate regime.

5. SUMMARY

Applying the electrodynamic continuum theory of chiral smec-
tics Cx we were able to calculate the electric field induced
deformation and flow in various geometries. These distortions
result in macroscopic contributions to the dielectric suscep-
tibility which determine the low frequency dielectric res-
ponse of the substance.

The recently described irreversible cross-couplings, =+
the electromechanical effect and its inverse play a role in-
dependently of the direction of the applied field.

In electric fields normal to the helical axis the par-
tial orientation of the spontaneous polarization contributes

to the susceptibility. This relaxation, the Goldstone-mode,
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is not exactly Debye-type. This relaxation is absent if the
helix is unwound by e.g. a DC bias field.

For a DC field along the helical axis a new phenomenon,
a continuous rotation of the helix is predicted.

It has been proved that owing to biaxiality an electric
field normal to the helix induces a field along the helical
axis supposing that the texture is inhomogeneous, i.e. the
C-director varies in space.

We should like to emphasize that our calculations hold
for infinite samples. The behaviour of thin sandwich cells
may be considerably different due to the influence of the
boundaries, but this more complicated problem unfortunately
can not be treated exactly within the framework of our

theory.
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