PHYSICAL REVIEW E 70, 061706(2004

Decay of spatially periodic patterns in a nematic liquid crystal
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A detailed theoretical and experimental analysis of the decay of electroconvection patterns is presented in a
planarly aligned nematic liquid crystal. The relaxation time is measured as a function of the wave number of
the pattern using a light diffraction technique. A theoretical analysis exhibits a rich structure of the dispersion
curves for the decay rates. An interesting relation between the realistic case of no-slip boundary conditions and
the simpler free-slip case is found. The experimentally determined relaxation rates for both “conductive” and
“dielectric” initial patterns follow the theoretical solution with subsequent jumps between branches when the
wave number is increased.
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l. INTRODUCTION given by the director relaxation timg=y,d?/K,7?, which

Systems far from equilibrium often respond to excitationsSets the time scale for director reorientations, wheyele-
by creating spatially periodic patterns. Anisotropic fluids—notes the rotational viscosity ari; is the splay elastic
like nematic liquid crystals—are especially rich in patternmodulus. The charge relaxation timg=eye, /o, is consid-
forming phenomendl]. The mean orientation of the elon- erably shorter thamry (€, is the dielectric permittivity and
gated nematic molecules or, equivalently, the local opticab;, the conductivity component perpendicular to the direc-
axis is described by the director with n?=1. Electrocon- tor). The viscous relaxation time,.=d?/v characterizing
vection (EC) driven by an ac voltage applied across a thinthe viscous damping is the kinematic viscosityof flow is
(thicknessd~ 10-100xm) nematic layer is a common ex- much shorter than the other time scales, so the velocity field
ample of pattern forming instabilitief]. EC is a threshold can be treated adiabatically. In some situatiomst consid-
phenomenon which usually occurs as a primary instability ingred herg when one is, for instance, ifor near t9 the
a slightly conducting nematic with negative dielectric andregime where traveling waves appear at onset, the treatment
positive conductivity anisotropie®r vice versa3,4]). The  of a nematic as an Ohmic conductor is insufficient. Then an
pattern then appears at onset in the form of a periodic arraydditional time scale related to the recombination of charge
of parallel convection rollgwave numberq) coupled to &  carriersr,,. becomes relevaritveak electrolyte moddk]).
periodic modulation of the director orientation, which results Ideally all of the above processes contribute to the decay
in a sequence of dark and bright stripes observable in a Mime, making the process very complex. Fortunately the fast
croscope. Varying the easily tunable control parameters "k?)rocessesscharge relaxation and the viscous dampingn-
the ac voltage(rms amplitudeV, frequencyf), magnetic  tribute only at the very beginning of the decay process,
field, temperature, etc., a wide variety of scenarios can bghereas the only relevant time scale at the later stage of the
generated which makes electroconvection a popular modeb|axation process is expected to e Thus, the process is
system for pattern formation studies. In particular the charexpected to be rather universal, independent of the excitation
acteristic wave numbey of the patterns depends sensitively mechanism. In fact, the only relevant quantity determining
onf. o the long-time decay should be the wave numbemwhich

When the excitation is turned off the roll pattern decays agjdeally) remains unaltered during the decay. Comparing the
the system returns to its equilibriuasually homogeneolis  theoretical predictions with experiments could even be used
state. Though the relaxation timecharacterizing this decay tg determine material parameters such as the viscolsiy
process gives important insight into the nematohydrodysne) coefficients.
namic mechanism, it has so far not been analyzed systemati- The theoretical task of determining the asymptotic decay
cally. It will be demonstrated in this paper, where we focus intimes of a pattern with nonzero wave number is in principle
particular on the dependence obn g that such an analysis  strajghtforward and conceptionally less complicated than the
gives interesting new insights. problem of EC, since only the director deformation and the

The various mechanisms responsible for EC are active ofjow field (back flow) are involved. In addition the pattern
different characteristic time scales. The slowest time scale |§mp||tudes Continuous'y decrease When the decay process

advances; thus, the analysis can be based on the linearized
nematohydrodynamic equations. Nevertheless, so far the

*Electronic address: eber@szfki.hu problem has been treated in the literature only in a “single
Ton leave from Higher Vocational State School in Pila, ul. Pod-mode” approximatioriSMA) where the boundary conditions
chorazych 10, PL-64920 Pila, Poland. for the velocities are not implemented propefy7].
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Experimental studies of EC patterns are most often basedrous theoretical analysis of the relaxation time problem
on recording and digital processing @tationary shadow-  with proper handling of the boundary conditions. The results
graph images in a polarizing microscope. In the present exgiven in Sec. Il reveal some surprising features.
periment we have to resolve fast decay of low contfastall We want to stress again that although the pattern was
deformationg patterns. The standard 25 Itz slowe) video  created by electroconvection, the relaxation occurred in the
rate of common analog and/or digital cameras imposes absence of an electric field. Thus the results obtained are
strong constraint on the recording speed and the typicalalid for the decay of any other patterns which are charac-
8-bit video digitization may also not provide sufficient gray- terized by periodic splay-bend deformation of the director
scale resolution. The shadowgraph technique is therefore leg¢s.g., shear-flow-induced convection rolls
appropriate for the analysis of the decay process unless spe-
cial instrumentation is used.

On the other hand, EC patterns represent a periodic opti-
cal grating. llluminating them with a monochromatlasey The system under study is a nematic layer of thickriess
||ght beam reSU|tS in a diffraCtion pattem. The Inten$ﬁy)f Confined by p|ates para”e' to thE_y p|ane. We assume
the nth-order fringe is for not too large pattern amplitulg  strong planar anchoring of the director at the bounding plates

Il. THEORY OF THE DECAY

(i.e., the maximum tilt angle of the direcjogiven by in the x direction, so in the regi.e., basig state the director

| =B.[J(Q8 )], 1 [n=(ny,ny,ny)] is given asn=(1,0,0. We consider a situa-

0= BilIn(Q )] @ tion where a spatially periodic pattern with wave vectpr
where J, is a Bessel function of the first kind of order  =(q,p) in the x-y plane has been generated—e.g., by elec-

while the quantities3,, andQ depend on the refractive indi- troconvection. We will discuss in general terms the relax-
ces, the angle of incidence, and the shape of the directaition process after switching off the excitation. One is then
profile [11,12. In the limit of small ¥, which is relevant for  left with the standard nematodynamic equations for the Car-
our study, we havénocﬂfn”. Thus thel,, for smalln prevail.  tesian components of the director figidand of the velocity
For symmetry reasons only the even-order fringes are visibléeld v=(vy,vy,v,); see, e.9.[13-15. We will use dimen-
(at least for small deformatiopsat normal light incidence sionless units. The unit of length is chosen todber, time is
[8-11. For oblique incidencg11,12, however, the odd- measured in units of the director relaxation timeand elas-
order fringes(in particularn=1) become accessible, which tic moduli are scaled with the splay elastic constépt and
thus present a sensitive tool to monitor variations of EC patviscosity coefficients by the rotational viscosiy.
tern amplitudes near the threshold. Here, we restrict ourselves to normal roll patterns with
Based on these considerations an interesting opticgd=0 (noy dependende Thus all fields depend only onand
method has recently been proposed to measure the relaxatienThe y components oh andv vanish. In the nematody-
times 7 by diffraction on EC pattern$7]. The initial roll  namic equations linearized about the basic state, which are
pattern has been induced by periodically switching the dgufficient for the late stage of the decay process the
voltage between positive, zero, and negative values. The irdependence onx becomes harmonic—e.g,n,(x,z,t)
tensities of low-order fringes have been recorded, which=n (z,q,t)sin(qx) andv,(x,z,t)=v,(z,q,t)codqx). Since the
have shown a sawtoothlike modulation due to the periodigiecay process is slow compared to the viscous relaxation
reorientation of the directofgrowth and decay of the pat- time 7., time derivatives ofv can be(adiabatically ne-
tern), and the relaxation time has been obtained by fitting tqylected. After eliminating, with the help of the incompress-

results of the SMA approach. The method has only beefility condition V-v=0 we arrive at the following linear
applied to a single switching frequency of the excitationequations:

wherer is claimed to match the theoretical value. The analy- o
sis would have been more convincing if by varying the [d+ Kss0? - Z1dn,(z,q,t) - [ax0? + asdJv(z,q,t) = 0,

switching frequency the wave numbgrof the EC pattern 2)
(which is a crucial parameter faf) had been systematically
changed. 2 — _ 4 9 4

The approach in Ref7] has some disadvantages. First, it [t + sz ]aon2.0,0) = [nod; = w0y + md'ToAz.0.)
captures only the beginning of the decay process where one =0, (3

cannot expect a single time exponent to govern the dynam-

ics. Furthermore, the theoretical analysis makes use of th‘é{here

SMA, which, although quite effective for the description of m=(a+astag)2, 7= (az+as+ ag)l2,
the EC state near threshold, is questionable for the relaxation
process. n=mtmto (4)

The work presented in this paper has two aims. On the
one hand, the experimental technique was improved, usingre effectivgMiesowic2 shear viscosities. Note that the cor-
sine-wave ac voltage excitation that allowed us to measureection ton,=1 (basic statgvanishes at linear order.
the wavelength dependence of the relaxation times in a wide These equations have to be supplemented with realistic
g range. Moreover, we focused on the late stage of the relaxigid boundary conditions—i.e., strong planar anchoring of
ation process, which was expected to be determined by thiae director and no slip for the velocities at the bounding
largest relaxation time. On the other hand, we present a rigelates atz=+=/2 in dimensionless units:
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n,=0, v,=0, Jv,=0 at z= +x/2. (5) relation can be identified witl, and for the free-slip eigen-

N valuesu(g?) one obtains
The last condition follows fromv,(+7/2)=0 andV -v=0.

The velocity component, can be eliminated, yielding a 0

— M . ~
partial differential equation for the director component M= 1 _kb ;o with = i + Kz,
ny(z,9,1): “
[(ax0? + a3)? = (205 = QP35 + ma*)Jadny(z,a,t) N e an
J— k - .
~ [0y = 70255 + m*)(Kaa0? — %)any(z,,t) = 0. S+ nPSE+ ma’

(6) Note thatu, coincides with the growth ratgroperly nondi-

Equation (6) allows modal solutions in exponential form mensionalizegion which the analysis in Ref7] was based
n,(z,q,t)=n(s,q)e“es? [analogously one hav,(z,q,t) [see 'Eq. 7 thefle Also note thatu, preeente a set of purely
=v(s,q)e ™es?. Thus we arrive from Eq(6) at the follow-  elastic(no-back-flow decay rates. Thug, gives the slowest
ing dispersion relation: decay mode in this limit of vanishing viscosities. T{p®si-
5 5 A 5 . 5 tive) quantitiesb, describe the enhancement of the decay by
(a0 — azs)’u+ (78" + e’ + ") (Kaad® + 8= ) =0 pack flow. Whereag, should underestimate the actual decay
(7) constant,u, is expected to give a bound from above, since
) ) ) the free-slip boundary conditions are less restrictive than the
Czlearly Eq.2(7) |n\_/olves only two independent varlab_les rigid ones to the flow field.
$°/q? and u/g?. Obviously one can superpose modes véith A surprising feature appears when the higher branghes

and -s to yield real solutions with a given parifyeflection  of the SMA are considered. Figureal displays the ten first
symmetry inz). From Eq.(2) we see that the amplitudes branchesy, ... ;10 as a function ofy? for the parameter

n(s,q) andu(s,q) of the modal solutions are related by set of Phase 5/5A listed in Table I. One sees that the “natu-
n(s,q) = G(s,q)v(s,q), (8) ra!” o.rdering.ﬁl<ﬁz<'ﬁ3<-~.~ applies only for smallg?.
. With increasingg? the higher-indexed brancheg(o?) cross
with all the lower-indexed ones. Thus, each branch becomes the
a0 — azs lowest within some interval of?. The explanation for this
G(s,q) = (9)  behavior is that for the slowest mode the spatial variation

> .
A(Kag” + 8= o) alongx, characterized by, is balanced by a corresponding
In a rigorous treatment one has to take into account thatariation alongz, characterized b$,. Clearly there exists an
Eq. (7) is a cubic equation is?, which provides three roots envelope which bounds all SMA branches from below. For
(S5, s5, ands3) for eachu andq which are to be superposed large g the envelope becomes a straight line through the
to satisfy the realistic no-slip boundary conditions. We ex-origin whose slope is determined by the minimumegf g2
pect that only situations wheirg andv, are even functions for largeg? minimized overk. This minimum is obtained by
of z will be of relevance. Thus, the exact solution of thetreating S, as a continuous variable and minimizing,,
decay problem is a linear combination of cosine functionswhich givesmin(u,/q?) == =4.2285 al“3K2:1.049312 for our
constructed from the roots of E(7), material parameters.
- — ot — amuts3 Returning to the rigorous eigenvalue spectru(g?),
N(2.t) = €7N(@) = € X AG) cods2), Fig. 1(b) displays the lowest ten branch@s, ... ,u;0) as a
t t function of ¢? (solid and dash-dotted lines, parameter set of
vzl =e* V() =e #2 =1A Co952), (10 Phase 5/5A The decay rateg,; (SMA) and &, (no back
with G;=G(s;,q) calculated from Eqs(8) and(9). Combin-  flow) are also showiidashed and dotted lines, respectiyely
ing Eqg. (5) with Eq. (10) a set of three homogeneous linear The rigorous solution offers modes with smaller eigenvalues
equations are obtained for the weighis, A,, and A;. A uy (longer decaythan u,. In fact the lowest brancix,(g?)
nontrivial solution exists if the corresponding determinantremains belowu,(g?) for any g see also the ins¢actually,
vanishes. Thus one obtains a discrete eigenvalue spectrum(g?) remains below alf,(g?); see below. As expected,ul
,uk(q) k=1,2,... with the corresponding eigenfunctions gives a lower bound. Fde> 1, eachy, branch crosseg, at
N (2) andV,(2) [see Eqgs(10)]. As to be expected the, are  someq? and in that neighborhood the slope increases and
found to be real and positive. We will order them in increas-approaches that qf;, so that the two curves remain close to
ing magnitude(u, < u,<---) in the following. each other(with u;>pu) in some ¢? interval. For k
Before we discuss the resulting eigenvalue spectrum iF2,3,...these intervals follow each other and build up an
detail, which requires numerical calculations, we will ad-almost continuous line running just belqw (for largek the
dress the situation in the SMA. This case is obtained byeffect becomes more pronounged
replacing the last condition in E¢5) by #2v,=0, which cor- More generally, the branches(g?) consist of alternate
responds to the unrealistic case of zero tangential stress grieces with higher and lower slopes forming a steplike curve.
the velocity field(“free slip”). Then the even eigenfunctions The branches do not touch or cross each other. One notices a
Nk (2), Vi(2) are proportional to cd§z) with S=2k-1, k close similarity with the structure of the SMA curves in Fig.
=1,2,3,...,independent of?. Thus thes in the dispersion 1(a). There, however, the curves cross each other. Substantial
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FIG. 1. Theoretical values of the dimension-
less decay rate of the director distortion versus
dimensionlessy? calculated for the parameter set
of Phase 5/5A(a) The ten lowesj branches of
the dispersion relation for the case of free-slip
boundariegsee Eq(11)]. (b) The ten lowestu,
branches of the dispersion relation obtained from
the rigorous calculation are depicted by sdfiar
oddk) and by dash-dottegfor evenk) lines. Also
shown are dashed and dotted lines corresponding
to the SMA branchu,; and to the flow-free case
(mq), respectively. The insets show the corre-
sponding lowest three branches for lay with
an enlarged scale.

deviations occur only in the vicinity of the crossing points of oscillation ~cog(2k,—1)z]. To the right of those intervals
the branchegy(g?). In fact, it is quite common in physics the co$z) contribution shifts towards c63z) though with
that a dispersion relation is composed of crossing branches gmall amplitude superimposed with a strongcog (2kg
some “unperturbed” approximation while the rigorous solu-+1)z]. The profilesN;4(z) shown in Fig. 3 forg?=58 (inside
tion of the same problem results in combination of thethe intervalk,=10), 40 (below interva), and 76(above in-
branches and gap formation at the crossing paisee, €.g., terval) demonstrate this effect. More generally, the eigen-
the electronic band structure in crystals in the nearly fregunctions on thgth steep portion of they branches become
electron limiy. Here the unperturbed problem corresponds taapproximately proportional to cf®j—1)z] with j=1,2,...,
the free-slip case. Indeed, fgf> 1, the influence of no-slip while on the next flat portion a cfif(k+j)-1]z depen-
boundary conditions is in effect a small perturbation thatgence dominates. One may conclude that an exact eigenfunc-
becomes important near the points of degene(#ey cross-  tjon N;(z,q) is similar to a SMA eigenfunction c62k-1)z
ings) of the unperturbed eigenvalues. _ whenever the eigenvaluej(qz) is near top(Q).

It follows from Eg. (10) that the eigenmodebl(z,q), Interestingly, for not too smali, the lowest branchu,
Vi(z,q) are not simple harmonic functions afin Fig. 2 the  emains separated from the reshd separated from all SMA
function Ny(2) is shown for the lowest branch, at ’=1,  pranches This can be understood most easily by looking, in
10, and 100. At smalf, wherep, is close tou,, one has the limit g2— o, at the quantity mif /g2 == from another
Ny(2) ~cod2). This changes drastically asincreases, where  sjde. = corresponds to the point where/ g, as given in the
N;(2) eventually develops into a boundary layéhis is the  dispersion relation, Eq(7), as a function ofs?, has a
case fork=1 only; see beloy In general we can identify an  minimum—i.e., where two roots? ands; of the dispersion
index k, associated with a certaigf interval whereu i relation coincidenote that thes” scale withg?). Below this
close topu;. Within that interval the corresponding eigen- point (u/g°<E) the dispersion relation has two complex
modesN, (2) are dominated by a contributioncogz) su-  conjugate roots? ands and a negative roa. Thus alls,,
perimposed with oscillations cog2k,2) of small amplitude. s,, ands; have(substantigl imaginary parts so that theS;

To the left of those intervals the contributioncogz) even-  decay rapidly either to the left or to the right depending on
tually vanishes and the eigenmodes are dominated by a fast

TABLE I. The material parameters of the nematic Phase 5/5A
used for the numerical calculations.

Quantity Unit Value at 30 °C Reference
Ky 10°12N 9.8 [16]
Kss 102N 12.7 [16]
“ 107N s/n? ~39 (18] %0 02 04 o5 o8 10 YIEVIEY
@ 103 Ns/n? -109.3 [17,16 o z o
as 103 N s/n? 1.5 [16,17
ay 108 N s/n? 56.3 [16,17 FIG. 2. Normalized director profil&l,(z) corresponding to the
ag 103 N s/n? —24.9 [16,17 w1 mode calculated for the parameter set of Phase 5/5#¢atl

(solid line), 10 (dashed ling and 100(dotted ling, respectively.
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FIG. 3. Normalized director profil&l;o(z) corresponding to the
110 mode calculated for the parameter set of Phase 5/542at FIG. 4. Temporal evolution of the light intensity of the first-
=40(solid line), 58 (dashed ling and 76(dotted ling, respectively.  order diffraction fringel; following the shutdown of the applied
voltage in a 28am-thick cell of Phase 5A at=1200 Hz. Curves

the choice of sign. Then one can construct, at some value (With different line styles correspond to different initial pattern am-
' ' plitudes set by the dimensionless control parameted.009(solid

u (=u,=3.88017), a solution of the problem that decays | ) . .

away from either boundary and which represents a boundarlyl/ne) + 0.019(dashed finf: and 0.06&dotted ling, respectively.

layer solution. Foru/q?> = the complex conjugate pair be- a high-voltage amplifier. This switch allowed an abrupt
comes real. Neag their difference is small and their super- (within 10 us) shutting down of the applied voltage. The
position describes a slowly modulated, rapidly oscillatingactual ac voltage across the sample was measured by a digi-
function (the rapidly decaying contribution froms remains  tal voltmeter.

localized near to the boundaryThis gives the branches  The sample was thermostatted by a PC-controlled Instec
M2, 13, -, Which are characterized by an increasing numbehot-stage aff=30.0+0.05 °C. A beam of a laser diode of
of modulation periods. In the limit of largg” they form a  wavelengthA =650 nm illuminated the cell on an area of
quasicontinuum, well separated from. about 1 mmx2 mm. In the state of electroconvection a

Knowledge of the decay rates is not sufficient to describenighly regular diffraction pattern could be observed as a se-
the decay process fully. First, one needs the initial state beyuence of light spots on a screen placed normal to the beam
fore switching off the voltage, which involves solving the at a distance of =660 mm. As the hot stage could be rotated
full linear (for small ) EC problem as a function of fre- around an axis in the plane of the cell perpendicular to the
quency for the given nematic. This is numerically cumber-director, diffraction at normal as well as at oblique incidence
some, in particular in the “dielectricflargeq) regime. The  of light could be investigated. Depending on the applied
initial condition determines the expansion coefficiehtésee  yoltage diffraction fringes up to the ninth order could be
Eq. (10)]. Since the eigenvalue problem Eqg) and(3) is  seen. At higher voltages, however, the diffraction spots
not self-adjoint, one has to solve the adjoint problem as wellgradually became diffuse, indicating the reduction of pattern
Finally the contribution of the different modes to the inten-regularity(appearance of defects above the threshold for sec-
sity of the fringes has to be calculated following—e.g., theondary instabilitie and finally faded into an almost uni-
methods presented if10,17. A corresponding detailed formly scattering backgroun¢the turbulent, dynamic scat-
analysis is presently under way. tering mode.

The higher sensitivity of diffraction at oblique incidence
could be clearly demonstrated by the fact that a couple of
diffraction orders were still visible at low voltages where no

In order to cover a large range of decay ratesnd/or  fringes could be seen at normal incidence. Therefore the
wave numbers), the decay of EC patterns was investigatedmeasurements shown were carried out at an angle of inci-
in planar samples of the commercial nematic mixtures Phasgence8=5 °.

5 and Phase 5@erck). The latter is a doped version pos- In EC one usually observes two types of patterns, “con-
sessing higher electrical conductivity. These substances arkictive” and “dielectric” rolls. In the first regim@t frequen-
popular in the investigation of EC, since they are chemicallyciesf below the cutoff frequency,) the director distortion is
stable and their material parameters are well characterizedrtually stationary and the dimensionlesss of the order of
[17,14. 1, while in the latter regiméf > f.), n, follows the external

Planar cells were assembled using rubbed polyimidec frequency and> 1 can easily be obtained, is roughly
coated electrode surfaces made by E.H.C. Co. The transpagsroportional to the electric conductivity of the sample.
ent indium tin oxide(ITO) electrodes covered a surface of  Using Phase 5A in a cell ad=28 um thickness EC pat-

1 cmX 1 cm. The thicknessl of the cells was adjusted by terns of the conductive type existed in a wide frequency
nylon spacers and was determined by a standard interferoange (10—1380 Hz. For f>1200 Hz the threshold of the
metric method before filling. EC patterns grew steeply with the frequency. Thus the high-

EC was driven by sinusoidal voltage synthesized by aest accessible frequengwhich was still below the cutoff
function generator PC card through an electronic switch anévas practically limited by the maximum sinusoidal output

IIl. EXPERIMENT
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40] (9,=9,e7Y7) the characteristic time for the intensity decay
20 of the nth-order fringe is given byr:]:TIZn. Thus higher-
order fringe intensities decay faster; moreover, their intensi-
ties(oci}g”) are smaller and more sensitive to nonlinear cor-
rections. Consequently, we carried out a detailed analysis of
, I, which is accessible in the case of oblique incidence.
3000 The wavelength\ of the EC pattern can conveniently be
tuned by the frequenci of the excitation. At eacl first the
. : , EC threshold voltag®/, was determined based on visibility
1000 2000 3000 criteria. Then the voltag¥ was raised by 1% which corre-
Time (units of A7) sponds to a value af=(V2-V?)/V2=0.02 of the dimension-
) . o . . less control parameter. At this typically four diffraction
FIG. 5. The tail of a typical decay curysolid line) with a fitted 5 qers were visibleA was then determined by measuring the
exponentia(dash-dqtted line The inset shows the residuals to the distancesD, between thenth-order diffraction fringes and
single-exponential it at an enlarged scale. the main beamzeroth ordey and using the condition for

voltage(+160V,,) the high-voltage amplifier could provide Cconstructive interference,

which was too low to enter into the dielectric regime. Nor- ) )

mal rolls—i.e., fringes along a single line parallel to the Alsin g+ sin(a, = B)]=n\, (12
director—appeared above the Lifshitz poit At low fre-

quencies (f<f, =200 H2 oblique rolls were observed Whereg is the angle of incidence and,=arctariD,/L) is
which resulted in diffraction fringes aligned along two cross-the diffraction angle for theth-order fringe.

ing lines as expected. The detector was then positioned at the center of the first-

The wavelength of the pattern varied frak=47.4um at  order fringe(to the place of maximum intensjtyo monitor
low f to A=16.6 um at the highest=1380 Hz. The dimen- temporal variations. Data acquisition was started at the in-
sionlessy? fell into the range 1.4-11.3. At lowdrthe accu-  stant of switching off the applied voltage. Figure 4 shows
racy of g> was mainly determined by the precision of dis- some examples of the decay curves obtained when starting
tance measurements on the screen, while at highdrom differente values. Note that the fringe intensity is not
frequencies the increase of the fringe diameter was the maiexpected to grow monotonically with (although 9., does
limiting factor. s0), as the Bessel function in E@l) is an oscillating func-

In order to study the largg-regime we investigated the tion of its argument. The dotted curve in Fig. 4 indicates that
decay of the dielectric rolls in a thinndd=9.2 um) cell  at £=0.066 the deformation is already large enough to get
filled with Phase 5 having much lower electric conductivity. past the first maximum of Eq1) which explains the slight
The dielectric regime occurred abofig=100 Hz. The low- increase of the intensity at the initial part of the decay.
frequency conductive regime with oblique rolls occuring up  In order to focus on small deformations, however, during
to f, =60 Hz has not been examined in detail. The waveimeasurements the gain of the AD converter was increased by
length of the dielectric rolls was substantially smaller than ina factor of 8. Furthermore, we zoomed in on the (aih
the conductive regimé@s expectedand could be tuned from values below 1/16 of full scajeof the relaxation curve. This
A=4.6 to 2.9um by increasing the frequency. In dimension- tail section which showed an exponential decay was finally
less units a range frorg?=14 to 38 has been covered. At recorded as 3000 points with a 12-bit resolution. The sam-
these smallei the diffraction angles were higher and thus pling time was chosen so that the recorded section corre-
fewer number of fringe orders were visible. In general thesponded to a period of abo(ﬁ—?)r*l. Before processing the
diameters of the diffraction spots corresponding to the di-data they were smoothed by a sliding averaging involving 51
electric rolls were noticeably larger, indicating less regulameighboring data points. This improved the signal-to-noise
patterns. Note that the conductivities of the two samples andatio considerably while it did not affect the exponential
the thickness of the cells have been chosen in such a way thghape of the curve. Finally the relaxation time of the fringe
the (dimensionless wave numbersq in the two regimes intensity,,=7/2, was obtained by a least-squares fitting of a
joined almost continuouslysee also Fig. ) single exponential. Figure 5 depicts an example of the re-

In order to study the decay of electroconvection patterngorded data and the fitted exponential. The mean square de-
the intensity of the diffracted light was monitored. An optical viation of the experimental data from the fitted curve is typi-
fiber (with a diameter of 1 mmwhich was positioned at the cally less than 1% of the full scale, and hence a systematic
center of the selected fring@ypically the first-order one  deviation is almost undetectable in the figure.
transmitted the diffracted light into a photomultiplier work-  Despite the good fit, the relaxation time®btained from
ing in its linear regime. Its output was fed through a current-repeated recordings showed a typical scattering of about
to-voltage converter into a 16-bit analog-to-digitAD) con- ~ 10% which may be attributed to variations of the initial EC
verter card. That allowed recording of the intensity at highstate. Actually one expects that the existence of wave num-
precision with adjustable sampling rate. ber gradients of the order of 10% is consistent with the width

As already mentioned in the Introduction, the light inten-of the stable wave number band @t 0.02 of our initial
sity 1,, of an nth-order fringe is proportional tad,(t)>". state. By averaging over the decay times of ten consequtive
Hence, assuming an exponential decay of the deformatiomeasurements at the same frequency we obtained an average
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FIG. 7. The dimensionless decay raieof the director versus
dimensionless?. The eight lowesiu,(q?) branches of the disper-
sion relation are depicted alternatingly by salidr odd k) and by

fdash-dottedfor evenk) lines. The dashed line shows the expecta-
tion of the SMA[x;(g?)]. Solid circles and open squares are the
data uex measured at sinusoidal excitation in the conductive re-
gime of Phase 5A and in the dielectric regime of Phase 5,

. . . respectively.
7. Finally the dimensionless decay rate was calculated by

scaling it with the director relaxation tme‘ex”r:.Td/T)' . tion fringey, the decay itself occurs under the same field-off
The procedure above could not be fully applied to the thin L
condition in both cases.

cell in the dielectric regime. As a consequence of the smallef - . .
: - ST These data indicate that the assumption of the final decay
wavelength of the dielectric roligvhich is independent a . .
occurring with the slowest mode does not hold or at least

and is a combination of material paramejeteir relaxation be iustified with th ) I lution facili
time turned out to be quite shof®.14—0.48 mscompared cannot be justified with the spatiotemporal resolution facili-
‘ ' tated by our experimental setup. Surprisingly the slowest

to tTe. mi'r&ilrjnum samplingd ti_lr_r;]e(o.?l m§ ﬁf the higg.’ .._modeu, is not reflected in the diffracted light intensigx-
resolution converter card. Therefore in this case a digita ept for smallq?). Instead the decay rate,(c®) with the

oscilloscope with an 8-bit resolution was used to record theeigenfunctionNk(z) closest to cag) (with small superim-

temporal evolution of the fringe intensity and all recorded o - .
points(except those saturating due to overdriving at the star; qsed_ OSC'"at'an as shown in F|g.dbm|nate_s. Appz_ar_e_ntly .
of the decaywere included in the exponential fitting his elggnfuncuon has the_largest overlap Wlth. the |n|_t|al di-
' rector field and thus provides the largest weights With
increasingg? this eigenfunction appears at higher indides
of the eigenvalueg,. As a result the system switches from
IV COMPARISON OF EX_';EEBMRE(NTAL DATA WITH one branch to the next. Fap? in the switching_ re_gior_1 the
measuredueypy falls in between the branches indicating the
Figure 6 displays the measured data together with the theabsence of a single dominating mode. Actually fitting the
oretical curves in the conductive range. Focusing on the verglecay curves with a superposition of more exponentials re-
end of the relaxation process we expected that there the syéllices the mean-square deviation slightly in those regions.
tem decays with the slowest ratg in the wholeq range  Preliminary calculations which follow the general scheme
because faster modes die out earlier. It can be seen, howevefesented at the end of Sec. II, show indeed thatifer10
that the measured points do not follow the lowest branch ofconductive regime; see Fig) Gvhere u~ w3 the contribu-
the dispersion relatiotthe slowest decaying moylexceptin  tion of this mode to the fringe intensitl; is larger by a
the very-lowg? range up to about 4. Neither do they follow factor 30-50 compared to the contribution of the moges
the predictions of the SMA as all points are below that curveand .
There are, however, distinct rangescﬁfwhereuexptdata lie

FIG. 6. The dimensionless decay raieof the director versus
dimensionless. The four lowestu(g?) branches of the dispersion
relation are depicted alternatingly by so(fdr oddk) and by dash-
dotted(for evenk) lines. The dashed line shows the expectation o
the SMA[1(g?)]. Solid circles are the daf@emeasured at sinu-
soidal excitation for Phase 5A in the conductive regime.

almost perfectly on one of the branches provided by the rig- V. CONCLUSIONS
orous calculation(on u, for g?<3.5, on u, for 5.0<qg? '
<6.7, and onug for 8.0<g?<10.0. A rigorous theoretical solution has been provided for the

Figure 7 displays the measured decay rates together witbroblem of the decay modes of periodic patterns in nematic
the theoretical curves for the whotgrange, including the liquid crystals. The proper handling of the boundary condi-
dielectric mode. The trend of the persistent switchingugf,;  tions has yielded a dispersion relation with a sequence of
to higheru, branches with increasing? continues in the modes with different relaxation times in contrast to the
dielectric regime. This similarity is actually not surprising. single-exponential decay predicted by the slowest SMA
Although the electroconvecting state in the dielectric regimemode. The branches of the dispersion relation have been cal-
is crucially different from that of the conductive orie.g., culated for the nematic liquid crystal Phase 5/5A.
the director tilt follows the excitation frequency which can  Laser diffraction at an oblique incidence has turned out to
be nicely detected in the oscillating intensity of the diffrac- be an excellent tool to monitor the decay process experimen-
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tally. The decay rates have been measured in a wide wawence on the decay process. The detailed analysis of the im-
number range. Several distingt ranges have been found pact of the initial conditions including a theoretical decom-
where the relaxation of the pattern is characterized by aposition into modes is still under investigation.

exponential decay slightly slower than that given by the

SMA, but coinciding with one of the calculated branches of ACKNOWLEDGMENTS

the dispersion relation. That indicates that the generally mul-
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