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The decay of stripe patterns in planarly aligned nematic liquid crystals has been studied experimentally and
theoretically. The initial patterns have been generated by the electrohydrodynamic instability and a light
diffraction technique has been used to monitor their decay. In our experiments different decay rates have been
observed as a function of the pattern wave number. According to our theoretical analysis they belong to a
spectrum of decay modes and are individually selected in dependence on the initial conditions. Additional
insight has emerged from a refined physical optical description of the diffraction intensity. The results compare
well with experiments, which include also controlled modifications of the initial conditions to assess different
decay modes.
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I. INTRODUCTION

The intriguing features of patterns in anisotropic fluids
when driven out of equilibrium by an external stress have
motivated a wide range of experimental and theoretical stud-
ies over the last decades �1�. The most common representa-
tives of uniaxially symmetric fluids are nematic liquid crys-
tals �nematics� which have a locally preferred direction
described by the director field n�r , t�.

One of the simplest examples of patterns in nematics is a
periodic array of parallel stripes which reflect a periodic
modulation of the director and hence that of the optical axis
in space. The pattern is often accompanied by material flow
in the form of convection rolls and can be induced by various
types of excitations like shear flow �2�, temperature gradient
�3�, or electric field �4�.

The goal of this work is to investigate the decay of a
suitably prepared regular stripe pattern after the driving force
has been switched off—i.e., when the system relaxes to the
equilibrium �usually homogeneous� ground state. The relax-
ation time � characterizing the decay process is a key param-
eter, which reflects the system dynamics. In the theoretical
analysis we concentrate on low-amplitude director modula-
tions, either already realized in the initial pattern or reached
in the late stage of the decay process. In a recent paper �5� a
rigorous theoretical description of the low-amplitude decay
process of stripes, characterized by a wave vector q, has
been presented which is based on the standard equation set
of nematohydrodynamics �6,7�. One arrives at a linear eigen-
value problem, which yields an infinite discrete spectrum of
decay rates, �i�q�, associated with the corresponding eigen
�decay� modes Ni�z ,q�. Since only the pattern wavelength
�= 2�

q and the elastic and viscous material parameters come
into play, the analysis of the decay process might also be

useful for actually assessing material parameters. Note that
the mechanism of producing the patterns influences their
subsequent decay only via the initial conditions, which de-
termine the selection of the relevant decay modes.

In our case electroconvection �EC� �4� is used to trigger
the initial patterns: an ac voltage is applied to a thin �d
�10–100 �m� layer of a planarly oriented, slightly con-
ducting nematic possessing negative dielectric and positive
conductivity anisotropies. Varying the easily tunable control
parameters �rms voltage U, circular frequency �, etc.� we
place the system into a parameter regime, where periodic
stripe �roll� patterns with wave vector q parallel to the equi-
librium director orientation n0 �normal rolls� bifurcate at on-
set �Uc�. This state serves as the initial condition for the
decay dynamics when the voltage is switched off. Our pre-
vious light diffraction measurements of the decay rates for
various �q� were consistent with the theory and gave the first
indications of the selection mechanism of the dominant de-
cay modes �5�. In the present work the analysis will be sub-
stantially extended: for a given initial pattern we rigorously
determine the individual contributions of the different decay
modes to the temporal evolution of the diffraction fringe in-
tensities, which is exploited in the experiment to monitor the
decay process.

In Sec. II we describe briefly the experimental setup and
give some background information on the initial EC patterns.
Section III is devoted to the linear eigenvalue problem al-
luded to before, which leads to the decay rate spectrum and
in particular to the understanding of the relative importance
of the corresponding eigenmodes when the decay from dif-
ferent initial states is considered. In Sec. IV we present a
theoretical analysis of the light diffraction method, where we
employ a standard �8,9� �but refined� physical optical de-
scription. In Sec. V we compare theory and experiment in the
linear regime. In addition we show experiments where the
initial conditions have been modified either by stronger forc-
ing or by varying the wave form of the driving signal. The
paper ends with some concluding remarks and an outlook to
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future work. An appendix is devoted to some technical de-
tails.

II. EXPERIMENTAL SETUP

The decay of EC patterns was investigated in standard
sandwich cells �E.H.C. Co.� which produce by their proper
surface treatment a uniform planar orientation of nematics in
the equilibrium state. In the experiments we have used the
commercial nematic Phase 5 �Merck� and its factory doped
version Phase 5A. This substance �a kind of a standard for
EC measurements� is chemically stable, and its material pa-
rameters on which all explicit calculations throughout this
paper were based are well known �10�. All measurements
were carried out at the temperature T=30.0±0.05 °C kept
constant by a PC-controlled Instec hot stage. Cells of differ-
ent thicknesses d have been used, where d was determined
by an Ocean Optics spectrophotometer.

The EC instability was typically driven by an ac voltage
U�2sin �t with frequencies f = �

2� up to 1400 Hz and rms
amplitudes U up to 90 V �11�. Convection in the form of
rolls with a critical wave vector qc= �qc , pc� sets in if the
applied voltage U exceeds the threshold Uc�f�. In Fig. 1�a� a
typical critical voltage curve is presented as a function of
frequency, where the two well-known regimes can clearly be
identified. At frequencies below the cutoff frequency fc
�225 Hz, which is material parameter dependent, one ob-

serves electroconvection in the conductive regime, where the
director distortion is practically time independent, whereas it
oscillates with f in the dielectric regime above fc �for more
details see Sec. III�. The transition between the two regimes
is indicated by a kink of the Uc�f� curve. In Fig. 1�b� we
show the components qc, pc of the critical wave vector qc. At
lower frequencies we have oblique rolls with a nonzero angle
�=arctan�pc /qc� between qc and n0. Above the Lifshitz fre-
quency fL�70 Hz, we have normal rolls with pc=0. At fc
we observe a jump in qc. In Figs. 1�a� and 1�b� we have also
included the theoretical curves obtained from the linear sta-
bility analysis of the nematohydrodynamic equations �4�
with the material parameter set for Phase 5 �see �10� and
Table I of �5��, which describes the experiments very well.

The cutoff frequency fc is proportional to the electrical
conductivity of a nematic. Phase 5 has a low fc=

�c

2�
�300 Hz; thus, it allows easy measurements of the dielectric
EC mode in thin cells. Due to its much higher electrical
conductivity, Phase 5A has a higher cutoff frequency �fc

	1500 Hz�, offering a wide frequency range in the conduc-
tive regime, but makes the dielectric regime inaccessible,
since the required voltage becomes too high and would de-
stroy the cells. To facilitate comparison with theory we re-
stricted ourselves to the normal roll regime �f 	 fL�.

While the wavelength �= 2�
q in the conductive regime

varies roughly between 2d and 0.9d, in the dielectric regime
considerably smaller values �0.3d become accessible. In or-
der to cover a wide q range we have chosen d=28 �m for
Phase 5A and d=9.2 �m for Phase 5, respectively.

The nematic layer �see Fig. 2� is illuminated with a polar-
ized monochromatic laser beam �circular frequency 
,
wavelength �= 2�c


 =650 nm, c the velocity of light�. Diffrac-
tion fringes were observed on a screen placed normal to the
beam at a distance of L=660 mm. In order to have a higher
contrast �12,13�, oblique illumination was used with an angle
of incidence �=5°. This setup allowed easy determination of
the pattern wavelength � from the distances of the fringes.

The pattern decay has been initiated by a practically in-
stantaneous �within 10 �s� shutting down of the voltage. The
process has been monitored by recording the intensity I−1�t�
of the first order fringe n=−1 �14�. From the analysis of the
time evolution of I−1�t�, to be described in the subsequent
sections, the decay rates have been extracted.

III. THEORETICAL ANALYSIS OF THE DECAY PROCESS

We consider the standard configuration of a nematic sand-
wiched between two plates parallel to the x-y plane at a

FIG. 1. �Color online� �a� Critical voltage Uc and �b� dimension-
less components qc�=qcd /� �open squares� and pc�= pcd /� �open
triangles� of the critical wave vector for a Phase 5 cell �d
=9.2 �m� as function of frequency. Measurements �symbols� are
compared with theory �solid lines�.

FIG. 2. �Color online� Schematic sketch of the light diffraction
geometry.

PESCH et al. PHYSICAL REVIEW E 73, 061705 �2006�

061705-2



distance d �− d
2 �z�

d
2

�. We concentrate on the planar con-
figuration, where in the ground state the director is oriented
along the x axis—i.e., parallel to n0= �1,0 ,0�. Applying an
electric voltage U, which exceeds slightly the threshold Uc, a
stripe pattern develops. It involves a periodic modulation of
n with wave number q in the n0 direction. The modulations
are coupled in a positive feedback to the flow in convection
rolls and to the space-charge distribution with the same pe-
riodicity; all spatial variations are confined to the x-z plane
�normal rolls�. n is characterized by its space- and time-
dependent angle 
EC�x ,z , t�, with the x axis. It is convenient
to separate an amplitude 
m and the part periodic along x
from 
EC, which is thus presented as 
EC�x ,z , t�
=
msin�qx��EC�q ,z , t� where �EC�q ,0 ,0� is normalized to 1.

The threshold voltage Uc, the critical wave number qc of
the roll pattern, and the director profile �EC�q ,z , t� can be
obtained from a linear stability analysis of the standard
model �SM� of EC �7�, which consists of a set of coupled
partial differential equations �PDE’s�. Galerkin methods �15�
are very convenient to obtain numerical solutions of the SM.
The various fields �director, flow, charge density� are repre-
sented in the form of appropriate series expansions, like

�EC�q,z,t� = 	
m=−�

�

eim�t	
l=1

�

aml�q�sin
l
�

d
�z +

d

2
�
 , �1�

for the director, which automatically fulfill the boundary con-
ditions of vanishing distortion, �EC�q , ± d

2 , t�=0, at the con-
fining plates. Due to the up-down symmetry of standard EC,
the solutions are either odd or even against the reflection z
→−z. At small dimensionless control parameter values �

=
U2−Uc

2

Uc
2 —i.e., near onset—�EC is even in z and thus aml�q�

=0 for all even values of l. The solutions are in addition
characterized by their parity under the transformation tÞ t
+ �

� . While �EC has even parity �aml=0 for odd m� in the
conductive regime, it switches to odd parity in the high-
frequency dielectric regime �aml=0 for even m�. By project-
ing the SM equations on the Galerkin modes one arrives at a
system of linear equations for the expansion coefficients like
the aml�q�, which are determined numerically. Truncating at
eight Galerkin modes �0� l�8� in the z direction and at
three temporal modes �0� �m � �3� usually gives an excel-
lent description of patterns near onset. For the nematic Phase
5 the director profile �EC�q ,z , t� turns out to be dominated by
the leading nonvanishing terms—i.e., a10�1 in the conduc-
tive regime and a1±1� 1

2 in the dielectric regime. The other
coefficients aml yield only small ��5% � corrections.

The decay of a pattern, which starts when the voltage is
suddenly switched off, at t=0, does not change the wave
number q. Therefore we use for the director profile 
d during
the decay the representation 
d�x ,z , t�=
msin�qx��d�q ,z , t�
in analogy to 
EC�x ,z , t�. As already mentioned the analysis
of the decay process requires the solution of a linear eigen-
value problem, which originates from the standard model, to
determine the decay rates �k�q� and the decay modes
Nk�q ,z�. Compared to the analogous calculation of the criti-
cal EC values, the equations become simpler �5�, since for

zero electric field the charge and the director relaxation dy-
namics are decoupled �see the Appendix�.

In line with the standard procedure for linear PDE’s the
time evolution of the decaying director profile �d�q ,z , t� can
be represented as

�d�q,z,t� = 	
k=1

�

e−�k�q�twk�q�Nk�q,z� . �2�

The expansion coefficients wk�q� are determined by a suit-
able projection on the initial state �d�q ,z ,0���EC�q ,z ,0�:

wk�q� =
�

d
�

−d/2

+d/2

�EC�q,z,0�Nk
+�q,z�dz, k = 1,2, . . . ,

�3�

where the adjoint linear eigenvectors Nk
+�q ,z� of the eigen-

value problem �see the Appendix� fulfill the orthonormality
condition:

�

d
�

−d/2

+d/2

Nk�q,z�Nl
+�q,z�dz = �kl, k,l = 1,2, �4�

with the Kronecker symbol �kl.
The expansion coefficients wk�q� depend strongly on q.

This is obvious when inspecting their q dependence plotted
as a function of the dimensionless wave number square q�2

= � qd
�

�2 in Figs. 3�a� and 3�b� for k=1, . . . ,8. The wk have
been determined with the help of Eq. �3�, where for simplic-
ity �EC�q ,z ,0� has been approximated by its leading term
sin��

d
�z+ d

2
�� in Eq. �1�. The functions wk�q� are very small

everywhere except over a certain q�2 interval, where they
rise steeply to a finite value. In other words the q�2 axis can
be covered by a set of intervals, such that for q values in

their interior a unique integer k̄�q� exists, such that wk̄�q� is

dominant. With increasing q�2 the corresponding k̄�q� in-
creases monotonously. Only in the vicinity of special q�2

values, where two neighboring wk�q� curves cross—i.e., at
the borders of the q�2 intervals described before—is the de-
cay governed by two comparable decay rates �k̄ and �k̄+1.

To test the influence of nonzero coefficients aml with l
	1 in Eq. �1� we have calculated for some q the weights
wk�q� using the rigorous initial director profile �EC�q ,z ,0�
for Phase 5 in Eq. �3�. The corrections are in fact almost
negligible �see the symbols in Fig. 3�a��. Note that for Phase
5 not all q values can be realized �see Fig. 1�b��, which
explains the missing symbols in the 6�q�2�9 interval in
Fig. 3�a�.

IV. THEORETICAL DESCRIPTION
OF THE DIFFRACTION OPTICS

EC roll patterns represent a periodic spatial modulation of
the director which corresponds to an optical phase grating
with a lattice constant �. This feature allows us to keep track
of the pattern decay by monitoring the fringe intensities in
laser diffraction. Since our director distortions are small, the
linearized physical optics approach, discussed in the litera-
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ture for diffraction from EC rolls �8�, is well suited. To dis-
entangle clearly the main contributions to the fringe intensi-
ties and to set our notation, we review briefly this previous
theoretical approach and allow at the same time for arbitrary
profiles �d�z� instead of sin��

d
�z+ d

2
�� chosen in �8�.

The incident light can be well described by a plane wave
�ei�
t−k0x�, since the spatial extension of the beam is much
larger than �. The wave vector k0 �k0= 


c
� and the �extraor-

dinary� light polarization are restricted to the x-z plane.
The optical properties of the nematic are governed by the

anisotropic dielectric permittivities �� and �� �at the optical
frequency 
� or by the corresponding refractive indices, ne

2

=�� and no
2=��.

In the case of small distortions of the planar geometry—
i.e., for small 
m—the diffraction pattern is determined only
by the phase k0� of the transmitted light. Thus an eikonal-
type approximation for the electric and magnetic field com-
ponents of the light wave is appropriate. According to �8� in
the present geometry the Maxwell equations can be reduced
to an equation for the y component of the magnetic field, By,
of the laser beam. The resulting equation is solved by the
substitution

By�x,z� = Cei��t+k0��, �5�

with

��x,z� = x sin � − nfz + �
mu�x,z� . �6�

Here C is a constant and the following abbreviations are
used:

nf = ne�1 −
sin2 �

no
2 , � =

ne
2

no
2 − 1. �7�

Obviously the function u�x ,z� describes the modification of a
plane wave due to the presence of the periodic director dis-
tortion. It is useful to separate u�x ,z� as

u�x,z� = g1�z�e−iqx + g2�z�eiqx, �8�

which eventually leads to a linear inhomogeneous ordinary
differential equation �ODE� for g1�z�:

�−
��

��

q2 + �zz�g1�z� − 2ik0
nf�zg1�z� +
��

��

iq sin �g1�z�

= �− 2k0nfsin ���z� − isin ��z��z� + qnf��z��/2. �9�

The corresponding ODE for g2�z� is obtained by the replace-
ment q→−q. The standard matching conditions of the light
wave at the boundaries of the cell at z= ± d

2 are fulfilled if the
following conditions hold:

g1�−
d

2
� = �zg1�−

d

2
� = 0,

g2�−
d

2
� = �zg2�−

d

2
� = 0. �10�

The intensity maxima In of the diffraction patterns corre-
spond to rays which include the angles �+�n �n
= ±1, ±2, . . . � with the z axis and fulfill the relation

sin�� + �n� − sin��� =
n�

�
, �11�

where �n�0 for negative n. In this paper we concentrate on
the intensity I−1 of the first-order fringe n=−1 �see Fig. 2�. It
can be shown by expanding Eq. �5� with respect to 
m�1
�see �9�� that within our linear approximation scheme I−1 is
given as

I−1 = 
m
2 �ik0g1�d

2
��2

: = 
m
2 �H1�2, �12�

where the intensity I0 of the undistorted laser beam is nor-
malized to 1.

We solve Eq. �9� using the variation-of-constants method.
The two linearly independent solutions of the homogeneous
equation are given as f±�z�=ei�±z with

�± = nfk0
1 ± �1 − R−2ne
2

no
2

�1 − 2R sin ��
nf

2 �1/2
 �13�

and R=
k0

q . Corrections to geometrical optics and thus diffrac-
tion intensities become smaller with increasing R, which var-
ies between 4 and 73 in our experiments.

The solution of Eq. �9� with the boundary conditions Eq.
�10� is then determined as

FIG. 3. �Color online� Variation of the weights wk of various
decay eigenmodes �plotted with different line styles� with respect to
the dimensionless wave number square q�2 for �a� k=1, . . . ,4 and
for �b� k=5, . . . ,8, using a sin��

d
�z+ d

2
�� initial director profile. The

weights wk calculated from the actual EC director profile are plotted
as symbols for a few frequencies in the conductive �q�2�6, squares
for k=1, up triangles for k=2� as well as in the dielectric regime
�q�2	8� �circles for k=3 and down triangles for k=4�.
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g1�z� = �
−d/2

z f+�z − z�� − f−�z − z��
i��+ − �−�

Inh�z��dz�, �14�

where Inh�z� denotes the inhomogeneity �the right-hand side�
of the ODE in Eq. �9�. It is obvious that the contribution
from f+�z�—which oscillates strongly on the scale of d due
to �+��−—can be safely neglected in the sequel. Thus I−1 in
Eq. �12� is eventually determined by the following final ex-
pression for H1:

H1 = − �c̄1 + c̄2�−��
−1/2

1/2

ei�−d�1/2−z̄���z̄�dz̄ , �15�

with

c̄1 =
1

2
dqnf

k0

��+ − �−�
�1 − 2R sin �� ,

c̄2 =
1

2
dk0

R−1

��+ − �−�
�R sin �� . �16�

Here we have changed to dimensionless units z̄= z
d . Accord-

ing to Eq. �15�, H1 appears as a weighted average over the
director profile ��z�. Note that the contribution �c̄2 origi-
nates from a partial integration of the �z� term contained in
Inh�z�.

Inspection of Eqs. �12�–�16� insinuates that the diffraction
intensity should vary considerably with �. It follows that
even a small nonzero incidence angle, like �=5°, is advan-
tageous as seen in the experiment.

Inserting our representation for the decaying director pro-
file given in Eq. �2� into Eq. �15�, all integrals can be per-
formed analytically and H1 appears in a natural way as a sum
of the contributions of the different eigenmodes Nk�z�. Thus
eventually the fringe intensity I−1 is given as

I−1 = 
m
2 Cq�	

k=1

�

ck
optwke

−�kt�2

. �17�

The coefficient

ck
opt�q� = �

−1/2

1/2

ei�−�q�d�1/2−z̄�Nk�z̄,q�dz̄ �18�

captures the diffracting efficiency of a given decay mode,
while

Cq = ��c̄1 + c̄2�−��2 �19�

is a q dependent prefactor.
In Fig. 4 we show a few coefficients ck

opt�q� �k
=1, . . . ,3� calculated for Phase 5 as a function of q�2 assum-
ing �=5°, no=1.558, and ne=1.848 �16�. While c1

opt de-
creases with increasing q�2, the coefficients ck

opt for k	1
show a damped oscillation in the experimentally relevant q
range. In analogy to the maxima of the weights �wk� �see Fig.
3�a�� the leading maxima of �ck

opt� are continuously shifted
with increasing k toward higher q�2 values and appear

roughly at the same q� interval with k= k̄�q�� as defined for
�wk�q�� in Sec. III. Thus via their product in Eq. �17� the

mode selection mechanism �wk� and the optical efficiency
�ck

opt� enhance each other. The products wk�q�ck
opt�q� are

shown in Figs. 5�a� and 5�b� as a function of q�2, which are

indeed maximal for k= k̄�q�. Consequently it is obvious that
the initial stage of the pattern decay, at small t, is for a given

q governed by the decay rate �k̄�q�. Since k̄�q�	1 for q2

	4, we would like to emphasize that the initial decay is not
automatically governed by the smallest decay rate �1�q�, as
one might have guessed intuitively. With increasing t, how-
ever, we inevitably arrive at a time t1 where the relation

FIG. 4. �Color online� Variation of the diffraction efficiency of
the first �c1

opt, solid line�, the second �c2
opt, dashed line� and the third

�c3
opt, dotted line� decay eigenmodes as a function of the dimension-

less wavenumber square q�2.

FIG. 5. �Color online� Contribution of modes to the diffraction
intensity wkck

opt �plotted with different line styles� with respect to
the dimensionless wave number square q�2 for �a� k=1, . . . ,4 and
for �b� k=5, . . . ,8, assuming a sin��

d
�z+ d

2
�� initial director profile.
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�c
k̄

opt
wk̄�e−�k̄t1 = �c

k̄−1

opt
wk̄−1�e−�k̄−1t1 �20�

holds and �k̄−1 comes into play. Upon further increasing t
one visits all lower k values until k=1 is reached. With the
analytical expression �17� at hand there is no difficulty in
studying the time dependence of I−1�t� in any detail. On the
other hand, when only experimental values for I−1�t� are
given, we are faced with the problem to extract the decay
rates �k�q� in a controlled way.

For that purpose we have produced a set of values of
I−1�t� from Eq. �17� in an interval ta� t� ta+Tf. They are
fitted to an exponential curve Ae−2�ft, where the factor of 2 in
the exponent is obvious since I−1�t� depends quadratically on
the tilt angle. The interval Tf has to be chosen small enough,
to allow for discriminating the sequence of the dominant �k
which are visited with increasing ta according to our general
analysis above. As a test we applied the fitting procedure to
the analytical expression for I−1�t� given in Eq. �17�. The
weights of the decay modes have been calculated from the
initial EC state for a number of q values �including ones
from the conductive as well as from the dielectric regime�. It
is convenient to nondimensionalize the effective exponents

using the characteristic director relaxation time �d=
�1d2

K1�2 ��1

is a rotational viscosity, K1 the splay elastic constant�, which
is of the order of 0.1 s for d=10 �m. The resulting � f�
=� f�d are shown in Fig. 6 together with the first few �k�
=�k�d branches as a function of q�2. It is reassuring that our
� f� reproduce the �k�=�k�d branches very well: the � f� follow
the �k� branches and switch to the next, �k+1� , branch with
increasing q�2. This scenario has already been described
when analyzing the experimental data in �5�.

In order to have a closer look at the time dependence of
the I−1�t� curves the starting point ta of our fitting regime was
continuously shifted from ta=0 towards larger times. Thus
we define an effective decay rate � f��ta�. Figures 7�a� and
7�b� exhibit examples of � f��ta� for the conductive �q�2

=5.619� as well as for the dielectric �q�2=18.796� regime,
respectively. A gradual crossover from the decay rate of the
dominant mode �� f��0�=�

k̄
�� via the intermediate �k��q� with

k� k̄ toward the slowest decay rate �1� is clearly identified.
The time evolution of � f��ta� in dependence on the wave

number becomes more transparent when they are normalized
with respect to their maxima � f��0�. The reduced decay rates

���ta�=
� f��ta�

� f��0� are shown in Fig. 8. For the lowest q the slow-

est mode �1�q� is the dominant one, so � f��ta� is practically

constant, while for increasing q, where k̄�q�	1, also larger

�k with k� k̄ come into play before the curves saturate again
at the slowest mode �1 at ta�

15

�k̄
�
. Notice, however, that by

this time, the fringe intensity has already decreased by a
factor of 3�10−7 which is much too low to be resolved in
the experiment.

For completeness we have also plotted the mode-
independent normalization factor Cq as a function of q�2 in
Fig. 9, which determines the absolute intensity I−1 of the
first-order fringe n=−1. It becomes fairly small at large q2

FIG. 6. �Color online� Dimensionless decay rates � f� obtained
by a single exponential fit versus q�2 for the start of the decay.
Squares and triangles indicate decay of conductive and dielectric
rolls, respectively. The lines of different style depict the �1� , . . . ,�7�
branches of the dispersion relation. FIG. 7. �Color online� Dimensionless decay rates � f� obtained

by a single-exponential fit versus the time ta elapsed between
switching off the voltage and start of the fit �a� in the conductive

regime �q�2=5.62, k̄=2, �2�=31.28, �1�=22.42�, �b� in the dielectric

regime �q�2=18.80, k̄=5, �5�=147.64, �4�=121.23, �3�=94.27, �2�
=84.10, �1�=73.21�.
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and approaches zero at a certain �-dependent wave number
q�. The absolute intensity, which sets a limitation on resolv-
ing the patterns, has otherwise no direct relevance for the
determination of the decay rates. In addition we have no real
access to the initial amplitude 
m in Eq. �17� which deter-
mines the fringe intensity as well.

V. COMPARISON WITH EXPERIMENTS

To compare experiments directly with theory we have first
analyzed the decay of initial small-amplitude roll patterns,
which have been prepared with applied voltages slightly
above the threshold Uc���. In close analogy to our analysis
of I−1�t� in the previous section the experimental fringe in-
tensities have been fitted to an exponential function for dif-
ferent q. The resulting maximal �dimensionless� decay rates
�expt� for ta=0 �shown as solid triangles in Figs. 11�a� and
11�b�� agree very well with the theoretical ones �i.e., with
�

k̄
�� as well as with the simulated ones in Fig. 6.

However, since the pattern amplitude becomes too small
at a later stage of the decay process, it was not possible to

reach the further �k with k� k̄ which must in principle show
up �see Fig. 7�. Thus we will explore in the following sub-
sections the possibility to initiate the decay process with
higher amplitudes and/or with different driving wave forms
and thus to modify the initial conditions. We suspect that

then the z profile of the director in the EC state could expe-
rience a considerable modification, which is expected to af-
fect the wk�q� functions, such that the �k̄ mode calculated
before will not be the dominant one. This in principle could
lead to an overall acceleration or slowing down of the decay.
Model calculations with �realistically� deformed director
profiles showed a slowing down.

A. Sine-wave excitation

Low-amplitude initial patterns are typically produced in
our experiments by increasing the applied rms voltage U
slowly above the threshold Uc and waiting some time �of the
order of minutes� to allow for equilibration. There is, how-
ever, an obstacle to proceed to higher amplitudes 
m: roll
patterns become zigzag unstable already very near to thresh-
old ���0.04 �4��. This instability leads to roll pinching and
generation of dislocation pairs and thus to defect turbulence,
which destroys the homogeneity of the pattern. The resulting
diffuse scattering deteriorates the resolution of the diffraction
spots and does in practice not allow precise measurements
for ��0.07.

Though the growth of the pattern amplitude and the
nucleation of defects are both consequences of driving at
higher �, the two phenomena do not occur on the same time
scale. Defects cause a quite extended distortion of the direc-
tor and of the flow patterns by phase diffusion; thus, the
characteristic time for this process is typically longer than
that of the simple growth of the amplitude. Therefore, if we
just “kick” the system by applying a higher voltage for a
sufficiently small period only, one expects that the system
can be driven temporarily above the zigzag destabilization
limit to obtain higher pattern amplitude without the appear-
ance of defects and/or the change of q. Thus we have de-
signed an additional device which has allowed for a fast non
adiabatic amplification of the voltage over a controlled
switching period of time �ts=0–1 s. This technique proved
to be indeed efficient, as increasing the voltage by 7.5% �i.e.,
jumping from �=0.02 to �p�0.18� for �ts=0.2 s, the num-
ber of visible diffraction orders n �note that In�
m

2n �8,13��
could be temporarily doubled without noticeable increase in
scattering. We have found that larger jumps in the applied
voltage have to be associated with shorter periods �ts if we
intend to avoid nucleation of defects �i.e., to preserve the
sharpness of the fringes�. The decay curves for different
switching times �ts are shown in Fig.10. In contrast to the
monotonous decay for �ts=0, from which we extract the
decay rates �k̄, the presence of minima and maxima in the
I−1�t� curves recorded at larger �ts indicates much bigger
initial pattern amplitudes 
m. At larger amplitude 
m one
leaves the linear regime and both amplitude- and phase-
grating effects of the periodic director modulations have to
be considered. According to the literature ��12,13�� the fringe
intensity I−1 is then given as

I−1 � �J1�Q�m��2. �21�

Here Q is a factor depending on the material parameters and
the angle of incidence and J1 denotes the Bessel function of
order 1. The oscillatory behavior of J1 provides a natural

FIG. 8. �Color online� Temporal evolution of the normalized
decay rates ��f�ta� obtained by a single exponential fit for q�2

=1.88 �solid squares�, q�2=5.62 �solid up triangles�, q�2=9.02
�open up triangles�, q�2=15.10 �open circles�, and q�2=18.80 �solid
stars�.

FIG. 9. �Color online� Variation of Cq with respect to the dimen-
sionless wave number square q�2.

ROLE OF INITIAL CONDITIONS IN THE DECAY OF¼ PHYSICAL REVIEW E 73, 061705 �2006�

061705-7



explanation for the nonmonotonous �ts dependence of the
decay curves. It is clear that with increasing �ts we reach
larger 
m for the same �p, which is reflected in more oscilla-
tions of J1. A detailed analysis of the decay curves at finite
�ts is, however, outside the scope of the present paper.

For finite �ts it is reasonable to assume that tails of the
I�t� curves in Fig. 10, which monotonously decay in time,
will represent the linear 
m regime which allows us to extract
the linear decay rate spectrum. It turned out that the resulting
�expt� �not shown� were only slightly below the decay rates
obtained with �ts=0.

B. Square-wave excitation

The director profile in the EC state is expected to depend
also on the driving wave form of the ac voltage. Therefore
changing the wave form of the applied voltage from sinu-

soidal to different ones offers another way to alter the initial
conditions.

Thus we have tentatively combined square-wave driving
with the kicking procedure �a jump from ��0.02 to �p
�0.18 for �ts=0.2 s� described before with the hope to
change the initial condition substantially. The decay rates
obtained under such conditions are compared in Figs. 11�a�
and 11�b� with those measured at sinusoidal voltage with
�ts=0. It is seen that in the conductive regime �Fig. 11�a��
the decay rates obtained by the two types of excitation coin-
cide at low q�2, as expected. The noticeable, though not fully
convincing, shift to lower �expt� �slower decay� at q�2	7.3

may imply that ��k��q� with k� k̄ have been activated. De-
viations are in particular visible in the dielectric regime �see
Fig. 11�b��. There the decay rates clearly follow lower decay
rate branches �k� than observed in the low-amplitude, non-
kicked case. These observations are in accordance with our
expectations that the change of initial conditions have a con-
siderable effect, in particular a decrease of the decay rates.
We note that here the system passed a highly nonlinear re-
gime �in analogy to Fig. 10� before arriving at the measured
decaying branch. Thus one cannot exclude that according to
Eq. �20� the initially dominant mode has not survived in this
process, which could also contribute to the shift of the de-
tected decay rates.

VI. CONCLUSIONS

In this paper we have presented a rigorous analysis of the
decay of stripe �roll� patterns in a planar nematic layer,
which includes the optical detection of the patterns by dif-
fraction as well. A precise understanding of the selection
process of the dominant mode and its decay rate has been
achieved. We found that the dominant decay rate can differ
substantially from the slowest one. The results have been
applied to a standard nematic �Phase 5�, where the initial
patterns have been generated by electroconvection in the pla-

FIG. 10. �Color online� Temporal evolution of the light intensity
of the first-order diffraction fringe following the shutdown of the
applied voltage in a 28-�m thick cell of Phase 5A. Curves with
different line styles correspond to different values of the period �ts

during which an increased amplitude excitation ��p=0.18 instead of
�=0.02 � was used.

FIG. 11. �Color online� Theo-
retical ��k�� and measured ��expt� �
values of the dimensionless decay
rate of the director versus dimen-
sionless q�2 for �a� the conductive
mode of Phase 5A, �b� the dielec-
tric mode of Phase 5. Lines of
various styles correspond to the
eight lowest branches of the dis-
persion relation. Solid triangles
are the data measured at sinu-
soidal excitation with �ts=0;
open squares are the data obtained
at square-wave excitation with
�ts=0.2 s.
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nar configuration. One purpose was a quantitative test of our
new theoretical analysis for a substance all material param-
eters of which had been measured before. The excellent
agreement between experiment and theory proves that moni-
toring the decay process may serve as a useful alternative to
standard shadowgraphy for assessing material parameters.
Applying the method to a substance with unknown viscosi-
ties was, however, outside the scope of the present work. It
would require extensive new measurements of EC and decay
processes which we leave as a task for the future.

The full interpretation of some first interesting results ob-
tained for the nonlinear regime and for an ac driving with
square wave form would need a further elaborate theoretical
analysis, which we plan for the near future as well.
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APPENDIX

In this appendix we sketch briefly the decay of a low-
amplitude stripe pattern �5�, which is periodic in the x direc-
tion �normal roll�. With the help of linearized nematohydro-
dynamics one arrives at two coupled PDE’s for the tilt angle
of the director, ��x ,z , t��nz�x ,z , t�=Nz�z�sin�qx�e−�t and
the z component, vz�x ,z , t�=Vz�z�cos�qx�e−�t, of the velocity
field:

�− �� + K33� q�2 − �z�
2 �q��1Nz�z��

− ��2q�2 + �3�z�
2 �Vz��z�� = 0, �A1�

− ��2q�2 + �3�z�
2 �q���Nz�z��

− ��2�z�
4 − �rq�2�z�

2 + �1q�4�Vz��z�� = 0. �A2�

Here we have switched to dimensionless quantities marked
by primes. The unit of length is chosen as d

� ; time is mea-

sured in units of the director relaxation time �d=
�1d2

K11�2 with
the rotational viscosity �1 and K11 the splay elastic constant.
K33� =

K33

K11
is the ratio of the bend and splay elastic moduli. The

quantities

�1 =
1

2
�− �2 + �4 + �5�, �2 =

1

2
��3 + �4 + �6� ,

�r = �1 + �2 + �1 �A3�

denote the effective �Miesowicz� shear viscosities expressed
by the Leslie coefficients �i. Furthermore, we use realistic
rigid boundary conditions—i.e., strong planar anchoring of

the director and no slip for the velocities at the bounding
plates at z�= ± �

2 in dimensionless units:

Nz = 0, Vz� = 0, �z�Vz� = 0 at z� = ±
�

2
. �A4�

Eliminating Vz� and looking for solutions Nz�z��eisz� one
arrives at the following dispersion relation:

��2q�2 − �3s2�2�� + �1��2s4 + �rq�2s2 + �1q�4�

��K33� q�2 + s2 − ��� = 0. �A5�

Equation �A5� is cubic in s2 and has three roots �s1
2, s2

2, and
s3

2�. Thus the corresponding eigenvector is constructed as a
superposition of three modes:

Nz�z� = 	
j=1

3

AjGjcos�sjz�� ,

Vz��z� = 	
j=1

3

Ajcos�sjz�� , �A6�

with

Gj =
�2q�2 − �3sj

2

q��1�K33� q�2 + sj
2 − ���

. �A7�

The corresponding eigenmodes with odd z symmetry are not
relevant in our context, since the initial state is always even
in z. The boundary conditions in Eq. �A4� single out a dis-
crete eigenvalue spectrum �i�, with the relevant eigenvectors
Ni�z�� ,Vi��z�� to be calculated from Eq. �A6�. The eigenvec-
tors are normalized as follows:

�
−�/2

�/2

Ni�z��Ni�z��dz� = 1. �A8�

The eigenvalue problem originating from Eqs. �A1� and
�A2� can be symbolically rewritten as

LWi = �i�DWi, �A9�

with the eigenvector Wi : = (Ni�z�� ,Vi��z��). Furthermore, two
matrix differential operators L ,D have been introduced,
whose elements can be immediately read off from Eqs. �A1�
and �A2�:

L11 = �K33� q�2 − �z�
2 �q�, L12 = −

1

�1
��2q�2 + �3�z�

2 � ,

L22 = L12
2 −

1

�1
��2�z�

4 − �rq�2�z�
2 + �1q�4� ,

L21 = L11L12, �A10�

and

D11 = q�, D12 = 0, D21 = 0, D22 = 0. �A11�

Defining the adjoint operator L+ �and similarly D+� by the
identity
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�
−�/2

�/2

ULWdz� = �
−�/2

�/2

�L+U�Wdz�, �A12�

one arrives at the adjoint problem

L+U = ��D+U . �A13�

The adjoint operator L+ can be constructed by partial inte-
gration of the left-hand side of Eq. �A12�. It follows that
Lij

+ =L ji holds if the boundary terms introduced by partial
integration are forced to disappear with a proper choice of
the boundary conditions for the adjoint problem:

Nz
+ −

�3

�1
�z�

2Vz�
+ = 0, Vz�

+ = 0, �z�Vz�
+ = 0 at z� = ± �/2.

�A14�

Trivially D+=D holds as well.
It is now easy to see that the eigenvalue spectra �i� of the

adjoint and the direct problem �with eigenvectors Ui
= (Ni

+�z�� ,Vi�
+�z��) and Wi, respectively� coincide. In addi-

tion the following orthogonality conditions hold:

1

q�
�

−�/2

�/2

UiDW jdz� = �ijIii, �A15�

with

Iii =
1

q�
�

−�/2

�/2

UiDWidz�. �A16�

Combining Eqs. �A12� and �A11� the velocity compo-
nents drop out and we arrive at the orthogonality relation

�
−�/2

�/2

Ni
+�z��Nj�z��dz� = �ij , �A17�

where we use the convention Iii=1 in Eq. �A16� by a proper
normalization of the adjoint eigenvectors. Equation �A17�
leads directly to Eq. �4� if we return to physical units.
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