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Characteristics of electroconvection patterns have been studied in a homeotropic

nematic liquid crystal with unusual combination of material parameters (negative

conductivity and positive dielectric permittivity anisotropies). The morphological

phase diagram has been explored. Two distinct types of pattern dynamics have

been detected: losing autocorrelation of the pattern during temporal evolution

due to spatio-temporal chaos at onset and domain coarsening of a grid pattern.
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INTRODUCTION

Complex patterns observed in nature have attracted a considerable

interest recently [1–4]. The formation of such patterns is usually asso-

ciated with the instabilities of systems occurring under non-equilibrium

conditions. The patterns observed may have very complicated
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spatiotemporal behavior. A spectacular example of such phenomena is

electroconvection (EC) in nematic liquid crystals (NLCs).

EC is typically observed in nematics possessing negative dielectric

and positive conductivity anisotropies (ea < 0; ra > 0). Depending on

easily variable control parameters (as the rms value and the frequency

of the applied voltage) a rich morphology of patterns can be created.

The preferred direction (x) defined by the surfaces (x-y plane) in pla-

narly oriented cells results in well ordered roll patterns at the onset

which are either stationary or move with a constant velocity (traveling

waves), both have long correlation times. Correlation is typically lost

faster at higher voltages where the pattern becomes dynamic due to

the formation and motion of defects (dislocations) marking the path

to chaos.

In contrast to the planar case, in homeotropically oriented cells EC

is a secondary bifurcation occurring above a bend Freedericksz tran-

sition. In the Freedericksz distorted state the director bends away

from z towards an arbitrary direction in the x-y plane and breaks

the rotational symmetry of the homeotropic arrangement sponta-

neously. The in-plane director c is not prescribed externally (when

no magnetic field is applied) thus c is a slowly varying function of

x and y. This director distribution serves as a ground state with a

Goldstone mode of slow dynamics and zero growth rate which inter-

acts with the EC patterning mode at its onset [5]. Consequently one

obtains spatio-temporal chaos (STC), often called soft mode turbulence

[6], already at the onset of EC. This type of chaotic behavior has been

devoted considerable attention to in recent years, both theoretically [5]

and experimentally [7–9].

There exist, however, a few nematic liquid crystals which have

ea > 0; ra < 0 (i.e., opposite signs of the anisotropies compared to

the NLCs mentioned above). It has been hinted in the literature [10]

that these substances may also exhibit electrohydrodynamic instabil-

ities. Recently it has actually been proved [11,12] that at homeotropic

orientation of NLCs with such an unusual combination of the material

parameters the basic Carr-Helfrich mechanism of EC is fully oper-

ational, consequently it facilitates a direct transition from the undis-

torted homeotropic state to the electroconvecting one, without the

necessity (and existence) of a preceding Freedericksz transition. Thus

the azimuthal degeneracy due to the surface alignment is broken

during the onset of the EC instability which classifies this system to

another symmetry class.

In this paper we present a detailed analysis of the pattern

morphology and the dynamic response of such an unconventional

NLC.
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EXPERIMENTAL SETUP

The experiments were done in the nematic phase of a ‘‘swallow-tailed’’

compound, p-(nitrobenzyloxy)-biphenyl [13]. The phase sequence is as

follows: I–110�C–N–94�C–Sm C–75�C–Sm F–(66.5�C–Sm X)–69�C–Cr.
The structure of the monotropic (showing up only on cooling) smectic

X phase below the smectic F has not been identified. The substance

has ea > 0 and ra > 0 in the whole nematic range [11].

Ready made homeotropic cells of various thicknesses (d ¼ 9, 11 and

15 mm) were used in the conventional sandwich geometry. The cells

were driven by sinusoidal voltage. The patterns were observed with

a Leica DM RXP polarizing microscope and the temperature was con-

trolled using an Instec hot-stage with an accuracy of 0.05�C. EC mea-

surements were carried out at 96�C and 98�C. The images were

recorded by an Optronics MicroFire digital camera with 32 bit color

depth and were stored with a spatial resolution of 50� 1000 pixels

for autocorrelation and 1200� 1600 pixels for coarsening measure-

ments respectively. For further processing the recorded snapshots

were converted to 8 bit gray-scale images.

THE HOMEOTROPIC PHASE DIAGRAM

The conductive range up to the cutoff frequency xc has been studied

where EC sets in directly from the homogeneous state via a forward

bifurcation, in contrast to the conventional (ra > 0, ea < 0) homeotro-

pic case. As the Freedericksz transition is absent, the rotational sym-

metry is broken only at the onset of EC, the director perturbation

(bending away from z) is an inherent part of the EC mode.

The morphological phase diagram is depicted in Figure 1 where the

threshold voltage Uc is plotted against the dimensionless frequency

xsq (sq ¼ e0e?=r? is the charge relaxation time). Undulated zig-zag

(ZZ) rolls are observed at very low frequencies at onset [11]. Increasing

the frequency the pattern consists of areas of regular rolls and overlap-

ping regions with two almost orthogonal roll directions (squares) with

a well defined wave number qc(x) (Fig. 2a). The structure as a whole

is, however, disordered, there is a spatial variation of the direction

of the wave vector as a consequence of the absence of a preferred direc-

tion in the x-y plane due to the homeotropic director anchoring. The

size of the overlapping regions increases with the frequency up to a

point x� with x�sq ¼ 0.56 (the Lifshitz point) [11] above which only

squares are seen. Their orientation preserves the undulated character

of the rolls and the slow spatial variation in the x-y plane, therefore

are called soft squares (Fig. 2b).
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The onset structure shows a slow, persisting dynamics for frequen-

cies below x�. This involves a continuous change in the distribution of

the direction of the wavevector. The ZZ character as well as the typical

size of the domains persists with time. This dynamics will be

addressed in the next section in more detail.

FIGURE 1 The morphological phase diagram at homeotropic orientation

(R&S - rolls and squares, SS - soft squares, HS - hard squares).

FIGURE 2 TheAQ1 morphologies observed a; - rolls and square (xsq ¼ 0.233,

e ¼ 0.19), b; - soft squares (xsq ¼ 0.612, e ¼ 0.04), c; - hard squares (xsq ¼
0.583, e ¼ 0.47).
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Increasing the voltage above threshold at low frequencies we

observe a shrinking of the size of the regular areas and the dynamics

gets faster. The roll pattern gradually evolves into the turbulent

regime with increasing voltage. At high frequencies the soft square

pattern first becomes better oriented due to the reduction of the

number of dislocations then (still at small e) transforms into another

pattern, which contains domains of well ordered square grids sepa-

rated by sharp domain boundaries. This pattern, called hard squares

(Fig. 2c), persists for high voltages, until the appearance of spatio-

temporal chaos. There is an intermediate frequency range (below x�)
where the same hard square pattern develops from the rolls and

squares at increasing voltages as seen in Figure 1.

A quantitative comparison of the frequency dependence of the

threshold voltage Uc(x) and the onset wavenumber qc(x) with the

standard theory [14] based on the Carr-Helfrich destabilization effect

has yielded a very good agreement [11].

PATTERN DYNAMICS AT THRESHOLD

The time evolution of the patterns was studied as a function of fre-

quency and the dimensionless control parameter e ¼ ðU2=U2
c Þ � 1.

After application of the voltage corresponding to the chosen values

of e the pattern developed fully within a couple of seconds. While keep-

ing e constant subsequent two-dimensional snapshots have been

recorded in every 1 s for a period of 300 s. An arbitrary line, the same

in all pictures, was defined as the x-axis.
For quantitative characterization of the pattern dynamics a local

autocorrelation function C(x,t) of the intensity along the line I(x,t)
was computed according to the formula

Cðx; tÞ ¼ hðIðx; tþ toÞ � hIðx; tþ toÞiÞðIðx; toÞ � hIðx; toÞiÞi
DIðx;tþtoÞ �DIðx;toÞ

where

DIðx;tþtoÞ ¼ hðIðx; tþ toÞ � hIðx; tþ toÞiÞ2i and

DIðx; toÞ ¼ hðIðx; toÞ � hIðx; toÞiÞ2i

are the standard deviations, and h�i indicates averaging over the run-

ning variable t0. The autocorrelation function ĈCðtÞ was finally obtained

by averaging over x.
Figure 3 shows the e dependence of the autocorrelation function ĈCðtÞ

for one particular frequency (xsq ¼ 0.047) where rolls and squares
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were observed. The autocorrelation function diminishes (what is

expected for a developed chaotic regime) and its decay gets faster with

increasing e.

The correlation time sc was determined by least squares fitting of

the autocorrelation functions with a single exponential decay

ĈCðtÞ ¼ C0 � expð�t=scÞ.
Figure 4 exhibits sc

�1 versus e for different frequencies covering two

regions: the rolls and squares (xsq < 0.56) and the squares only

(xsq > 0.56).

Experimental data may be well fitted by the law sc
�1/ e at small x,

which indicates a direct transition to STC from the homogeneous state

[15]. At higher x (above x�) the structure is stationary at onset up to

e ¼ 0.05.

Increasing the frequency up to x� one observes rapidly decreasing

slopes which implies an increase of the correlation times. For frequen-

cies above x� the slope saturates. This behavior is similar to the

results on conventional NLCs [9]. In Figure 5 the slope (sce)
�1 is shown

as a function of the reduced frequency x=x�. For patterns dominated

by rolls (low frequencies, x=x� < 0:5) the slope is 5 times higher than

for the squares (x=x� > 1). For x=x� > 1 the slope becomes almost fre-

quency independent. Moreover, the pattern at onset seems to be

stationary as indicated by the finite e 6¼ 0 intersection of the last fitted

FIGURE 3 Autocorrelation function for xsq ¼ 0.047 for four different e

(0.035, 0.048, 0.072 and 0.109).
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FIGURE 5 (sce)
�1 as a function of the reduced frequency x=x

�
. Solid squares

refer to the results obtained for cells of thickness �15mm and open squares for

9 mm (after re-scaling -see text).

FIGURE 4 Inverse correlation time sc
�1 versus e.
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line in Figure 4. Such behavior was also found in the normal roll

regime of conventional NLCs [9]. Above x=x� > 1:25 the measurement

of sc(e) meets difficulties as the soft squares exist in a narrow e region

only (see Fig. 1.). When xsq is slightly above 0.56 this e existence range

is about 0.2 but with increasing frequency this value decreases down

to e � 0.05, thus leaves too short e range for reliably measuring sc(e).

The characteristic time s for the decay of the EC patterns is known

to be thickness dependent. As a smaller thickness results in higher

vertical (along z) director gradient and thus higher restoring torque,

a faster relaxation is expected. Calculations predict s/d2 dependence.

Our situation is, however, more complicated as besides the thickness

(which sets the wavelength as well) there is another characteristic

length La for the azimuthal variation of the pattern orientation.

Though no theoretical prediction is known yet for this geometry, one

might expect that lateral director gradients should also affect the cor-

relation time sc. Unfortunately La is out of control at present, so only

the thickness dependence could be checked. Measurements on cells of

three different thicknesses indicated a sc/d2 dependence thus indi-

cating a dominance of d and negligible effect of La. In Figure 5 actually

the results obtained for cells of d1 ¼ 9 mm (open circles) and d2 ¼ 15mm

(squares) are combined using a re-scaling by d1
2=d2

2 for sc(d2).

COARSENING OF THE SQUARE DOMAINS

Losing correlation is not the only form of pattern dynamics. Occasion-

ally, on the contrary, the pattern becomes more ordered in time, i.e.,

coarsens. This phenomenon has been observed in various systems,

though only a few experiments on this field are known yet. They

suggest that after a long time period the domain growth=shrinking
can be characterized with a power-law, but the value of the growth

exponent depends on the measurement scheme (on the choice of the

measure of coarsening dynamics) [16–19] which may indicate the

necessity of multiple correlation length scales [20]. Simulations of

the potential and non-potential forms of the Swift-Hohenberg equation

[16,18,21] have suggested a growth of t1=5 for the characteristic length

of domains obtained from a structure function S(q) in the Fourier

space [16,18]. However, in the case when the growth exponent is

determined from the orientational correlation function, t1=4 is expected
for potential dynamics [16,18] and t1=2 for a non-potential one [16].

Our electroconvecting nematic with its hard square pattern is

another example of driven systems approaching a steady non-

equilibrium state via coarsening. Jumping to the proper e the

pattern initially consists of small domains of perfectly ordered
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two-dimensional square grids with different orientation, separated by

domain walls (Fig. 6a). The domain-walls are moving allowing the

growth of some domains on the expense of shrinking ones over a

period of minutes, resulting asymptotically in a very large ordered

region (Fig. 6b).

FIGURE 6 Coarsening of the square pattern at T ¼ 98�C, xsq ¼ 1.63,

e ¼ 0.21. a; after 1 minute, b; after 89 minutes.

FIGURE 7 Plot of log(dw) versus log(t) for xsq ¼ 1.167 and e ¼ 0.2. The fitted

line has a slope of �0.49� 0.02.
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This evolution of patterns was monitored by recording a sequence of

subsequent snapshot images and focusing on the orientation of the

squares. A two-dimensional fast Fourier transformation (FFT) was

applied to the same (512� 512 pixels) region of all images and the azi-

muthal distribution was calculated at the radius qc, the dominating

wavenumber of the system. As a measure of the order the half width

dw of the peak in the azimuthal distribution was taken.

Figure 7 exhibits a log-log plot of dw versus time for xsq ¼ 1.167 and

e ¼ 0.2. Data indicate power law dependence after some initial transi-

ent period. Fitting a straight line for the final decade of time results in

a slope of �0.49� 0.02, which indicates a growth exponent of

0.49� 0.02. After the time corresponding to the last data points the

area selected for the FFT contained only two domains. Other measure-

ments at different x yielded similar values (�0.45� 0.02,

�0.46 � 0.06, �0.50� 0.10). This agrees quite well with the predic-

tion for non-potential dynamics [16].

CONCLUSIONS

A direct transition from the homeotropic state to electroconvecting

patterns has been observed in a nematic liquid crystal with ea > 0,

ra < 0. Exploring the complete phase diagram in the (U, q) space three

distinct morphologies, rolls and squares, soft squares and hard

squares have been identified.

For the first type (frequencies below the Lifshitz point x�) the exist-

ence of spatio-temporal chaos at onset has been proved by measuring

the autocorrelation of the pattern. In the case of the hard squares a

domain coarsening has been observed which follows the t1=2 law.
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