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Dielectric technique to measure the twist elastic constant of liquid crystals:
The case of a bent-core material
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The effect of director pretilt on the twist magnetic Fréedericksz transition of nematics was investigated in
a planar cell. The director configuration was calculated as a function of magnetic inductance. The dielectric
and optical response of the nematic liquid crystal was numerically modeled. A dielectric measurement method
for determining the elastic constant K22 is presented. The influence of the conditions for the Mauguin effect
is discussed. The theoretical predictions were confirmed by our experiments. Experimental data for all elastic
constants of a bent-core nematic material are presented and discussed.

DOI: 10.1103/PhysRevE.85.061704 PACS number(s): 77.84.Nh, 78.15.+e, 61.30.−v

I. INTRODUCTION

The precise knowledge of material parameters is always
valuable information for both applied and basic research. It
helps to further improve or develop devices for industrial or
scientific purposes and serves as input data for each and every
phenomenon to understand, while the anomalous behavior of
the parameters can refer to a novel effect or can be itself a
phenomenon to understand.

Elasticity is one of the most common characteristics of
liquid crystals. In nematic liquid crystals, there are three
independent types of director deformation (splay, twist, bend)
with the corresponding elastic constants K11, K22, K33,
respectively [1]. Naturally, most liquid crystalline phenomena
are strongly affected by elasticity. However, only a few effects
are in practice used to measure the elastic constants due to
precision issues.

The determination of K11 and of K33 is relatively simple
by studying Fréedericksz transitions induced by electric and
magnetic fields in different geometries [1–3]. With the help of
numerical simulation and fitting methods, several material pa-
rameters (including K11, K33, and the diamagnetic anisotropy
χa) can be easily obtained from optical transmittance and by di-
electric measurements in applied magnetic and electric fields,
in the so-called splay geometry using a single planar cell [3].

Determining K22 in a similar way in the so-called twist-
Fréedericksz geometry using a planar cell is much less trivial
due to the problems discussed below, thus there were different
other techniques employed. There were attempts to determine
the Fréedericksz threshold by measuring birefringence in a

planar cell using obliquely incident light [4,5] or applying
electric and/or magnetic fields on a twisted nematic cell
[6–8]. Other optical methods were also developed includ-
ing conoscopic techniques [9–11], half leaky guided wave
measurements [12], and methods based on light scattering
[13–19]. Other techniques used cells with special in-plane
electrodes [20–24]. Further experiments were carried out on
wedge [25,26] and π cells [27]. K22 could also be determined
in a torsion pendulum experiment in magnetic field [28].

In the twist-Fréedericksz geometry, the problems men-
tioned above affect both the optical transmittance and dielectric
techniques. Due to the Mauguin effect, the polarization of the
light follows the director and passes the cell almost unaffected
under certain conditions [1,2]. The deformation thus can
be detected only by measuring the depolarization occurring
due to the failure of that conditions. In the present paper, we
study these conditions for the Mauguin effect with a simulation
technique, and we present our suggestions on how to overcome
this problem during measurements.

Considering an ideal planar cell with indium tin oxide (ITO)
electrodes on the glass substrates, no change in the capacitance
due to twist deformation is expected. It will be shown, however,
that this latter anticipation is not true in the presence of pretilt.
We present a dielectric technique to measure K22 in a standard
planar cell, which is, in several aspects, more versatile than
the optical methods. We note that our technique differs from
the dielectric method published in Ref. [20], which requires
specially designed cells for the measurements.

Bent-core liquid crystals (BCs) are the subject of numerous
studies currently, because of their fascinating features. The
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reduced molecular symmetry of BCs compared to that of
rodlike materials gave rise to many discoveries. Nonconven-
tional, so-called banana phases were found (B1,B2, . . . ,B8)
with unique properties (e.g., macroscopic chirality formed by
achiral molecules [29]). Bent-core nematics (BCNs) are also
in the focus of the research interest. Dielectric properties [30],
flexoelectricity [31,32], pattern formation [33–37], and the
presence of smectic clusters or cybotactic groups [38–40] are
widely studied areas in BCNs. Anomalous elasticity of BCNs
was published recently by several groups [3,41–43]. There
seem to be general tendencies in the magnitudes and ratios
of elastic constants in the case of BCNs. The magnitudes of
K22 and K33 were found to be unusually small compared to
rodlike nematics. The small K22 : K11 and K33 : K11 ratios
were attributed to the presence of possibly chiral smectic
clusters and the favorable bend distortion originating in the
bent shape of the molecules.

In this paper we report about studies on the magnetic
Fréedericksz transition in the presence of a director pretilt,
and present the measurements of all Frank elastic constants
of a BCN compound, where K22 was determined using the
dielectric measurement technique described below.

The paper is organized as follows. In Sec. II the details of the
theoretical description of the twist-Fréedericksz transition can
be found. In Sec. III the results of our numerical calculations
are shown and discussed. In Sec. IV our experimental
technique is introduced. In Sec. V the results of the elastic
constant measurements on a bent-core material are presented
and compared with our calculations. Finally, in Sec. VI we
summarize the results obtained.

II. THEORETICAL CONSIDERATIONS

A nonzero angle between the director and the alignment
layer at the surface is called the pretilt. We consider a planar
cell with strong anchoring and a pretilt of �0, filled with a
nematic liquid crystal with positive diamagnetic anisotropy
(χa > 0). To achieve an undistorted initial director profile, the
pretilt angles should be the same at the two bordering surfaces.
This condition is a realistic assumption for the description
of a cell with alignment layers rubbed antiparallelly. The
geometry of the system can be seen in Figs. 1(a)–1(b). The
film thickness is denoted by d. The initial undistorted director
field is perpendicular to the y direction. Homogenous magnetic
inductance B = (Bx,By,Bz) is applied in a general direction.
The magnitude of the field is denoted by B = |B|. The pure
twist geometry, however, corresponds to Bx = Bz = 0. For

FIG. 1. (Color online) Two views on the twist-Fréedericksz
geometry with pretilt. (a) cross section normal to the substrates,
(b) view parallel to the substrates.

simplicity we will use this case unless it is noted otherwise.
Nevertheless our model can handle magnetic fields lying along
a general direction. We will utilize this later when describing
the case where B is slightly tilted from the y direction. In
that way our model is more realistic to explain the effect of
improperly adjusted geometry in the experiments.

With no pretilt, a magnetic inductance exceeding the
threshold value Bth induces the twist-Fréedericksz transition,
where the director profile can be described with one variable:
the twist angle φ. In the presence of a director pretilt, a second
variable, the tilt angle � is also necessary for a complete
description of the director field. The director components
expressed by the two angles are

n = (cos � cos φ, cos � sin φ, sin �). (1)

The torques acting on the director in a magnetic field lead
to a change of both φ and �. The deformation is homogenous,
both angles depend only on the z coordinate. We assume that
the cell is symmetric, therefore the maximum deformation
occurs in the midplane (at z = d/2).

The total free energy density is the sum of the elastic and
of the magnetic components:

ffree = fel + fmagn, (2)

fel = 1

2
K11(∇n)2 + 1

2
K22[n(∇ × n)]2

+ 1

2
K33[n × (∇ × n)]2, (3)

fmagn = −1

2

χa

μ0
(nB)2. (4)

Plugging in the director profile of Eq. (1), we get

ffree = 1

2
f (�)�′2 + 1

2
g(�)φ′2 − 1

2

χa

μ0

[
B2

x cos2 � cos2 φ

+B2
y cos2 � sin2 φ + B2

z sin2 �

+ 2BxBy cos2 � sin φ cos φ

+ 2BxBz sin � cos � cos φ

+ 2ByBz sin � cos � sin φ
]
, (5)

where prime refers to derivation with respect to z and

f (�) = K11 cos2 � + K33 sin2 �, (6)

g(�) = cos2 �(K22 cos2 � + K33 sin2 �). (7)

We use Euler-Lagrange equations to minimize the free
energy to obtain the equilibrium solutions for �(z) and for
φ(z):

d

dz

(
∂ffree

∂�′

)
− ∂ffree

∂�
= 0, (8)

d

dz

(
∂ffree

∂φ′

)
− ∂ffree

∂φ
= 0. (9)

After combining Eqs. (6)–(9), one arrives to a set of
two second-order coupled nonlinear ordinary differential
equations. This is a boundary value problem, with the mixed
boundary conditions: �(0) = �0, φ(0) = 0, �′(d/2) = 0, and
φ′(d/2) = 0. The numerical solution of the equations was
provided by a MATLAB program.
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FIG. 2. (Color online) The planar cell that is split into thin slabs
for optical calculations.

The changes in the director field are usually monitored by
dielectric or optical techniques. A later comparison with ex-
periments thus requires the calculation of the cell capacitance
and its optical transmittance. As the cell is inhomogeneous in
the z direction, it is first split into thin slabs of thickness dz

as shown in Fig. 2. The cell capacitance C is the net of the
capacitances of all slabs connected in series. In the dz → 0
limit one obtains

C = C0εeff = C0d

( ∫ d

0

1

ε⊥ + εa sin2 �(z)
dz

)−1

, (10)

where C0 is the capacitance of the empty cell, εeff is an
effective, ε⊥ is the perpendicular dielectric constant, and εa

is the dielectric anisotropy.
The optical response of the cell has been calculated with the

Mueller-matrix method [44–46]. A (partially) polarized light
can be described by a four-element Stokes vector. Its definition
and an example of a Stokes vector for light linearly polarized
in the x direction can be found in the Appendix. The effect of
an optical element on the incoming light is characterized by
a specific Mueller matrix. The light transmittance then can be
calculated by matrix multiplication.

To calculate the Mueller matrix of the cell, we split it into
thin slabs of thickness dz as described above. If dz is small
enough, the twist and tilt angles can be regarded constant in a
slab with a good approximation. Each slab is then a birefringent
wave plate with a phase shift �ϕi and the direction of its slow
axis making an angle φi with the x axis. The phase difference
for the ith slab coming from its birefringence can be calculated
as

�ϕi = 2π

λ

(
ne√

1 + n2
e−n2

o

n2
o

sin2 �i

− no

)
dz, (11)

where λ is the wavelength of light, no and ne are the ordinary
and extraordinary refractive indices of the liquid crystal,
respectively, while �i is the tilt angle at the position of the
ith slab. The Mueller matrix of the ith slab of our liquid
crystal cell is Mwp(φi,�ϕi). We also introduce Mpol(α), the
Mueller matrix of a polarizer placed at an angle α with
respect to the x direction in our geometry. The matrices can
be found in the Appendix. The liquid crystal cell is placed
between polarizers. The angles of the polarizer and analyzer
are αp and αa , respectively. If the cell is illuminated with an
incident monochromatic light with a Stokes vector of sin, the

Stokes-vector of the outgoing light, sout, can be calculated as

sout = Mpol(αa)

(
n∏

i=1

Mwp(φi,�ϕi)

)
Mpol(αp)sin. (12)

The optical transmittance is given by the ratio of the first
elements of sout and of sin. sin was chosen to be linearly
polarized in the direction of αp (parallel to the polarizer).

We set αp = 0 and αa = 90◦, thus the optical transmittance
is proportional to the expected depolarization.

III. SIMULATION RESULTS AND DISCUSSION

During simulations the magnetic inductance values were

counted in units of Bth = π
d

√
μ0K22

|χa | , which is the Fréedericksz

threshold inductance for the twist geometry with zero pretilt.
All the simulations were performed using the material pa-
rameters of 5CB [3]. A pretilt of �0 = 2◦ was assumed.
Figures 3(a)–3(b) show the change in the calculated twist
and tilt angles inside the sample for three different magnetic
inductances. Below the threshold, at B/Bth = 0.5, there is
no deformation, φ remains zero while �(z) = �0. Above
the threshold the twist angle increases, while the tilt angle
decreases, just as it was expected. At higher inductances, φ

approaches 90◦, while � goes to 0 far from the substrates.
We define β as a small misalignment angle of B from the y

direction in the y-z plane, thus tan β = Bz/By (and Bx = 0).
We have calculated the effective permittivity (εeff) defined
in Eq. (10) for 0 < B < 5Bth in two cases: the first is the
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FIG. 3. (Color online) The simulated director configuration at
different applied magnetic inductances described by the φ twist angle
(a) and the � tilt angle (b) shown along the z direction of the cell.

061704-3



P. SALAMON et al. PHYSICAL REVIEW E 85, 061704 (2012)

0 1 2 3 4 5
0

0.5

1

1.5
x 10

−3

B/B
th

(ε
ef

f−
 ε

⊥
)/

ε a

 

 

Θ
0
= 2°, β = 0°

Θ
0
= 0°, β = 2°

FIG. 4. (Color online) The calculated reduced dielectric con-
stant as the function of relative magnetic inductance during the
twist-magnetic-Fréedericksz transition. Solid line: untilted field and
director pretilt of �0 = 2◦; dashed line: tilted field and no pretilt.

perfectly aligned geometry with pretilt (�0 = 2◦ and β = 0◦),
the other is a misaligned case with no pretilt (�0 = 0◦ and
β = 2◦). As ε⊥ < εeff < ε|| always fulfils for liquid crystal
samples with εa > 0, for the visualization of the magnetic field
dependence of εeff it is convenient to plot the reduced quantity
(εeff − ε⊥)/εa , as presented in Fig. 4 (solid and dashed lines
for the two cases correspondingly).

It is important to emphasize at this point that without
a director pretilt (�0 = 0◦) in a perfectly aligned geometry
(β = 0◦) no change is expected in εeff as it does not depend
on φ. If we have �0 �= 0 in Fig. 4, however, a Fréedericksz
transition with sharp threshold behavior can clearly be seen.
The sharp transition is owing to the fact that the initial
director is perpendicular to B even in the presence of a
pretilt, in contrast to the splay geometry (see Fig. 10), where
the pretilt makes the threshold smooth. This effect thus
gives us a dielectric measurement technique to study the
twist-Fréedericksz transition and use it to determine K22.
This technique could be widely applied, because a small,
well defined pretilt is always present as a consequence of the
rubbing of a planar polyimide alignment layer. The threshold
inductance value is seemingly very close to Bth defined
before, which can be expected for the case of a small pretilt.
Below the threshold εeff = ε⊥ + εa sin2 �0, while towards
high inductances it converges to ε⊥. The maximum change
of εeff is thus in the order of 0.1% of εa for usual pretilts.
This is a small value, especially for compounds with low
dielectric anisotropy, however, a good capacitance bridge has
a resolution in the order of parts per million (or better), so is
more than capable of performing such measurement.

A change of � also occurs at no pretilt if the magnetic
field has a small misalignment (Fig. 4, dashed line). Here the
magnetic field is also perpendicular to the initial director, thus
we can see a sharp transition. The change in the effective
dielectric constant here is due to the presence of Bz �= 0 and
is of the same order of magnitude as in the pretilt case. The
relative change has, however, an opposite sign. In the more
realistic case where both �0 �= 0 and β �= 0, the two effects
counteract together reducing the change in εeff . Furthermore
the transition is expected to be less sharp, because B is then
not perpendicular to the initial director. As a consequence,

misalignment of the field should be avoided in an experiment
in order to obtain precise data. This can be achieved by using
a sample holder with appropriate geometrical constraints with
respect to the poles of the magnet.

Calculation of the director field also allows the study of
the optical behavior of the cell. It is well known that the
adiabatic light propagation along a cholesteric helix requires
the Mauguin condition, λ � Pna to satisfy (P is the helical
pitch, and na = ne − no is the optical anisotropy) [1]. In
our twist-Fréedericksz geometry the gradient of the twist
angle, φ′, plays the role of the wave number of the helix,
thus the above condition is the equivalent of λ � 2π

φ′ na .
It is convenient to introduce a dimensionless quantity, η =

2π
λ max(φ′)na as a measure of how well the Mauguin condition
(1 � η) fulfills [max(φ′) is the maximal value of φ′(z) in the
cell]. As η decreases, one gradually leaves the adiabatic light
propagation regime, thus the depolarization of the transmitted
light becomes stronger. Though this is a continuous transition,
for a qualitative analysis of the dependence on magnetic
inductance, pretilt angle and cell thickness it is convenient
to choose an arbitrary large number (e.g., ηc = 20) as a
discriminating value. Then one can (approximately) say that
being in the Mauguin limit corresponds to η > ηc.

In our geometry the twist is induced by the magnetic
inductance. Figure 5 shows η versus B/Bth calculated for a
d = 30 μm thick cell assuming different pretilt angles. The
monotonic decrease of η(B/Bth) means that the higher the
magnetic inductance above Bth, the less adiabatic the light
propagation through the cell. This is due to the increasing
φ gradients near the substrates as seen also in Fig. 3(a).
One can formally introduce a critical magnetic inductance
Bc with η(Bc) = ηc. For B/Bth > Bc one is outside the
Mauguin limit, therefore strong depolarization is expected. For
B/Bth < Bc, however, light propagates adiabatically, therefore
depolarization is small; the measurement of depolarization
might not be sensitive enough for studying the Fréedericksz
transition.

Figure 5 shows that the η(B/Bth) curves and thus Bc shifts
toward higher B/Bth values if a director pretilt is introduced
(i.e., the pretilt reduces the φ gradients).

Figure 6 exhibits the thickness dependence of Bc. It
is seen that the growth of Bc with d is substantial. This
implies that the proper choice of the cell thickness is really

FIG. 5. (Color online) The η as a function of the magnetic
inductance calculated for three pretilt values. (d = 30 μm).
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FIG. 6. (Color online) The thickness dependence of Bc.

important for studying the twist-Fréedericksz transition by
optical depolarization measurements; low thickness with low
pretilt gives the best results. We should emphasize, however,
again that ηc and Bc are not real thresholds, but just helpful
tools to obtain the conclusions above purely from knowing the
director field in the cell.

Calculation of the actual optical transmittance confirmed
the tendencies concluded in the previous paragraph. Figure 7
depicts the magnetic inductance dependence of the transmit-
tance in cells of different thicknesses, but without pretilt, under
the conditions of crossed polarizers, with the polarizer parallel
with the initial director.

It is evident that the transition is much sharper and the
transmittance is much larger in a thinner cell. We can conclude
that the optical measurement problems described in Ref. [2]
are actually present only for thicker cells; the technique works
well for thin cells, though there higher magnetic inductances
are needed. Nevertheless, moderate B ∼ 1 T inductances may
be sufficient (e.g., for a 10 μm thick planar cell filled with
5CB: Bth = 0.6 T).

When a director pretilt is present, both the twist and the
tilt angles change with the applied field. Consequently the
transmitted light intensity depends, besides the depolarization,
on the birefringence variation too. This is demonstrated in
Fig. 8, which presents the calculated transmittance of a d =
30 μm cell for three different pretilt values. The main feature
of this plot is the appearance of a hump at the highest pretilt,

FIG. 7. (Color online) The magnetic inductance dependence of
the calculated transmittance for three different cell thickness in the
twist-Fréedericksz transition with no pretilt.

FIG. 8. (Color online) The magnetic inductance dependence of
the calculated transmittance for three different pretilt values in the
twist-Fréedericksz transition. (d = 30 μm)

which we attribute to the effect of birefringence. We note that
at higher thickness and pretilt values, the intensity oscillations
strongly depend on the parameters of the cell (e.g., thickness,
material constants), thus the interpretation of a measurement
curve is rather difficult. This is another argument for the use
of thin cells.

IV. EXPERIMENTAL TECHNIQUE

In order to demonstrate the usability of the dielectric
method to determine K22, we have prepared an experiment on
the well known compound 4′-pentyl-4-cyanobiphenyl (5CB).
Experiments on a different setup have been carried out on the
bent-core material abbreviated as DT6PY6E6 [47] (Thiadiazol
with a pyridine arm with two hexyloxy chains and an ester arm
with two lateral hexyloxy chains. The ethyl ester is connected
via a hexamethylene spacer.). Its chemical structure is shown
in Fig. 9.

The synthesis and the molecular properties of the compound
have been published recently [47]. DT6PY6E6 has a nematic
phase in a relatively wide temperature range. The clearing
point is TNI = 149 ◦C, the melting point is at 93 ◦C in heating,
while the nematic phase can be supercooled down to room
temperature.

The different custom made sandwich cells with ITO
electrodes were filled with 5CB and with DT6PY6E6 in
the isotropic phase. The thickness of the empty cells were
d = 26 μm and d = 27.3 μm, respectively. d was measured
by interferometry. Rubbed polyimide was used as alignment

FIG. 9. The chemical structure of the bent-core compound
DT6PY6E6.
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FIG. 10. (Color online) The schematic figure of the splay-
Fréedericksz transition geometry.

layers; polarizing microscopy confirmed uniform planar align-
ment in both cases.

In the case of 5CB, we have determined εeff versus B in
the twist geometry (Fig. 1). εeff was obtained as the ratio
of the filled and the empty cell capacitances, which were
calculated from the complex impedances of the cell assuming
a parallel RC equivalent circuit. The impedances were derived
using Ohm’s law. Sinusoidal voltage with 30 mV amplitude
at 1 kHz frequency was switched to the cell while the current
was measured in the circuit with the help of an Ithaco Model
1642 current sensitive preamp. The applied voltage and the
signal proportional to the current was measured by the two
oscilloscope channels of a TiePie Handyscope HS3 instrument.
The impedances of the cables and of the open circuit were
measured and the values were used for corrections of the results
on the liquid crystal cell. The voltage signal was provided by
the function generator output of the same device. The sample
was put between the poles of an electromagnet in a temperature
stabilized stage.

In the case of DT6PY6E6 we have measured the ca-
pacitance and the transmitted intensity (I ) between crossed
polarizers on a planar liquid crystal cell as a function of
B. The effective dielectric constant εeff was calculated as
the ratio of the filled and the empty cell capacitances. The
experiment was carried out in two geometries. The splay
geometry is illustrated in Fig. 10; the twist geometry was
shown before in Fig. 1. In the splay (twist) geometry, B is
perpendicular (parallel) to the plane of the substrates. We
were also able to measure the voltage dependence of the
transmitted intensity during the electric splay-Fréedericksz
transition, due to the positive εa of the compound. The voltage
was provided by the amplified 1 kHz sinusoidal signal of
an Agilent 33120A function generator. Our sample was kept
in a custom-made temperature controlled heat stage with a
temperature stability better than 0.1 ◦C. The applied magnetic
inductance was provided by an electromagnet in the range of
B = 0–1.3 T. The inductance was measured by a Hall probe.
The capacitance of the cell was measured by a high-precision
Andeen-Hagerling 2500A capacitance bridge at 1 kHz. We
used a 4 mW high-stability He-Ne laser (λ = 633 nm) as
light source and a Thorlabs PDA55 photodetector connected
with a digital multimeter to measure the transmitted intensity.
We note that in the twist case, we also tried to measure the
small intensity signal with lock-in technique using a chopper,
however, the results were the same as in the simpler former
technique. The sample was put between crossed polarizers.

In the splay geometry the polarizer was adjusted to 45◦ with
respect to the initial director to get the highest intensity, while
this angle was set to zero in the other case, where only the
depolarization had to be measured.

Both measurement systems were automatized and con-
trolled by LABVIEW programs.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The magnetic inductance dependence of εeff in the twist
geometry for 5CB at TNI − T = 8 ◦C is presented in Fig. 11.

The best numerical fit of the dielectric data is shown by
the solid line. (The following material constants used by
the fit were taken from the literature: K11 = 5.9 pN and
K33 = 10 pN [19], ε|| = 17.5 [48], and χa = 1.2 · 10−6 [49].)
From the threshold inductance (see dotted line) we have
K22 = 4.2 pN, which is close to the literature value of K22 =
3.9 pN [19]. The fit value of the pretilt is �0 = 1.5◦, which
is realistic. Our data are moderately noisy, but they clearly
show that the principle of the measurement is working and the
measurements with adequate precision can be realized even
with a regular oscilloscope. We have measured a decreasing
effective dielectric constant during the transition, which means
the change in εeff originates dominantly from the presence of
a pretilt.

The magnetic inductance dependence of εeff and the voltage
dependence of the optical phase difference �� in the splay
geometry for the compound DT6PY6E6 at T = 125 ◦C are
shown in Figs. 12 and 13, respectively.

The solid lines correspond to experimental data recorded
with a high sample density. The dashed lines are numerical fits
obtained using the numerical methods published in Ref. [3]
to extract the material parameters from the experimental
data. The quality of the fits are saliently good. We have
determined the elastic constants: K11 = 5.4 pN, K33 = 10 pN;
the diamagnetic anisotropy: χa = 7.4 · 10−7; the dielectric
constants: ε⊥ = 4.1, ε|| = 5.9; and the optical anisotropy:
na = 0.24.

The magnetic inductance dependence of εeff and of the
transmitted intensity measured in the twist geometry in
DT6PY6E6 is presented in Fig. 14 by solid and dash-dotted
curves, respectively. The best numerical fit of the dielectric

0 0.2 0.4 0.6

6.136

6.138

6.14

6.142

6.144

B [ T ]

ε ef
f

 

 

meas. data
fit

FIG. 11. (Color online) The magnetic inductance dependence of
εeff in the twist-Fréedericksz transition for the compound 5CB at
TNI − T = 8 ◦C. The triangles are experimental data points. The solid
line is numerical fit.
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FIG. 12. (Color online) The magnetic inductance dependence of
εeff in the splay-Fréedericksz transition for the compound DT6PY6E6
at T = 125 ◦C. The solid line is experimental data. The dashed line
is numerical fit.

data is shown by the dashed line. (The values of K33 and
of χa determined by the fit in the splay geometry were used
here.) From the threshold inductance (see dotted line) we have
K22 = 2.2 pN. The optical intensity is more noisy than the
dielectric data in spite of the fact that the relative change in the
latter is in the order of 1/1000. It seems to be more difficult
to locate the threshold by the optical method. Comparing this
measurement with the one prepared on 5CB, here also stands
that due to the decrease in εeff , the effect dominantly originates
from the presence of pretilt. This dataset is much less noisy,
because the precision of the capacitance bridge is much higher
than that of the oscilloscope technique presented above.

The Frank elastic constant values of DT6PY6E6 do not
follow the trends reported by independent authors [3,41–43]
for bent-core compounds. The elastic constants of DT6PY6E6
can rather be considered as typical for rodlike liquid crystals.
K22 is rather low, however, it is not as low (∼0.3 pN) as
for the BCN in Ref. [3]. The magnitude of K33 is large and
K33/K11 > 1.

We think that the non-BCN behavior of DT6PY6E6 might
be due to the effect of the four alkyl chains connected to
intermediate core rings. The alkyl chains can easily change
conformation with relatively low energy cost (they are not
rigid). They can act like soft spacers between molecules. Thus,

FIG. 13. (Color online) The voltage dependence of �� in the
splay-Fréedericksz transition for the compound DT6PY6E6 at T =
125 ◦C. The solid line is experimental data. The dashed line is
numerical fit.

FIG. 14. (Color online) The magnetic inductance dependence of
εeff (measured data: solid line, fit: dashed line) and of the transmitted
intensity (dash-dotted line) measured on DT6PY6E6 in the twist
geometry. The Bth threshold inductance determined by the fit is at the
dotted line.

for topological reasons, the chains might prevent the direct
steric interaction between the rigid bent shaped cores in the
nematic phase. Therefore the system looses its tendency to
favor a polar packing, which has led to unusual properties
via smectic cluster formation in other BCNs. This idea is
in accordance with x-ray results on DT6PY6E6 [47]. The
distance between molecules are unusually large, which could
prevent the prevalence of the bent-core properties such as
anomalous elasticity, due to the lack of strong core-core
interactions.

We note that the presence of alkyl chains on the arms of
the molecules can also affect the anchoring strength. In future
studies this also could be investigated, for example, using the
method worked out by Sugiyama et al. [50].

VI. SUMMARY

We have studied the magnetic twist-Fréedericksz transition
in the presence of pretilt with numerical modeling. We showed,
that the nonzero director pretilt offers a dielectric measurement
method to obtain the K22 elastic constant. We have simulated
the light propagation through the cell and determined the
transmittance as a function of magnetic inductance with
different thickness and pretilt values. It was found that higher
pretilt can qualitatively change the the transmittance profile.
This is in contrast to the monotonic increase expected in the
zero pretilt case near the threshold, where the major effect
originates only from the depolarization effect. It was proven
that the Mauguin effect causes trouble only in case of thick
cells; with the thickness around 10 μm, the depolarization
technique shows well the threshold values.

We have performed Fréedericksz-transition experiments in
the splay and twist geometries to determine all the elastic
constants of the BCN compound DT6PY6E6, using only
a single planar cell. In the twist geometry, our theoretical
considerations were confirmed by the measurements. We were
able to determine K22 with the help of the dielectric method,
which seems to be more versatile in many aspects than the
conventional optical technique.

The elastic constants of DT6PY6E6 are found to be similar
to that of rodlike materials. This is explained by the effect
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of intermediate alkyl chains, which could prevent strong
core-core interactions between molecules and increase the
intermolecular distance.
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APPENDIX

A monochromatic ray of light propagating along the z

direction can be described by the x and y components of its
electric field vector Ex(z,t) = E0x cos (ωt − kz), Ey(z,t) =

E0y cos (ωt − kz + δ), respectively [45]. (ω, k, and δ are the
angular frequency, the wave number, and the phase difference,
respectively.) The s Stokes vector is constructed as

s =

⎡
⎢⎢⎢⎢⎣

s0

s1

s2

s3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

E2
0x + E2

0y

E2
0x − E2

0y

2E0xE0y cos δ

2E0xE0y sin δ

⎤
⎥⎥⎥⎥⎦. (A1)

For example, the Stokes vector for linearly polarized light in
the x direction with the total intensity 1 is described by: s0 = 1,
s1 = 1, s2 = 0, and s3 = 0.

The Mueller matrix of a birefringent slab with an optical
phase difference of �ϕ is given by

Mwp(φ,�ϕ) =

⎡
⎢⎢⎢⎣

1 0 0 0

0 cos2 2φ + cos �ϕ sin2 2φ (1 − cos �ϕ) sin 2φ cos 2φ sin �ϕ sin 2φ

0 (1 − cos �ϕ) sin 2φ cos 2φ sin2 2φ + cos �ϕ sin2 2φ − sin �ϕ cos 2φ

0 − sin �ϕ sin 2φ sin �ϕ cos 2φ cos �ϕ

⎤
⎥⎥⎥⎦ (A2)

φ is the angle between the slow axis and the x direction in our geometry.
The Mueller matrix of a polarizer set in an angle of α with respect to the x direction in our geometry

Mpol(α) =

⎡
⎢⎢⎢⎣

1 cos 2α sin 2α 0

cos 2α cos2 2α sin 2α cos 2α 0

sin 2α sin 2α cos 2α sin2 2α 0

0 0 0 0

⎤
⎥⎥⎥⎦. (A3)
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