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A detailed theoretical and experimental analysis of the decay of electroconvection patterns is presented in a
planarly aligned nematic liquid crystal. The relaxation time is measured as a function of the wave number of
the pattern using a light diffraction technique. A theoretical analysis exhibits a rich structure of the dispersion
curves for the decay rates. An interesting relation between the realistic case of no-slip boundary conditions and
the simpler free-slip case is found. The experimentally determined relaxation rates for both “conductive” and
“dielectric” initial patterns follow the theoretical solution with subsequent jumps between branches when the
wave number is increased.
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I. INTRODUCTION

Systems far from equilibrium often respond to excitations
by creating spatially periodic patterns. Anisotropic fluids—
like nematic liquid crystals—are especially rich in pattern
forming phenomena[1]. The mean orientation of the elon-
gated nematic molecules or, equivalently, the local optical
axis is described by the directorn with n2=1. Electrocon-
vection (EC) driven by an ac voltage applied across a thin
(thicknessd,10−100mm) nematic layer is a common ex-
ample of pattern forming instabilities[2]. EC is a threshold
phenomenon which usually occurs as a primary instability in
a slightly conducting nematic with negative dielectric and
positive conductivity anisotropies(or vice versa[3,4]). The
pattern then appears at onset in the form of a periodic array
of parallel convection rolls(wave numberq) coupled to a
periodic modulation of the director orientation, which results
in a sequence of dark and bright stripes observable in a mi-
croscope. Varying the easily tunable control parameters like
the ac voltage(rms amplitudeV, frequency f), magnetic
field, temperature, etc., a wide variety of scenarios can be
generated which makes electroconvection a popular model
system for pattern formation studies. In particular the char-
acteristic wave numberq of the patterns depends sensitively
on f.

When the excitation is turned off the roll pattern decays as
the system returns to its equilibrium(usually homogeneous)
state. Though the relaxation timet characterizing this decay
process gives important insight into the nematohydrody-
namic mechanism, it has so far not been analyzed systemati-
cally. It will be demonstrated in this paper, where we focus in
particular on the dependence oft on q that such an analysis
gives interesting new insights.

The various mechanisms responsible for EC are active on
different characteristic time scales. The slowest time scale is

given by the director relaxation timetd=g1d
2/K11p

2, which
sets the time scale for director reorientations, whereg1 de-
notes the rotational viscosity andK11 is the splay elastic
modulus. The charge relaxation timetq=e0e' /s' is consid-
erably shorter thantd (e' is the dielectric permittivity and
s' the conductivity component perpendicular to the direc-
tor). The viscous relaxation timetvisc=d2/n characterizing
the viscous damping(n is the kinematic viscosity) of flow is
much shorter than the other time scales, so the velocity field
can be treated adiabatically. In some situations(not consid-
ered here), when one is, for instance, in(or near to) the
regime where traveling waves appear at onset, the treatment
of a nematic as an Ohmic conductor is insufficient. Then an
additional time scale related to the recombination of charge
carrierstrec becomes relevant(weak electrolyte model[5]).

Ideally all of the above processes contribute to the decay
time, making the process very complex. Fortunately the fast
processes(charge relaxation and the viscous damping) con-
tribute only at the very beginning of the decay process,
whereas the only relevant time scale at the later stage of the
relaxation process is expected to betd. Thus, the process is
expected to be rather universal, independent of the excitation
mechanism. In fact, the only relevant quantity determining
the long-time decay should be the wave numberq, which
(ideally) remains unaltered during the decay. Comparing the
theoretical predictions with experiments could even be used
to determine material parameters such as the viscosity(Le-
slie) coefficients.

The theoretical task of determining the asymptotic decay
times of a pattern with nonzero wave number is in principle
straightforward and conceptionally less complicated than the
problem of EC, since only the director deformation and the
flow field (back flow) are involved. In addition the pattern
amplitudes continuously decrease when the decay process
advances; thus, the analysis can be based on the linearized
nematohydrodynamic equations. Nevertheless, so far the
problem has been treated in the literature only in a “single
mode” approximation(SMA) where the boundary conditions
for the velocities are not implemented properly[6,7].
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Experimental studies of EC patterns are most often based
on recording and digital processing of(stationary) shadow-
graph images in a polarizing microscope. In the present ex-
periment we have to resolve fast decay of low contrast(small
deformations) patterns. The standard 25 Hz(or slower) video
rate of common analog and/or digital cameras imposes a
strong constraint on the recording speed and the typical
8-bit video digitization may also not provide sufficient gray-
scale resolution. The shadowgraph technique is therefore less
appropriate for the analysis of the decay process unless spe-
cial instrumentation is used.

On the other hand, EC patterns represent a periodic opti-
cal grating. Illuminating them with a monochromatic(laser)
light beam results in a diffraction pattern. The intensityIn of
thenth-order fringe is for not too large pattern amplitudeqm
(i.e., the maximum tilt angle of the director) given by

In = BnfJnsQqmdg2, s1d

where Jn is a Bessel function of the first kind of ordern,
while the quantitiesBn andQ depend on the refractive indi-
ces, the angle of incidence, and the shape of the director
profile [11,12]. In the limit of smallqm, which is relevant for
our study, we haveIn~qm

2n. Thus theIn for small n prevail.
For symmetry reasons only the even-order fringes are visible
(at least for small deformations) at normal light incidence
[8–11]. For oblique incidence[11,12], however, the odd-
order fringes(in particularn=1) become accessible, which
thus present a sensitive tool to monitor variations of EC pat-
tern amplitudes near the threshold.

Based on these considerations an interesting optical
method has recently been proposed to measure the relaxation
times t by diffraction on EC patterns[7]. The initial roll
pattern has been induced by periodically switching the dc
voltage between positive, zero, and negative values. The in-
tensities of low-order fringes have been recorded, which
have shown a sawtoothlike modulation due to the periodic
reorientation of the director(growth and decay of the pat-
tern), and the relaxation time has been obtained by fitting to
results of the SMA approach. The method has only been
applied to a single switching frequency of the excitation
wheret is claimed to match the theoretical value. The analy-
sis would have been more convincing if by varying the
switching frequency the wave numberq of the EC pattern
(which is a crucial parameter fort) had been systematically
changed.

The approach in Ref.[7] has some disadvantages. First, it
captures only the beginning of the decay process where one
cannot expect a single time exponent to govern the dynam-
ics. Furthermore, the theoretical analysis makes use of the
SMA, which, although quite effective for the description of
the EC state near threshold, is questionable for the relaxation
process.

The work presented in this paper has two aims. On the
one hand, the experimental technique was improved, using
sine-wave ac voltage excitation that allowed us to measure
the wavelength dependence of the relaxation times in a wide
q range. Moreover, we focused on the late stage of the relax-
ation process, which was expected to be determined by the
largest relaxation time. On the other hand, we present a rig-

orous theoretical analysis of the relaxation time problem
with proper handling of the boundary conditions. The results
given in Sec. II reveal some surprising features.

We want to stress again that although the pattern was
created by electroconvection, the relaxation occurred in the
absence of an electric field. Thus the results obtained are
valid for the decay of any other patterns which are charac-
terized by periodic splay-bend deformation of the director
(e.g., shear-flow-induced convection rolls).

II. THEORY OF THE DECAY

The system under study is a nematic layer of thicknessd
confined by plates parallel to thex-y plane. We assume
strong planar anchoring of the director at the bounding plates
in thex direction, so in the rest(i.e., basic) state the director
fn=snx,ny,nzdg is given asn=s1,0,0d. We consider a situa-
tion where a spatially periodic pattern with wave vectorq
=sq,pd in the x-y plane has been generated—e.g., by elec-
troconvection. We will discuss in general terms the relax-
ation process after switching off the excitation. One is then
left with the standard nematodynamic equations for the Car-
tesian components of the director fieldn and of the velocity
field v=svx,vy,vzd; see, e.g.,[13–15]. We will use dimen-
sionless units. The unit of length is chosen to bed/p, time is
measured in units of the director relaxation timetd, and elas-
tic moduli are scaled with the splay elastic constantK11 and
viscosity coefficients by the rotational viscosityg1.

Here, we restrict ourselves to normal roll patterns with
p=0 (no y dependence). Thus all fields depend only onx and
z. The y components ofn and v vanish. In the nematody-
namic equations linearized about the basic state, which are
sufficient for the late stage of the decay process the
dependence onx becomes harmonic—e.g,nzsx,z,td
= n̄zsz,q,tdsinsqxd andvzsx,z,td= v̄zsz,q,tdcossqxd. Since the
decay process is slow compared to the viscous relaxation
time tvisc, time derivatives ofv can be(adiabatically) ne-
glected. After eliminatingvx with the help of the incompress-
ibility condition = ·v=0 we arrive at the following linear
equations:

f]t + K33q
2 − ]z

2gqn̄zsz,q,td − fa2q
2 + a3]z

2gv̄zsz,q,td = 0,

s2d

fa2q
2 + a3]z

2gq]tn̄zsz,q,td − fh2]z
4 − hrq

2]z
2 + h1q

4gv̄zsz,q,td

= 0, s3d

where

h1 = s− a2 + a4 + a5d/2, h2 = sa3 + a4 + a6d/2,

hr = h1 + h2 + a1 s4d

are effective(Miesowicz) shear viscosities. Note that the cor-
rection tonx=1 (basic state) vanishes at linear order.

These equations have to be supplemented with realistic
rigid boundary conditions—i.e., strong planar anchoring of
the director and no slip for the velocities at the bounding
plates atz= ±p /2 in dimensionless units:
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n̄z = 0, v̄z = 0, ]zv̄z = 0 at z= ± p/2. s5d

The last condition follows fromvxs±p /2d=0 and= ·v=0.
The velocity componentv̄z can be eliminated, yielding a

partial differential equation for the director component
n̄zsz,q,td:

fsa2q
2 + a3]z

2d2 − sh2]z
4 − hrq

2]z
2 + h1q

4dgq]tn̄zsz,q,td

− fh2]z
4 − hrq

2]z
2 + h1q

4gsK33q
2 − ]z

2dqn̄zsz,q,td = 0.

s6d

Equation (6) allows modal solutions in exponential form
n̄zsz,q,td=nss,qde−mteisz [analogously one hasv̄zsz,q,td
=vss,qde−mteisz]. Thus we arrive from Eq.(6) at the follow-
ing dispersion relation:

sa2q
2 − a3s

2d2m + sh2s
4 + hrq

2s2 + h1q
4dsK33q

2 + s2 − md = 0.

s7d

Clearly Eq.(7) involves only two independent variables
s2/q2 andm /q2. Obviously one can superpose modes withs
and −s to yield real solutions with a given parity(reflection
symmetry inz). From Eq. (2) we see that the amplitudes
nss,qd andvss,qd of the modal solutions are related by

nss,qd = Gss,qdvss,qd, s8d

with

Gss,qd =
a2q

2 − a3s
2

qsK33q
2 + s2 − md

. s9d

In a rigorous treatment one has to take into account that
Eq. (7) is a cubic equation ins2, which provides three roots
(s1

2, s2
2, ands3

2) for eachm andq which are to be superposed
to satisfy the realistic no-slip boundary conditions. We ex-
pect that only situations wheren̄z and v̄z are even functions
of z will be of relevance. Thus, the exact solution of the
decay problem is a linear combination of cosine functions
constructed from the roots of Eq.(7),

n̄zsz,td = e−mtNszd = e−mtS j=1
3 AjGj cosssjzd,

v̄zsz,td = e−mtVszd = e−mtS j=1
3 Aj cosssjzd, s10d

with Gi =Gssi ,qd calculated from Eqs.(8) and (9). Combin-
ing Eq. (5) with Eq. (10) a set of three homogeneous linear
equations are obtained for the weightsA1, A2, and A3. A
nontrivial solution exists if the corresponding determinant
vanishes. Thus one obtains a discrete eigenvalue spectrum
mksq2d, k=1,2, . . . with the corresponding eigenfunctions
Nkszd andVkszd [see Eqs.(10)]. As to be expected themk are
found to be real and positive. We will order them in increas-
ing magnitudesm1,m2, ¯ d in the following.

Before we discuss the resulting eigenvalue spectrum in
detail, which requires numerical calculations, we will ad-
dress the situation in the SMA. This case is obtained by
replacing the last condition in Eq.(5) by ]z

2v̄z=0, which cor-
responds to the unrealistic case of zero tangential stress on
the velocity field(“free slip”). Then the even eigenfunctions
Nkszd, Vkszd are proportional to cossSkzd with Sk=2k−1, k
=1,2,3, . . .,independent ofq2. Thus thes in the dispersion

relation can be identified withSk and for the free-slip eigen-
valuesm̄ksq2d one obtains

m̄k =
m̂k

1 − bk
, with m̂k = Sk

2 + K33q
2,

bk =
sa2q

2 − a3d2Sk
2

h2Sk
4 + hrq

2Sk
2 + h1q

4 . s11d

Note thatm̄1 coincides with the growth rate(properly nondi-
mensionalized) on which the analysis in Ref.[7] was based
[see Eq. 7 there]. Also note thatm̂k presents a set of purely
elastic(no-back-flow) decay rates. Thusm̂1 gives the slowest
decay mode in this limit of vanishing viscosities. The(posi-
tive) quantitiesbk describe the enhancement of the decay by
back flow. Whereasm̂1 should underestimate the actual decay
constant,m̄1 is expected to give a bound from above, since
the free-slip boundary conditions are less restrictive than the
rigid ones to the flow field.

A surprising feature appears when the higher branchesm̄k
of the SMA are considered. Figure 1(a) displays the ten first
branchessm̄1, . . . ,m̄10d as a function ofq2 for the parameter
set of Phase 5/5A listed in Table I. One sees that the “natu-
ral” ordering m̄1,m̄2,m̄3,¯ applies only for smallq2.
With increasingq2 the higher-indexed branchesm̄ksq2d cross
all the lower-indexed ones. Thus, each branch becomes the
lowest within some interval ofq2. The explanation for this
behavior is that for the slowest mode the spatial variation
alongx, characterized byq, is balanced by a corresponding
variation alongz, characterized bySk. Clearly there exists an
envelope, which bounds all SMA branches from below. For
large q2 the envelope becomes a straight line through the
origin whose slope is determined by the minimum ofm̄k/q2

for largeq2 minimized overk. This minimum is obtained by
treating Sk as a continuous variable and minimizingm̄k,
which givesminsm̄k/q2d=J=4.2285 atSk

2=1.0493q2 for our
material parameters.

Returning to the rigorous eigenvalue spectrummksq2d,
Fig. 1(b) displays the lowest ten branchessm1, . . . ,m10d as a
function of q2 (solid and dash-dotted lines, parameter set of
Phase 5/5A). The decay ratesm̄1 (SMA) and m̂1 (no back
flow) are also shown(dashed and dotted lines, respectively).
The rigorous solution offers modes with smaller eigenvalues
mk (longer decay) than m̄1. In fact the lowest branchm1sq2d
remains belowm̄1sq2d for anyq2; see also the inset[actually,
m1sq2d remains below allm̄ksq2d; see below]. As expected,m̂1

gives a lower bound. Fork.1, eachmk branch crossesm̄1 at
someq2 and in that neighborhood the slope increases and
approaches that ofm̄1, so that the two curves remain close to
each other (with m̄1.mk) in some q2 interval. For k
=2,3, . . . these intervals follow each other and build up an
almost continuous line running just belowm̄1 (for largek the
effect becomes more pronounced).

More generally, the branchesmksq2d consist of alternate
pieces with higher and lower slopes forming a steplike curve.
The branches do not touch or cross each other. One notices a
close similarity with the structure of the SMA curves in Fig.
1(a). There, however, the curves cross each other. Substantial
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deviations occur only in the vicinity of the crossing points of
the branchesm̄ksq2d. In fact, it is quite common in physics
that a dispersion relation is composed of crossing branches in
some “unperturbed” approximation while the rigorous solu-
tion of the same problem results in combination of the
branches and gap formation at the crossing points(see, e.g.,
the electronic band structure in crystals in the nearly free
electron limit). Here the unperturbed problem corresponds to
the free-slip case. Indeed, forq2@1, the influence of no-slip
boundary conditions is in effect a small perturbation that
becomes important near the points of degeneracy(the cross-
ings) of the unperturbed eigenvalues.

It follows from Eq. (10) that the eigenmodesNksz,qd,
Vksz,qd are not simple harmonic functions ofz. In Fig. 2 the
function N1szd is shown for the lowest branchm1 at q2=1,
10, and 100. At smallq, wherem1 is close tom̄1, one has
N1szd,cosszd. This changes drastically asq increases, where
N1szd eventually develops into a boundary layer(this is the
case fork=1 only; see below). In general we can identify an
index k0 associated with a certainq2 interval wheremk0

is
close to m̄1. Within that interval the corresponding eigen-
modesNk0

szd are dominated by a contribution,cosszd su-
perimposed with oscillations,coss2k0zd of small amplitude.
To the left of those intervals the contribution,cosszd even-
tually vanishes and the eigenmodes are dominated by a fast

oscillation ,cosfs2k0−1dzg. To the right of those intervals
the cosszd contribution shifts towards coss3zd though with
small amplitude superimposed with a strong,cosfs2k0

+1dzg. The profilesN10szd shown in Fig. 3 forq2=58 (inside
the intervalk0=10), 40 (below interval), and 76(above in-
terval) demonstrate this effect. More generally, the eigen-
functions on thej th steep portion of themk branches become
approximately proportional to cosfs2j −1dzg with j =1,2, . . .,
while on the next flat portion a coshf2sk+ jd−1gzj depen-
dence dominates. One may conclude that an exact eigenfunc-
tion Njsz,qd is similar to a SMA eigenfunction coss2k−1dz
whenever the eigenvaluem jsq2d is near tom̄ksq2d.

Interestingly, for not too smallq2, the lowest branchm1
remains separated from the rest(and separated from all SMA
branches). This can be understood most easily by looking, in
the limit q2→`, at the quantity minsm̄k/q2d=J from another
side.J corresponds to the point wherem /q2, as given in the
dispersion relation, Eq.(7), as a function ofs2, has a
minimum—i.e., where two rootss1

2 ands2
2 of the dispersion

relation coincide(note that thesi
2 scale withq2). Below this

point sm /q2,Jd the dispersion relation has two complex
conjugate rootss1

2 ands2
2 and a negative roots3

2. Thus alls1,
s2, ands3 have(substantial) imaginary parts so that theeisj

decay rapidly either to the left or to the right depending on

FIG. 2. Normalized director profileN1szd corresponding to the
m1 mode calculated for the parameter set of Phase 5/5A atq2=1
(solid line), 10 (dashed line), and 100(dotted line), respectively.

FIG. 1. Theoretical values of the dimension-
less decay rate of the director distortion versus
dimensionlessq2 calculated for the parameter set
of Phase 5/5A.(a) The ten lowestm̄k branches of
the dispersion relation for the case of free-slip
boundaries[see Eq.(11)]. (b) The ten lowestmk

branches of the dispersion relation obtained from
the rigorous calculation are depicted by solid(for
oddk) and by dash-dotted(for evenk) lines. Also
shown are dashed and dotted lines corresponding
to the SMA branchm̄1 and to the flow-free case
sm̂1d, respectively. The insets show the corre-
sponding lowest three branches for lowq2 with
an enlarged scale.

TABLE I. The material parameters of the nematic Phase 5/5A
used for the numerical calculations.

Quantity Unit Value at 30 °C Reference

K11 10−12 N 9.8 [16]

K33 10−12 N 12.7 [16]

a1 10−3 N s/m2 −39 [16]

a2 10−3 N s/m2 −109.3 [17,16]

a3 10−3 N s/m2 1.5 [16,17]

a4 10−3 N s/m2 56.3 [16,17]

a6 10−3 N s/m2 −24.9 [16,17]
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the choice of sign. Then one can construct, at some value of
m s=m1=3.8801q2d, a solution of the problem that decays
away from either boundary and which represents a boundary
layer solution. Form /q2.J the complex conjugate pair be-
comes real. NearJ their difference is small and their super-
position describes a slowly modulated, rapidly oscillating
function (the rapidly decaying contribution froms3 remains
localized near to the boundary). This gives the branches
m2,m3, . . ., which are characterized by an increasing number
of modulation periods. In the limit of largeq2 they form a
quasicontinuum, well separated fromm1.

Knowledge of the decay rates is not sufficient to describe
the decay process fully. First, one needs the initial state be-
fore switching off the voltage, which involves solving the
full linear (for small e) EC problem as a function of fre-
quency for the given nematic. This is numerically cumber-
some, in particular in the “dielectric”(large-q) regime. The
initial condition determines the expansion coefficientsAi [see
Eq. (10)]. Since the eigenvalue problem Eqs.(2) and (3) is
not self-adjoint, one has to solve the adjoint problem as well.
Finally the contribution of the different modes to the inten-
sity of the fringes has to be calculated following—e.g., the
methods presented in[10,11]. A corresponding detailed
analysis is presently under way.

III. EXPERIMENT

In order to cover a large range of decay ratesm and/or
wave numbersq2, the decay of EC patterns was investigated
in planar samples of the commercial nematic mixtures Phase
5 and Phase 5A(Merck). The latter is a doped version pos-
sessing higher electrical conductivity. These substances are
popular in the investigation of EC, since they are chemically
stable and their material parameters are well characterized
[17,16].

Planar cells were assembled using rubbed polyimide
coated electrode surfaces made by E.H.C. Co. The transpar-
ent indium tin oxide(ITO) electrodes covered a surface of
1 cm31 cm. The thicknessd of the cells was adjusted by
nylon spacers and was determined by a standard interfero-
metric method before filling.

EC was driven by sinusoidal voltage synthesized by a
function generator PC card through an electronic switch and

a high-voltage amplifier. This switch allowed an abrupt
(within 10 ms) shutting down of the applied voltage. The
actual ac voltage across the sample was measured by a digi-
tal voltmeter.

The sample was thermostatted by a PC-controlled Instec
hot-stage atT=30.0±0.05 °C. A beam of a laser diode of
wavelengthl=650 nm illuminated the cell on an area of
about 1 mm32 mm. In the state of electroconvection a
highly regular diffraction pattern could be observed as a se-
quence of light spots on a screen placed normal to the beam
at a distance ofL=660 mm. As the hot stage could be rotated
around an axis in the plane of the cell perpendicular to the
director, diffraction at normal as well as at oblique incidence
of light could be investigated. Depending on the applied
voltage diffraction fringes up to the ninth order could be
seen. At higher voltages, however, the diffraction spots
gradually became diffuse, indicating the reduction of pattern
regularity(appearance of defects above the threshold for sec-
ondary instabilities), and finally faded into an almost uni-
formly scattering background(the turbulent, dynamic scat-
tering mode).

The higher sensitivity of diffraction at oblique incidence
could be clearly demonstrated by the fact that a couple of
diffraction orders were still visible at low voltages where no
fringes could be seen at normal incidence. Therefore the
measurements shown were carried out at an angle of inci-
denceb=5 °.

In EC one usually observes two types of patterns, “con-
ductive” and “dielectric” rolls. In the first regime(at frequen-
cies f below the cutoff frequencyfc) the director distortion is
virtually stationary and the dimensionlessq is of the order of
1, while in the latter regimesf . fcd, nz follows the external
ac frequency andq@1 can easily be obtained.fc is roughly
proportional to the electric conductivity of the sample.

Using Phase 5A in a cell ofd=28 mm thickness EC pat-
terns of the conductive type existed in a wide frequency
ranges10–1380 Hzd. For f .1200 Hz the threshold of the
EC patterns grew steeply with the frequency. Thus the high-
est accessible frequency(which was still below the cutoff)
was practically limited by the maximum sinusoidal output

FIG. 3. Normalized director profileN10szd corresponding to the
m10 mode calculated for the parameter set of Phase 5/5A atq2

=40 (solid line), 58 (dashed line), and 76(dotted line), respectively.
FIG. 4. Temporal evolution of the light intensity of the first-

order diffraction fringeI1 following the shutdown of the applied
voltage in a 28-mm-thick cell of Phase 5A atf =1200 Hz. Curves
with different line styles correspond to different initial pattern am-
plitudes set by the dimensionless control parameter«=0.009(solid
line), 0.019(dashed line), and 0.066(dotted line), respectively.
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voltages±160Vpeakd the high-voltage amplifier could provide
which was too low to enter into the dielectric regime. Nor-
mal rolls—i.e., fringes along a single line parallel to the
director—appeared above the Lifshitz pointfL. At low fre-
quencies sf , fL<200 Hzd oblique rolls were observed
which resulted in diffraction fringes aligned along two cross-
ing lines as expected.

The wavelength of the pattern varied fromL=47.4mm at
low f to L=16.6mm at the highestf =1380 Hz. The dimen-
sionlessq2 fell into the range 1.4–11.3. At lowerf the accu-
racy of q2 was mainly determined by the precision of dis-
tance measurements on the screen, while at higher
frequencies the increase of the fringe diameter was the main
limiting factor.

In order to study the large-q regime we investigated the
decay of the dielectric rolls in a thinnersd=9.2 mmd cell
filled with Phase 5 having much lower electric conductivity.
The dielectric regime occurred abovefc.100 Hz. The low-
frequency conductive regime with oblique rolls occuring up
to fL.60 Hz has not been examined in detail. The wave-
length of the dielectric rolls was substantially smaller than in
the conductive regime(as expected) and could be tuned from
L=4.6 to 2.9mm by increasing the frequency. In dimension-
less units a range fromq2=14 to 38 has been covered. At
these smallerL the diffraction angles were higher and thus
fewer number of fringe orders were visible. In general the
diameters of the diffraction spots corresponding to the di-
electric rolls were noticeably larger, indicating less regular
patterns. Note that the conductivities of the two samples and
the thickness of the cells have been chosen in such a way that
the (dimensionless) wave numbersq in the two regimes
joined almost continuously(see also Fig. 7).

In order to study the decay of electroconvection patterns
the intensity of the diffracted light was monitored. An optical
fiber (with a diameter of 1 mm) which was positioned at the
center of the selected fringe(typically the first-order one)
transmitted the diffracted light into a photomultiplier work-
ing in its linear regime. Its output was fed through a current-
to-voltage converter into a 16-bit analog-to-digital(AD) con-
verter card. That allowed recording of the intensity at high
precision with adjustable sampling rate.

As already mentioned in the Introduction, the light inten-
sity In of an nth-order fringe is proportional toqmstd2n.
Hence, assuming an exponential decay of the deformation

sqm=q0e
−t/td the characteristic time for the intensity decay

of the nth-order fringe is given bytn
* =t /2n. Thus higher-

order fringe intensities decay faster; moreover, their intensi-
ties s~q0

2nd are smaller and more sensitive to nonlinear cor-
rections. Consequently, we carried out a detailed analysis of
I1 which is accessible in the case of oblique incidence.

The wavelengthL of the EC pattern can conveniently be
tuned by the frequencyf of the excitation. At eachf first the
EC threshold voltageVc was determined based on visibility
criteria. Then the voltageV was raised by 1% which corre-
sponds to a value of«=sV2−Vc

2d /Vc
2=0.02 of the dimension-

less control parameter. At this« typically four diffraction
orders were visible.L was then determined by measuring the
distancesDn between thenth-order diffraction fringes and
the main beam(zeroth order) and using the condition for
constructive interference,

Lfsinb + sinsan − bdg = nl, s12d

whereb is the angle of incidence andan=arctansDn/Ld is
the diffraction angle for thenth-order fringe.

The detector was then positioned at the center of the first-
order fringe(to the place of maximum intensity) to monitor
temporal variations. Data acquisition was started at the in-
stant of switching off the applied voltage. Figure 4 shows
some examples of the decay curves obtained when starting
from different« values. Note that the fringe intensity is not
expected to grow monotonically with« (althoughqm does
so), as the Bessel function in Eq.(1) is an oscillating func-
tion of its argument. The dotted curve in Fig. 4 indicates that
at «=0.066 the deformation is already large enough to get
past the first maximum of Eq.(1) which explains the slight
increase of the intensity at the initial part of the decay.

In order to focus on small deformations, however, during
measurements the gain of the AD converter was increased by
a factor of 8. Furthermore, we zoomed in on the tail(on
values below 1/16 of full scale) of the relaxation curve. This
tail section which showed an exponential decay was finally
recorded as 3000 points with a 12-bit resolution. The sam-
pling time was chosen so that the recorded section corre-
sponded to a period of abouts6–7dt1

* . Before processing the
data they were smoothed by a sliding averaging involving 51
neighboring data points. This improved the signal-to-noise
ratio considerably while it did not affect the exponential
shape of the curve. Finally the relaxation time of the fringe
intensity,t1

* =t /2, was obtained by a least-squares fitting of a
single exponential. Figure 5 depicts an example of the re-
corded data and the fitted exponential. The mean square de-
viation of the experimental data from the fitted curve is typi-
cally less than 1% of the full scale, and hence a systematic
deviation is almost undetectable in the figure.

Despite the good fit, the relaxation timest obtained from
repeated recordings showed a typical scattering of about
10% which may be attributed to variations of the initial EC
state. Actually one expects that the existence of wave num-
ber gradients of the order of 10% is consistent with the width
of the stable wave number band at«<0.02 of our initial
state. By averaging over the decay times of ten consequtive
measurements at the same frequency we obtained an average

FIG. 5. The tail of a typical decay curve(solid line) with a fitted
exponential(dash-dotted line). The inset shows the residuals to the
single-exponential fit at an enlarged scale.
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t̄. Finally the dimensionless decay rate was calculated by
scaling it with the director relaxation timesmexpt=td/ t̄d.

The procedure above could not be fully applied to the thin
cell in the dielectric regime. As a consequence of the smaller
wavelength of the dielectric rolls(which is independent ofd
and is a combination of material parameters), their relaxation
time turned out to be quite shorts0.14–0.48 msd compared
to the minimum sampling times0.01 msd of the high-
resolution AD converter card. Therefore in this case a digital
oscilloscope with an 8-bit resolution was used to record the
temporal evolution of the fringe intensity and all recorded
points(except those saturating due to overdriving at the start
of the decay) were included in the exponential fitting.

IV. COMPARISON OF EXPERIMENTAL DATA WITH
THEORY

Figure 6 displays the measured data together with the the-
oretical curves in the conductive range. Focusing on the very
end of the relaxation process we expected that there the sys-
tem decays with the slowest ratem1 in the wholeq range
because faster modes die out earlier. It can be seen, however,
that the measured points do not follow the lowest branch of
the dispersion relation(the slowest decaying mode) except in
the very-low-q2 range up to about 4. Neither do they follow
the predictions of the SMA as all points are below that curve.
There are, however, distinct ranges ofq2 wheremexpt data lie
almost perfectly on one of the branches provided by the rig-
orous calculation(on m1 for q2,3.5, on m2 for 5.0,q2

,6.7, and onm3 for 8.0,q2,10.0).
Figure 7 displays the measured decay rates together with

the theoretical curves for the wholeq range, including the
dielectric mode. The trend of the persistent switching ofmexpt
to higher-mk branches with increasingq2 continues in the
dielectric regime. This similarity is actually not surprising.
Although the electroconvecting state in the dielectric regime
is crucially different from that of the conductive one(e.g.,
the director tilt follows the excitation frequency which can
be nicely detected in the oscillating intensity of the diffrac-

tion fringes), the decay itself occurs under the same field-off
condition in both cases.

These data indicate that the assumption of the final decay
occurring with the slowest mode does not hold or at least
cannot be justified with the spatiotemporal resolution facili-
tated by our experimental setup. Surprisingly the slowest
modem1 is not reflected in the diffracted light intensity(ex-
cept for smallq2). Instead the decay ratemksq2d with the
eigenfunctionNkszd closest to cosszd (with small superim-
posed oscillations as shown in Fig. 3) dominates. Apparently
this eigenfunction has the largest overlap with the initial di-
rector field and thus provides the largest weightsAi. With
increasingq2 this eigenfunction appears at higher indicesk
of the eigenvaluesmk. As a result the system switches from
one branch to the next. Forq2 in the switching region the
measuredmexpt falls in between the branches indicating the
absence of a single dominating mode. Actually fitting the
decay curves with a superposition of more exponentials re-
duces the mean-square deviation slightly in those regions.
Preliminary calculations which follow the general scheme
presented at the end of Sec. II, show indeed that forq2=10
(conductive regime; see Fig. 6) wherem<m3 the contribu-
tion of this mode to the fringe intensityI1 is larger by a
factor 30–50 compared to the contribution of the modesm1
andm2.

V. CONCLUSIONS

A rigorous theoretical solution has been provided for the
problem of the decay modes of periodic patterns in nematic
liquid crystals. The proper handling of the boundary condi-
tions has yielded a dispersion relation with a sequence of
modes with different relaxation times in contrast to the
single-exponential decay predicted by the slowest SMA
mode. The branches of the dispersion relation have been cal-
culated for the nematic liquid crystal Phase 5/5A.

Laser diffraction at an oblique incidence has turned out to
be an excellent tool to monitor the decay process experimen-

FIG. 6. The dimensionless decay ratem of the director versus
dimensionlessq2. The four lowestmksq2d branches of the dispersion
relation are depicted alternatingly by solid(for oddk) and by dash-
dotted(for evenk) lines. The dashed line shows the expectation of
the SMAfm̄1sq2dg. Solid circles are the datamexptmeasured at sinu-
soidal excitation for Phase 5A in the conductive regime.

FIG. 7. The dimensionless decay ratem of the director versus
dimensionlessq2. The eight lowestmksq2d branches of the disper-
sion relation are depicted alternatingly by solid(for odd k) and by
dash-dotted(for evenk) lines. The dashed line shows the expecta-
tion of the SMA fm̄1sq2dg. Solid circles and open squares are the
data mexpt measured at sinusoidal excitation in the conductive re-
gime of Phase 5A and in the dielectric regime of Phase 5,
respectively.
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tally. The decay rates have been measured in a wide wave
number range. Several distinctq ranges have been found
where the relaxation of the pattern is characterized by an
exponential decay slightly slower than that given by the
SMA, but coinciding with one of the calculated branches of
the dispersion relation. That indicates that the generally mul-
timode decay is usually dominated by a single mode though
somewhat different from that provided by the SMA. This
trend holds for both the conductive and dielectric regimes,
showing that the type of excitation has only a minor influ-

ence on the decay process. The detailed analysis of the im-
pact of the initial conditions including a theoretical decom-
position into modes is still under investigation.
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