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Abstract: A regular domain structure consisting of parallel stripes – 
flexodomains – have been induced by low frequency (subHz) electric 
voltage in a bent core nematic liquid crystal. The wavelength of the pattern 
is in the range of 1–10 micrometers and thus can conveniently be observed 
in a polarizing microscope. It also serves as an optical grating and produces 
a regular system of laser diffraction spots. The pattern was found to emerge 
and disappear consecutively in each half period of the driving, with the 
wavelength of the flexodomains changing periodically as the ac voltage 
oscillates. Analyzing the polarization characteristics of the diffracted light, 
the polarization of the first order spot was found perpendicular to that of the 
incident light, in accordance with a recent theoretical calculation. 
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1. Introduction 

Nematic liquid crystals (NLCs) are anisotropic fluids with inherent orientational ordering, 
described by the director n. As shown by Meyer [1], the symmetry properties of nematics 
allow for the existence of flexoelectricity [2], which manifests itself in an electric 
polarization, Pfl = e1 n div n – e3 n × curl n, induced by elastic deformations (by director 
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gradients). Here e1 and e3 are phenomenological flexoelectric coefficients belonging to the 
splay and bend elastic deformations, respectively. In an electric field E, the flexoelectric 
polarization yields a linear, flexoelectric interaction (–Pfl E), in addition to the usually 
dominating quadratic, dielectric one (–½ εa (nE)2, where εa is the dielectric anisotropy of the 
material). 

The flexoelectric instability, which is observable in a planarly aligned sandwich cell filled 
with certain nematics when the applied voltage exceeds some threshold value Vc, is an 
example for an electric field induced deformation solely due to flexoelectricity. This 
instability called flexoelectric domains (or shortly flexodomains, FDs) manifests itself as 
spatially periodic array of bright and dark stripes, which run parallel with the initial director 
alignment; it was first observed by Vistin [3]. The dc voltage induced patterned state is an 
equilibrium deformation (without any material flow), having a lower free energy than the 
initial homogeneous state, as the free energy gain due to the flexoelectric interaction may 
overcome the increments of the elastic and dielectric contributions [4]. Using the one-elastic-
constant approximation, it has been shown that flexodomains may emerge only if the 
parameter combination |µ| = (ε0 εa K)/(e1 – e3)

2 < 1; then the threshold voltage Vc(µ) and the 
critical wave vector qc(µ) of the pattern were calculated. Here K is the one (averaged) elastic 
modulus. Recently, a more precise theoretical analysis has taken into account the anisotropy 
of elasticity, and confirmed that FDs may appear only in a finite µ interval whose boundaries 
depend on the differences between elastic moduli [5]. 

The restrictions on µ substantially reduce the number of nematics suitable for studying the 
flexoelectric instability; indeed, only a few compounds have been reported to exhibit FDs 
[3,6–13]. Flexodomains are best detectable at dc excitation, even though that introduces some 
uncertainties into the threshold measurement, as the applied voltage partially drops on the 
orienting layers and on the ionic double layers formed at the electrodes [12]. Using ac 
excitation, the capacitive coupling may reduce the influence of this internal attenuation; 
however, calculations predict a strong increase of Vc with the frequency f of the applied 
voltage [5], which may provide a practical upper frequency limit for observing FDs. In 
addition, at higher f and/or if the electrical conductivity σ is non-negligible, dissipative effects 
(like electric currents and flow due to director relaxation or charge separation) may also have 
an important role, modifying the mechanism of pattern formation as well as the morphology 
of the resulting patterns. Then the patterns are classified as those of electroconvection (EC) 
[14,15] rather than FDs. The frequency fc, where EC takes over from FDs due to its lower 
threshold voltage, depends strongly on the material parameters and is usually below a few Hz. 

Most materials, where an FD to EC transition has been reported so far [11–13], had 
opposite sign of their dielectric and conductivity anisotropies (εa < 0, σa > 0) and therefore, 
they exhibited standard electroconvection [15]. In these cases a significant change occurs in 
the direction of the wave vector qc at the transition. If, however, the two anisotropies are of 
the same sign (εa < 0, σa < 0), nonstandard electroconvection occurs [15,16], which is also due 
to flexoelectricity (as FDs), just involving dissipative couplings in addition to the equilibrium 
ones. In such compounds one may expect a gradual, smooth transition from FDs to 
nonstandard EC, without a big change in qc; that can make distinguishing the two pattern 
types and identifying fc difficult [17,18]. 

When the transition frequency fc accidentally falls into the subHz range, the period time τ 
= 1/f of the driving sinusoidal ac voltage is much longer than the director relaxation time. 
Therefore, the patterns (whether FDs or EC) can emerge and decay in each half period; the 
patterns exist only in a short part of the period (flashes). It has recently been shown that 
compounds with εa < 0, σa > 0 may exhibit in this ultra-low f range both FD and standard EC 
patterns in a certain voltage range as time separated, alternating flashes [11–13]. 

As both FDs and EC are stripe patterns (though with different wave vectors), they behave 
as optical gratings controllable by the applied voltages, which opens up the way for optical 
applications. Studies of FDs as gratings have been, however, so far quite scarce [19]. 

In the present paper, we intend to provide a deeper insight into the characteristics of 
flexodomains, as well as into the yet unexplored ultra-low f behavior of nonstandard EC 
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exhibited by substances with εa < 0, σa < 0. The measurements were performed on a recently 
synthesized bent-core nematic (BCN) compound. Using complementary experimental 
techniques, polarizing microscopy and laser diffraction, pattern characteristics and their 
dependence on frequency, applied voltage and time were explored. Moreover, the unexpected 
polarization characteristics of the light diffracted on the FD pattern were determined. 

2. Material and experimental setup 

Measurements were performed on the bent-core nematic liquid crystal 2,5-bis (4-(difluoro (4-
heptylphenyl) methoxy) phenyl)-1,3,4-oxadiazole (7P-CF2O-ODBP), whose photorefractive 
properties have been reported recently [20]. It is the shortest member of a BCN homologous 
series, whose longer members have also been studied [21,22]. The structural formula of the 
compound is shown in Fig. 1. The phase sequence is: 

Crystal – 77 °C – Smectic – 90.3 °C – Nematic – 131.5 °C – Isotropic. 

 

Fig. 1. Structural formula of the BCN compound 2,5-bis (4-(difluoro (4-heptylphenyl) 
methoxy) phenyl)-1,3,4-oxadiazole (7P-CF2O-ODBP). 

Sandwich cells of 6 µm thickness were used. Planar alignment was obtained by a rubbed 
polyimide layer coated on the indium-tin-oxide transparent electrodes. The cells were filled 
with the compound in the isotropic phase due to capillary action. 

Most experiments were performed using a Leica DM RXP polarizing microscope (POM). 
The sample was placed into a Linkam LTS 350 microscope hot-stage, whose temperature T 
was kept within ± 0.01 °C by a TMS 94 temperature controller. 

Sinusoidal ac voltage of ultra-low frequency with amplitude of Vp [V(t) = Vp sin(2π f t), 0 
< f < 5 Hz] from a function generator was applied to the sample via a high voltage amplifier. 
The voltage induced patterns were observed by the shadowgraph technique [23]; the sample 
was illuminated by unpolarized white light and a single polarizer (the analyzer) was inserted 
in the light path after the objective in order to enhance the pattern contrast (it cuts out the 
ordinary component of light which would pass the sample without becoming spatially 
modulated). Image sequences were recorded by a fast black-and-white camera (Mikrotron 
EoSens MC 1362) capable of 2000 frames/s recording rate at the spatial resolution of 
512*512 pixels. Image recording was synchronized to the zero crossing of the applied 
voltage. 

POM observations were supplemented by complementary diffraction measurements. The 
voltage induced patterns correspond to an optical grating of spacing Λ, which therefore, 
diffracts the incoming laser beam (λ = 633 nm) producing a set of diffraction spots. The 
diffraction angles φκ of the κth order are determined by the relation Λ sinφκ = κ λ. This far field 
diffraction image could be recorded by a digital camera. Alternatively, dynamics of the 
diffracted spots could also be investigated by a set of n = 9 photodetectors, placed at fixed 
angles φm within the diffraction angle range φmin–φmax. Here φmin and φmax are the diffraction 
angles of the first order diffraction spot at the onset of the pattern and at the highest applied 
voltage, respectively. Photodetector signals, which are proportional to the intensity Im of the 
light diffracted at the angle φm of the mth detector, were monitored by an oscilloscope. 

3. Experimental results and discussion 

In the following, we summarize the results obtained by the POM and diffraction techniques, 
respectively, about the morphologies and dynamics of FDs and EC patterns. As ultra-low 
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excitation frequencies were used, special attention has been devoted to their time dependence 
within a single ac period. 

3.1 Voltage and frequency dependence of the pattern morphologies observed by POM 

The various observations with POM were performed at the fixed temperature of T – Tc = –20 
°C; here Tc is the clearing point of the nematic. 

 

Fig. 2. Variation of pattern morphology with the frequency (f = 0.01 Hz, 0.1 Hz and 1.0 Hz) 
and the applied voltage (Vp = 36 V, 43 V and 50 V). The arrows indicate the directions of the 
initial director n0 and of the analyzer. The size of the POM snapshots is 67 μm × 67 μm. 

As an illustration, Fig. 2 exhibits snapshots of the patterns for three frequencies (f = 0.01 
Hz, 0.1 Hz and 1 Hz) and three voltage levels (Vp = 36 V, 43 V and 50 V). All snapshots were 
taken at the maximum of the applied ac voltage, i.e., at the moment of t = τ/4. At the two 
lower frequencies one finds FDs running parallel with n0. Their wavelength Λ does not vary 
much with the frequency, but is very sensitive to the applied voltage level; increasing Vp leads 
to a substantial decrease of Λ. At f = 1 Hz, however, EC patterns (oblique rolls) appear with a 
significantly larger wavelength. Increasing the voltage at this frequency causes a change of 
the obliqueness angle (the stripes become more parallel with n0) instead of changing the 
wavelength. 

3.2 Temporal variation of the morphologies within a single half period 

At ultralow frequency driving, the patterns are not stationary, but emerge and decay within 
each half period. This is demonstrated in Fig. 3, which shows a sequence of pattern snapshots 
taken at regular intervals within a single half period at f = 0.1 Hz for FDs [see Figs. 3(a)-3(g)] 
and at f = 1.0 Hz for EC [see Figs. 3(o)-3(u)]. In addition, Figs. 3(h)-3(n) show the diffraction 
spots of FDs measured independently at the same frequency, though at higher voltage than 
that of Figs. 3(a)-3(g). That ensured clearer visibility of the diffraction spots; moreover, it 
allowed demonstrating the variation of the diffraction angle within the driving period, which 
will be discussed in more detail in Sec. 3.4. 

On the one hand, it is seen that both kinds of patterns exist only in a part of the half 
period. On the other hand, Fig. 3 clearly demonstrates that the temporal evolution of EC and 
FDs are completely different. With the time t elapsing, FDs become strongest when t → τ/4 or 
t → 3τ/4, i.e., where the applied voltage and thus the electric field reach their maxima, while 
they gradually decay as t approaches 0, τ/2 or τ, when the voltage is zero. One can thus say 
that FDs are roughly in phase of the applied voltage, however, they appear only when the 
actual voltage exceeds some threshold value. This supports the assumption that in the ultra-
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low f range FDs still may be regarded an equilibrium deformation, as dissipative contributions 
due to director relaxations (e.g. backflow) are negligible; i.e., formation of FDs is driven by 
the electric field. 

 

Fig. 3. Morphological changes within a half period. (a)–(g): POM snapshots of flexodomains 
(FDs) at f = 0.1 Hz, Vp = 36 V; (h)–(n): snapshots of diffraction spots of FDs at f = 0.1 Hz, Vp = 
50 V (the direct beam is almost completely blocked); (o)–(u): POM snapshots of EC patterns at 
f = 1.0 Hz, Vp = 36 V. The size of the POM snapshots is 67 μm × 67 μm. 

In contrast to that, one finds that the EC pattern contrast is the highest soon after each 
polarity-reversal (t = 0, τ/2, τ) of the applied voltage and already decays when, at t → τ/4 or 
3τ/4, the voltage reaches its maximum. Taking into account that an LC cell corresponds to a 
mostly capacitive load, the phase of current should be ahead of the voltage by π/2, which 
results in maximum currents at t → 0, τ/2, and τ. This correlation between the phase of the 
current and the onset of EC shows its dissipative behavior and that the EC instability, unlike 
the FDs, is driven by the current rather than the voltage or field. 

3.3 Temporal evolution of the pattern contrast within a driving period 

The features, discussed above and illustrated in Fig. 3, can be more precisely explored if one 
plots the contrast of the pattern versus time. For a satisfactory temporal resolution, a sequence 
of 2000 images was recorded within a single driving period by the fast camera. The contrast C 
of the pattern was defined as the mean square deviation of the pixel intensities Ixy over the 
image: C = (Ixy - Ixy)2. In the homogeneous state, C is nearly zero (its value is determined 
by the orientational thermal fluctuations of the planar state), but grows with the appearance of 
the periodic modulation (the pattern). Figure 4(a) shows the time dependence of the contrast 
at a fixed Vp for the three frequencies, f = 0.01 Hz, 0.1 Hz and 1 Hz, together with the instant 
values of the applied voltage. It is seen that the contrast curves are symmetric; the shape is 
roughly the same for the positive and negative half cycles. This indicates that the contrast has 
no polarity dependence. The largest contrast was obtained at the highest frequency (f = 1.0 
Hz). Here a high, sharp peak is seen in the interval 0 < t < 0.1 τ, which transforms into a wide 
shoulder with a small second peak at t ≈0.33 τ before fading to the background for t > 0.47 τ. 
Reducing the frequency by a decade (f = 0.1 Hz), a minor peak is still noticeable at t ≈0.03 τ, 
nevertheless the main feature is a wide, flat maximum for 0.12 τ < t < 0.42 τ. At a further 
decrease by a decade (f = 0.01 Hz), only this latter maximum is observable. 

Though the contrast, as we defined above, indicates the appearance of patterns, it cannot 
distinguish the different types, EC and FD. However, based on Fig. 3, it is clear that the 
narrow peak at t < 0.1 τ corresponds to EC, while FDs belong to the wide one centered at 
around t ≈0.27 τ. Thus the EC and FD patterns occur in different time slots within the half 
period; at lower f the FDs, at higher f EC dominates. The contrast of FDs follows the applied 
voltage with only a small phase delay. The change of the heights of the EC peak relative to 
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that of the FDs indicate that there is a crossover frequency (between 0.1 Hz and 1 Hz), below 
which FDs are the primary instability, while above that EC has lower threshold voltage. 

 

Fig. 4. Temporal evolution of the applied voltage (dash-dotted line) and (a) the pattern contrast 
C within one period of driving for f = 0.01 Hz, 0.1 Hz and 1.0 Hz at Vp = 50 V; (b) the 
dimensionless wavenumber q*(t/τ) of the FD pattern within a single driving period (τ) for f = 
0.01 Hz, Vp = 50 V and for f = 0.1 Hz, Vp = 50 V. 

Note that at the two low f cases (f = 0.01 Hz and 0.1 Hz), the steep increase in the FD 
contrast occurs at about the same reduced time t/τ (≈0.1 and 0.6), i.e., at about the same 
instantaneous value of the applied voltage; the decay of the contrast follows the same curve. 

3.4 Temporal variation of the wavelength within a period 

It could clearly be seen in Fig. 2 that the wavelength Λ of FDs are sensitive to the applied 
voltage. Figure 3 has shown that at the ultra-low f driving the existence of the pattern is 
closely related to the instantaneous value of the applied ac voltage. As the voltage changes 
slowly compared to the director relaxation time, it might be expected that the wavelength of 
the pattern is also changing within the driving period. Indeed, the measurements provided a 
proof that Λ does not remain constant within the period. This is demonstrated in Fig. 4(b), 
which exhibits the time dependence of the dimensionless wavenumber q* = q d/π = 2d/Λ. 
While Fig. 4(a) showed that at both ultralow frequencies FDs appear at about the same 
instantaneous voltage (at the same t/τ), Fig. 4(b) proves that FDs appear with the same qc. Just 
as the contrast, q* also follows the applied voltage with a small phase delay. The q*(t/τ) 
curves almost coincide, except that the maximal value of q* slightly increases with the 
reduction of f. This may be an indication that FDs have a slow dynamics; changing the 
wavelength of FDs requires a long time (seconds). This is not surprising, as stripe patterns are 
expected to be able to adjust their wavelength only via defect generation and defect motion. 

3.5. Diffraction on the patterns and its dynamics 

Light diffraction is a complementary method to polarizing microscopy for characterizing 
patterns. Though the method can easily detect the emergence of patterns and is suitable to 
provide information about the morphology (the wave vector) and dynamics (temporal 
evolution of diffracted intensity), in the rare cases when it was used for quantitative 
characterization, it was applied mostly for EC patterns [24–35]. Here we report on using the 
diffraction technique to explore the dynamics of FDs. In addition, we also studied the 
polarization of the diffracted light. 

A straightforward way to investigate the diffraction on FDs is to use the fast camera, 
which can record a time sequence of diffraction spots; thus allowing detection of their 
displacement. As an example, Figs. 3(h)-(n) show such a time sequence of diffraction spots 
(the 1st order ones), which correspond to the morphologies of Figs. 3(a)-(g), and is repeated 
for each half period. It is clear to see that the spots are located along the vertical axis; 
however, their separation and thus the wavelength of FDs undergo a periodic change. 
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Fig. 5. Smoothed contrast of the diffraction spots (defined as the average intensity of the 
framed region of the inset picture) vs. time in one driving period at f = 0.1 Hz, Vp = 35 V. The 
applied voltage is also shown by dash-dotted line. 

Figure 5 shows an example for the temporal evolution of the contrast of the diffraction 
spots within a single ac period, recorded at T – Tc = –17 °C, f = 0.1 Hz, Vp = 35 V. Here the 
contrast of the diffraction spots was defined as the average intensity in a wide region along 
the upper half of the vertical axis (as shown in the inset of Fig. 5). It may include higher than 
first order spots (if there are any), but excludes contributions from the direct beam (0th order) 
and its reflections. In order to reduce the noise of the contrast curve, an FFT smoothing 
algorithm was applied. The contrast of the spots correlates closely with the diffraction 
efficiency, which becomes strongest at about t = τ/4 or t = 3τ/4, where the electric field is 
maximum, and decreases to minimum at about t = 0 or t = τ/2 where the electric field 
vanishes. The shape of the contrast plot in Fig. 5 is very similar to the plot (blue dashed line) 
in Fig. 4(a). This is not surprising because both the contrasts of the pattern and of the spots 
depend on the amplitude of the flexoelectric deformation of the BCN. 

A detailed study of the spot sequences recorded within a period shows that the 1st order 
spot appears at a diffraction angle φ = φmin. Upon increasing the voltage, the wavelength of the 
FDs decreases; hence the diffraction angle grows until it reaches its maximum value φ = φmax 
at about the voltage maximum (after 1/4 period of the driving voltage). After that, the 
diffraction angle reduces back to φmin, where the spot disappears, and the whole process is 
repeating for the next half cycle. 

Besides visualizing the diffraction spots by a digital camera, the oscillating dynamics of 
the diffracted light was also be monitored by a set of n photoelectric detectors positioned 
equidistantly to different diffraction angles φm, between φ1 = φmin and φn = φmax. The 
corresponding optical set-up is shown in Fig. 6. The signal of the mth photodetector is 
proportional to the intensity diffracted at the angle φm. As the wavelength of FDs increase and 
decrease periodically with the applied voltage, the diffracted light sweeps from φmin to φmax 

and then back to φmin, passing through the detector positions twice in both directions for 1 <  

m < n; thus one finds four pulses in a period (centered around the moments tm1, tm2, tm3, tm4 
with maximal intensities Im1, Im2, Im3, Im4, respectively). For m = n the number of pulses 
reduces to two. In the following, we report on the relations between the parameters φm, tmi, Imi 
(i = 1–4) and the control parameters Vp and f. 
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Fig. 6. The set-up for monitoring the dynamics of the diffracted light, and an example of the 
time dependent intensity signal from the mth detector. 

 

Fig. 7. (a) Temporal evolution of the applied voltage and the 1st order diffraction intensity Im at 
selected detector positions (m = 1, 5, 9) for f = 0.01 Hz, Vp = 55 V. As the wavelength varies 
within a driving period, the diffracted light passes these detector positions at different moments 
and with different intensity. (b) Dependence of the moment (t/τ) of the pulse center on the 
diffraction angle φm (the position of the mth detector) within one half period at f = 0.01 Hz for 
two different Vp. 

3.6 Temporal variation of the diffracted intensities within one period 

Figure 7(a) depicts the time dependence of the diffracted intensities at selected diffraction 
angles φm (m = 1, 5 and 9) for f = 0.01 Hz, Vp = 55 V, i.e., well above the threshold. The 
pulses at the different detector positions occur at different time slots and with different 
intensities. The time separation between the two pulses of the same half period is the largest 
for m = 1, and reduces with increasing m. For the last detector m = n ( = 9 in this case), the 
two pulses merge into one, indicating the position of the maximal diffraction angle. This 
behavior is confirmed in Fig. 7(b), which shows the time instants of the center of the detector 
peaks as a function of the diffraction angle. It is seen that both tm1 and tm2 converge to a 
common value (t/τ ≈0.27) at m → n. The maximal diffraction angle increases with Vp 
indicating a shorter wavelength, as expected; however, φmin does so too, i.e., the diffraction 
angle and thus Λ at the pattern onset also depends on Vp. The diffraction efficiency (the 
intensity Im) was found to depend on Vp and on the diffraction angle φm in a non-monotonic 
way. 
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Fig. 8. Visibility of the diffraction spots at different polarizer/analyzer settings: (a) without any 
polarizer (P) or analyzer (A); (b) with a single polarizer at (P) || n0; (c) with crossed polarizers 
at (P) ⊥ n0 and (A) || n0; (d) at parallel polarizer and analyzer at (P) ⊥ n0 and (A) ⊥ n0. 

3.7 Polarization characteristics of the diffraction spots 

In the diffraction set-up in Fig. 6, the sample was illuminated by an unpolarized laser beam at 
normal incidence. The polarization characteristics of the incoming beam could be controlled 
by inserting a polarizer into the light path before the sample; the diffracted beam could be 
analyzed by inserting and rotating an analyzer after the sample. The results obtained on the 
polarization characteristics are summarized as follows: 

I. If neither a polarizer, nor an analyzer is inserted, the 1st order diffraction spots are 
clearly visible, as shown in Fig. 8(a); 

II. Inserting a polarizer P along the initial BCN orientation n0 (P || n0), the 1st order 
diffraction spots disappear, as shown in Fig. 8(b); 

III. If we rotate the polarizer out of the P || n0 position towards P ⊥ n0, the 1st order 
diffraction spots reappear. 

Keeping the polarizer at P ⊥ n0, an analyzer A was inserted in order to check the 
polarization state of the 1st order spot: 

IV. When P ⊥ A, the 1st order spot is very bright, as seen in Fig. 8(c); 

V. If, however, P || A, the 1st order spot vanishes, as seen in Fig. 8(d). 
These results demonstrate that after being diffracted by FD, the polarization state of the 

1st order spot was perpendicular to that of the incident light, which differs from the behavior 
of conventional EC rolls where the polarization state of light does not change. 

4. Discussion and conclusions 

In the present paper, we characterized the patterns of a banana nematic LC, 7P-CF2O-ODBP, 
induced by very low frequency (f < 3 Hz) ac voltages; i.e., at frequencies which are much 
lower than the typical f range of pattern formation studies. Two kinds of patterns, 
flexodomains and electroconvection, could be identified. 

As in the studied frequency range the director relaxation time of the sample is much 
shorter than the period of the driving voltage, we found (in agreement with our expectations) 
that both kinds of patterns exhibit a flashing character; they emerge and decay within a half 
period of the driving voltage. The variation of the pattern contrast within the period, shown in 
Fig. 4(a), strongly resembles the former observations on calamitic nematics [11–13]: EC 
occurs following the zero crossing of the applied voltage, while FDs are seen around the 
voltage maxima/minima. The strong similarity in the position (phase) of the contrast peaks is 
not at all trivial, as 7P-CF2O-ODBP is assumed to have the dielectric and the conductive 
anisotropies both negative, thus enabling nonstandard EC as its longer homologues [19,20], 
while the calamitics mentioned above had εa < 0, σa > 0 and exhibited standard EC. In [12] the 
phases of the EC and the FD peaks could be calculated using the extended standard model of 

#238479 - $15.00 USD Received 21 Apr 2015; revised 23 May 2015; accepted 24 May 2015; published 1 Jun 2015 
© 2015 OSA 15 Jun 2015 | Vol. 23, No. 12 | DOI:10.1364/OE.23.015224 | OPTICS EXPRESS 15233 



EC [16] for a calamitic (Phase 5) with known material parameters, concluding that if the 
internal voltage attenuation and phase shift due to the alignment layers are compensated, the 
measured phase of FDs coincide with the theoretical predictions, while standard EC occurs 
earlier in the period than expected. The fact that the phase of the FD peak in 7P-CF2O-ODBP 
is practically the same as in Phase 5 implies that this phase is not too sensitive to small 
variations of the material parameters (elastic moduli and permittivities). On the other hand, no 
theoretical predictions for the phase of a nonstandard EC peak are available yet. Nevertheless, 
the argument that the earlier emergence of standard EC may be triggered by the ionic current 
peaks following the polarity reversal [13] may hold in the case of nonstandard EC too. 

A characteristic feature of FDs, distinguishing them from EC, is their change of the wave 
number with time within the driving period, as shown in Fig. 4(b). It is well known [6,10,36] 
that the wave number of dc voltage induced FDs increases linearly with the voltage. On the 
one hand, a half period of an ultra-low frequency ac voltage may be approximated as a slowly 
varying dc voltage; therefore the temporal evolution of q may be attributed to the temporal 
variation of the instantaneous voltage. On the other hand, the fact that the maximal value of q 
at the same voltage increases as f is reduced, despite of the increasing threshold, indicates that 
even at the studied very low frequencies the voltage variation is still not slow enough for the 
system to reach the local equilibrium. 

Diffraction measurements revealed another specific feature of FDs: the polarization 
direction of the first order diffracted light is perpendicular to that of the incident laser beam. 
Relating the properties (intensity and polarization) of the diffracted light to the periodic 
director modulation in the nematic layer is a basic problem of diffraction optics. Former 
theoretical models based on geometrical optics [37–39] or physical optics [30,40] assumed a 
one-dimensional deformation in the plane normal to the cell, which was a fairly good 
approximation for EC patterns. They concluded that at normal incidence of light, the 
incoming and outgoing polarization directions are the same and for standard EC the first order 
diffracted intensity is negligible compared to the second order one. The assumption of one-
dimensional deformation, however, does not hold for the flexodomains, which involve 
periodic modulation of the tilt angle as well as the azimuthal angle of the director. A recent 
generalization of the theoretical optical analysis to arbitrary three-dimensional director fields 
have shown [41] that the diffracted light can have a component with polarization 
perpendicular to that of the incoming beam in the presence of twist, i.e., a variation of the 
azimuthal angle along z. This requirement fulfils for FDs; therefore, the detection of first 
order diffracted spots at crossed polarizers in case of normal incidence is in accordance with 
the theoretical predictions. 

Finally, we would like to emphasize that there is a crossover frequency where the primary 
instability changes its type due to the intersection of the Vc(f) threshold curves of FDs and EC. 
As usual, FDs are observable at lower frequencies. In view of possible future applications of 
the FDs as controllable gratings, thus decreasing their threshold voltage and/or pushing up the 
EC threshold voltage of materials is an important task. 
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