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Abstract: The contribution is an overview of the observations regarding the structural 
transitions in ferronematics based on thermotropic nematics doped with magnetic 
nanoparticles of different shape, and the magnetic field induced shift of the isotropic to 
nematic phase transition temperature. Due to presence of magnetic particles an increase of the 
isotropic-nematic phase transition temperature was observed as a function of applied 
magnetic field. The response of ferronematics to very low magnetic fields is also presented 
which is important for the construction of various magneto-optical devices. 

 
1. Introduction 
Liquid crystals can be oriented by electric or magnetic fields due to the anisotropy of the 
dielectric permittivity or the diamagnetic susceptibility [1]. As the former is in the order of 
unity, in conventional devices the driving voltages are in the order of a few volts. However, 
because of the small value of the anisotropy of the diamagnetic susceptibility (~ 10-7 ), the 
magnetic field necessary to realign liquid crystals have to reach rather large values (B ~ 10T 
depending on the thickness of the liquid crystal layer).  In an effort to enhance the magnetic 
susceptibility of liquid crystals, the idea of doping them with small amount of tiny magnetic 
particles was theoretically introduced by Brochard and de Gennes [2]. They have developed 
the continuum theory of magnetic suspensions in nematic liquid crystals (ferronematics). In 
their theoretical work rod-like magnetic particles with the length L >> a (where a is the 
molecular size of the nematic liquid crystal) and with a diameter of d ~ L/10 were considered. 
The volume concentration of magnetic particles was supposed to be sufficiently small (  ~ 
10-4) in order to be able to ignore the inter-particle magnetic dipole-dipole interaction. They 
predicted that a rigid anchoring with m || n would result in the ferromagnetic behaviour of the 
mixture. Here the unit vector n (the director) describes the preferential direction of the 
nematic molecules and the unit vector m denotes the orientation of the magnetic moment of 
the magnetic particles. In the first experimental paper, Rault et al. [3] reported about the basic 
magnetic properties of a suspension of rod-like -Fe2O3 particles in the liquid crystal MBBA. 
In order to stabilize the suspension, the particles were first coated with a surfactant and then 
mixed with the nematic liquid crystal. The obtained results confirmed the existence of a 
ferromagnetic state in such suspension. Additionally they have found that the temperature of 
the nematic-isotropic transition decreases with increasing volume concentration of particles. 
Later, based on the estimations given in [2], first lyotropic [4,5] and then thermotropic [6] 
ferronematics have been prepared and studied. These experiments confirmed the existence of 
considerable orientational and concentrational effects in liquid crystals doped with magnetic 
particles, but raised a lot of questions as well. 
One of the most important questions solved in the theory of ferronematics is the problem of 
the equilibrium orientation of magnetic particle, i.e. the direction of its magnetic moment m, 
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in the nematic matrix. The Brochard and de Gennes theory [2] considers the rigid anchoring 
with m parallel with n. Based on later experiments, which excluded the co-alignment of m 
and n in some thermotropic ferronematics, the Burylov and Raikher’s theory was constructed 
[7-9]. This theory considers the finite value of the surface density of the anchoring energy W 
at the magnetic particle - nematic boundary. The finite value of W, as well as the parameter 

=Wd/K  1, characterize the soft anchoring of nematic molecules on the surfaces of 
magnetic particles (d - typical size of magnetic particle, K - corresponding Frank orientation-
elastic modulus of liquid crystal). The soft anchoring, unlike the rigid one, permits both types 
of boundary conditions (m  n and m || n), thus the Burylov and Raikher’s theory could 
explain the experimental findings. In the frame of this theory the instabilities of the uniform 
texture in ferronematics exposed to external magnetic or electric field (Fréedericksz 
transitions) were analysed and the expressions for their critical fields in different geometries 
were derived. 
 
2. Results  
The studied ferronematic samples were based on the thermotropic nematic 4-(trans-4'-n-
hexylcyclohexyl)-isothiocyanatobenzene (6CHBT). 6CHBT is an enantiotropic liquid crystal 
with high chemical stability [10]. The temperature of the nematic-to-isotropic transition (the 
clearing point) of the studied nematic is TNI = 42.8°C. The nematic samples were doped with 
different kind of magnetic particles in volume concentration of 2x10-4. The synthesis of 
magnetic particles of various shape was described in [11].  The size of spherical particles was 
11.6nm; the diameter and the length of rod-like particles were 25nm and 1200nm, 
respectively. The length of chain-like particles was approximately 400nm; the size of a single 
particle in the chain was 34nm.  
The structural transitions in ferronematic samples were monitored by capacitance 
measurements in a capacitor made of ITO-coated glass electrodes (LINCAM Co.). The 
capacitor with an electrode area of approximately 1cmx1cm was connected to a regulated 
thermostat system; the temperature was stabilized with the accuracy of 0.05°C . The distance 
between the electrodes (sample thickness) was D = 5μm. The capacitance was measured at 
the frequency of 1kHz by a high precision capacitance bridge Andeen Hagerling. The stability 
of the samples in the strong magnetic fields was verified by repeating the capacitance 
measurements after 5 months on the same samples, with reproducible results. 
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Figure 1: Reduced capacitance dependence of undoped 6CHBT and 6CHBT doped with spherical 

particles, chain-like particles and rod-like particles on external magnetic field measured at UB = 10V 
(C0 and Cmax are the capacitance at B=0 and at B which restores the planar alignment, respectively). 
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The ferronematics based on the magnetic particles of various shape [11] were subjected to the 
combined action of electric and magnetic fields at the temperature of 35 °C. The magnetic 
field was applied perpendicular to E. Fig. 1 exhibits the dependence of the dimensionless 
reduced capacitance on the magnetic field at a bias voltage of 10V for undoped 6CHBT as 
well as for 6CHBT doped with magnetite particles of different shape. Doping with magnetic 
nanoparticles evidently reduces the critical field, confirming that the coupling between the 
director and the magnetic moment favours  m || n. The reduction is the smallest for spherical 
particles and the largest for rod-like particles. It has been concluded [11] that the larger shape 
anisotropy of the particles changes the character of the anchoring at the liquid crystal – 
particle interface from soft to rigid. The presented results show that doping with magnetic 
particles shaped similarly to the molecules of the host liquid crystal is more effective and thus 
offer better perspectives for ferronematics in applications where the magnetic field is 
necessary to control the orientation of the liquid crystal.  

Another interesting phenomenon in liquid crystals is the possibility to alter the 
isotropic to nematic phase transition with external field [12-14]. However, the effect could not 
be induced by magnetic-field [15] until recently [16]. The principal reason is that the 
estimated critical fields are well over 100 T for traditional liquid crystal materials [15]. The 
first experimental observation of the predicted magnetic-field dependence of the nematic-
isotropic phase transition temperature has been recently carried out [16] on a powerful 
electromagnet (B up to 30T). To demonstrate the effect, besides the powerful electromagnet, 
the proper choice of a „non-conventional”  (bent-core) nematic liquid crystal material was also 
necessary. The „non-conventional”  nematic material chosen in Ref. [16], has considerably 
different physical properties compared to „conventional”  calamitic nematics; the first-order 
character of the nematic-isotropic transition at the „clearing point”  is substantially weaker 
than that for „conventional”  nematics. These properties, combined with the high magnetic 
field have contributed to the observation of the phase transition temperature shift of ~0.8°C at 
the magnetic field of 30T. 
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Fig.ure 2: Capacitance vs. temperature for undoped 6CHBT and 6CHBT doped with rodlike magnetic 

particles measured at different magnetic fields. 
 
The influence of the magnetic particles on the magnetic field induced isotropic-nematic phase 
transition was also studied in a “conventional”  calamitic liquid crystal 6CHBT by capacitance 
measurements [17]. The used magnetic particles were either spherical or rod-like. In both 
cases the size of the magnetic particles was much greater than the dimensions of the liquid 
crystal molecules, i.e. the magnetic particles can be regarded as macroscopic objects floating 
in the liquid crystal. The surface of the magnetic particles is able to orient the adjacent liquid 
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crystal molecules. During the measurements the magnetic field was applied parallel with the 
capacitor electrodes. 
Our results have confirmed that the shape of the magnetic particles affects the phase transition 
from the isotropic phase. In the pure 6CHBT as well as in 6CHBT doped with spherical 
magnetic particles no measurable field induced shift of the isotropic-nematic phase transition 
temperature was observed in magnetic fields up to 12T. On the contrary, in 6CHBT doped 
with rodlike magnetic particles (diameter size 10 nm, length 50 nm and volume concentration 
2x10-4) a shift of 0.25°C was found in the phase transition temperature at 12T (Fig. 2). 
Therefore, our results have proven that ferronematics composed of calamitic liquid crystals 
and rod-like magnetic nanoparticles can be just as effective in demonstrating the magnetic 
field induced isotropic-nematic phase transition as bent-core nematics [16].  

In recent works by Podoliak et al. [18], and Buluy et al. [19] both experimental and 
theoretical investigations have been reported about the optical response of suspensions of 
ferromagnetic nanoparticles in nematic liquid crystals on the imposed magnetic field. The 
authors have measured a linear optical response in ferronematics at very low magnetic fields 
(far below the threshold of the Freedericksz transition). A similar effect was also observed in 
our dielectric measurements in samples doped with spherical [20] or rod-like [21] magnetic 
particles as it is demonstrated in Fig.3. The figure provides a clear evidence for a nearly linear 
magnetic field dependence of the capacitance in the low magnetic field region. 
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Figure 3: Reduced capacitance versus magnetic field for undoped 6CHBT and for 6CHBT doped with 

spherical particles and rod-like particles. 

3. Conclusion 

We have shown, that doping liquid crystals with magnetic nanoparticles increases the 
sensitivity to external magnetic field. The shape and the size of the magnetic nanoparticles 
play significant role in structural transitions. We have observed an increase of the isotropic-
nematic phase transition temperature in ferronematics based on the calamitic liquid crystals 
doped with magnetic nanoparticles in magnetic field of ~ 10T. Moreover, the magnetic 
particles can influence the response of liquid crystals also in the low magnetic field region, far 
below Fréedericksz transition. 
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