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Flashing flexodomains and electroconvection rolls in a nematic liquid crystal
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Pattern forming instabilities induced by ultralow frequency sinusoidal voltages were studied in a rodlike
nematic liquid crystal by microscopic observations and simultaneous electric current measurements. Two pattern
morphologies, electroconvection (EC) and flexodomains (FD), were distinguished, both appearing as time
separated flashes within each half period of driving. A correlation was found between the time instants of
the EC flashes and those of the nonlinear current response. The voltage dependence of the pattern contrast
C(U ) for EC has a different character than that for the FD. The flattening of C(U ) at reducing the frequency
was described in terms of an imperfect bifurcation model. Analyzing the threshold characteristics of FD, the
temperature dependence of the difference |e1 − e3| of the flexoelectric coefficients was also determined by
considering elastic anisotropy.
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I. INTRODUCTION

Nematic liquid crystals are the simplest paradigm for
anisotropic fluids, i.e., liquids with a preferred direction of
the orientation of molecules with anisotropic shape which
is described by the director field n. The anisotropy of their
dielectric properties allows controlling the director by electric
fields. The (usually homogeneous) reorientation of the director
by a properly applied voltage changes the direction of the
optical axis and hence the light transmittance of the sample;
this forms the physical background of the liquid crystal
displays, [1] used widespread in common electronic devices.

Applying an electric voltage to a nematic liquid crystal layer
can, however, often result in the appearance of spatiotemporal,
periodic, or disordered structures too. The conditions of
their occurrence, the pattern morphologies, and their onset
characteristics have been extensively studied for decades, both
experimentally and theoretically [1–14].

In the mostly studied planar configuration, where the
director is initially oriented parallel to the confining plates, one
of the electric field induced patterns corresponds to spatially
periodic, equilibrium director deformations (seen as stripes
parallel to the director in a polarizing microscope), occurring
due to a flexoelectric free energy gain of the deformed state;
therefore, they have been coined flexoelectric domains (FDs)
[2]. FDs have so far been detected in a few nematic compounds
only and they are observable at dc (or very low frequency dc)
driving only.

A more frequent, but also more complex, pattern forming
phenomenon is the electroconvection (EC), where the director
distortions are accompanied by space charge separation and
hence by material flow, thus having a dissipative character. It
could be observed in many nematics, some of which possess
substantially different material properties [3,4]. EC patterns
could be induced in a wide frequency range of the applied
voltage (ranging from dc up to several hundreds kHz ac); the
resulting convection rolls are seen in a polarizing microscope
as stripes whose direction may be normal, to oblique, or
parallel with the director. Up to now, studies were mostly
focused on the class of nematics with negative dielectric and

positive conductivity anisotropies and on driving frequencies
f within the range of 10 Hz to 10 kHz. In this f range,
evolution of the pattern requires numerous driving periods
after voltage application. For such conditions, the variation
of pattern morphologies (conductive and dielectric regimes,
oblique and normal rolls) upon the amplitude and frequency
of the applied voltage has been explored in detail and the
mechanism as an electrohydrodynamic instability has been
well understood. A quantitative theoretical description of the
pattern threshold, the critical wave vector, and some secondary
transitions (e.g., abnormal rolls) could be given combining
nematodynamics with electrodynamics under the simplifying
assumption of Ohmic conductivity (now called as the standard
model of EC [5]) or via its extensions by flexoelectricity [6]
or by ionic diffusion and recombination [7].

Recently, interest has arisen to study the behavior in another,
subhertz frequency, range where the pattern growth and
decay times are (much) shorter than the driving period, using
compounds which may exhibit both EC and FD patterns. It has
been proven experimentally that at such ultralow frequencies
both for the dielectric [8] and the conductive [9] EC regimes,
as well as for the FD [8,9], the patterns are flashing, i.e.,
they exist only in a small part of the driving period. It
has been found that there is an f range (∼1–100 mHz)
where both EC and FD patterns can exist in each driving
half period in the form of successive (time shifted) flashes.
Theoretical calculations based on the standard model of EC
extended with flexoelectricity [6] (which is able to describe
FDs too [10]) have justified that flashing patterns are indeed
the solutions of the nematoelectrohydrodynamic equations at
ultralow f . The calculated position of the FD flashes within
the driving half period showed quantitative matches with the
experiments, while for the position of the EC flashes the
frequency dependence was only qualitatively reproduced by
the calculations, as the EC flashes come earlier within the
period than expected [9].

In this paper, we present further experimental results on the
ultralow f behavior, however, in a different system than those
reported before. The paper is organized as follows. Section II
introduces our compound and the experimental method. The
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new findings are grouped around three subtopics: Section III A
reports on the temporal evolution of the patterns within the
period, Sec. III B deals with the frequency dependence of
the threshold characteristics, and Sec. III C provides data on
the temperature dependence of various material parameters.
Finally, the paper is concluded in Sec. IV with a summary and
some closing remarks.

II. EXPERIMENT

Our measurements have been performed on the nematic
liquid crystal 4-n-octyloxyphenyl 4-n-methyloxybenzoate
(1OO8) 1 that shows only a nematic mesophase. The chemical
structure of 1OO8 is shown in Fig. 1.

In heating, it melts to nematic from the crystalline phase
at 63.5 ◦C, while the clearing point (TNI ) equals to 76.7 ◦C.
The nematic phase can be supercooled down to 53 ◦C. The
material parameters of 1OO8, such as the dielectric anisotropy
(εa = ε‖ − ε⊥), the optical anisotropy (na = n‖ − n⊥), the
anisotropy of the diamagnetic susceptibility (χa = χ‖ − χ⊥),
and the bulk elastic constants (K11,K22,K33) were determined
as the function of temperature using a method based on
magnetic and electric Freedericksz transitions [15]. Here, ε and
n denote the dielectric permittivity and the refractive index, re-
spectively; the subscripts ‖ and ⊥ correspond to measurement
directions parallel with and perpendicular to the director.

The compound was investigated in commercial sandwich
cells (E.H.C. Co.) with ITO electrodes coated with rubbed
polyimide layers for planar alignment. The electrode area was
1 cm2. The thickness of the empty cells (d = 10.4–10.8 μm)
was measured by an Ocean Optics spectrophotometer. During
the measurements, the temperature of the sample was kept
constant within 0.01 ◦C in an Instec HSi heat stage controlled
with an mK-1 board. The sample was driven by a sinusoidal
voltage Ũ (t) of an Agilent 33120A function generator via a
high-voltage amplifier: Ũ (t) = √

2U sin(2πf t).
The electric field induced patterns were observed by a Leica

DM RX polarizing microscope in transmission mode with
white light illumination using the shadowgraph technique [17]
(the polarizer was removed, while the analyzer was set to
be parallel with the rubbing direction). The imaging system
was equipped with an EoSens MC1362 high speed camera
interfaced by an Inspecta-5 frame grabber. After waiting one
or two periods of the driving signal following the application
of the voltage to the sample (or waiting 5 s at frequencies

1Two abbreviation styles are known in the literature for the members
of the 4-n-alkyloxyphenyl 4-n-alkyloxybenzoate homologous series.
Here, we have adopted the one used by Nair et al. [16]. According
to the alternative style by Kochowska et al. [13], the same compound
could also be abbreviated as 1

8 .
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FIG. 1. The chemical structure of the rodlike nematic molecule
4-n-octyloxyphenyl 4-n-methyloxybenzoate (1OO8).

higher than 0.2 Hz), a sequence of 1000 images was recorded.
The acquisition of the first image was triggered by the zero
crossing (from negative to positive) of the applied voltage.

In addition to the optical observations, the electric current
through the cell was monitored by measuring the voltage drop
on a relatively small, known resistance connected in series
with the sample. Simultaneously, the driving waveform was
also recorded by a TiePie Handyscope HS3 oscilloscope. The
data acquisition and processing system was fully automated.

III. RESULTS AND DISCUSSION

A. Flashing contrast and current

Applying a low frequency (e.g., f = 50 mHz) sinusoidal
voltage to the cell, patterns appear above a threshold voltage
in a narrow time window in each half period of driving.
Two distinct pattern morphologies were found with differ-
ent thresholds, similarly to previous observations on other
nematics [9]. Representative snapshots of the patterns and
their two-dimensional (2D) Fourier transforms (the spectral
intensities) are presented in Fig. 2. The two morphologies can
be attributed to oblique conductive EC rolls [a zigzag pattern,
Fig. 2(a)] and to flexodomains [Fig. 2(b)]; the latter appear as
stripes parallel to the initial director alignment.

For a quantitative analysis of the pattern evolution, it is
necessary to provide a proper definition for the pattern contrast,
which has a minimum (ideally zero) in the homogeneous state
and increases as the pattern emerges. A common procedure is
to perform a 2D Fourier transformation of the images in order
to find the critical wave vector qc = (qx,qy) of the pattern
(where the Fourier amplitudes have maxima) and to define the
contrast Cq as the sum of the spectral intensities in a region
around qc. It is clear from Fig. 2 that the two pattern types
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FIG. 2. Snapshot images and their 2D Fourier transforms (a) for
electroconvection and (b) for flexodomains at f = 50 mHz and U =
19 V. The images cover 200 μm × 200 μm area. The initial director
orientation lies horizontally.
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FIG. 3. (Color online) The time dependence within a driving
period (a) for the contrast Cq obtained by Fourier technique; (b)
for the contrast Cs calculated from the square deviation; and (c) for
the electrical current I through the liquid crystal. t = 0 corresponds
to the zero crossing (from positive to negative) of the applied voltage.
The dashed-dotted lines show that the peaks of EC and of the current
coincide.

observed in 1OO8 (EC and FD) are characterized by different
qc vectors, i.e., they are well separated in the Fourier space.
Therefore, this contrast definition allows distinguishing them
not only from the initial homogeneous state, but also between
each other.

Alternatively, a mean square deviation of the image inten-
sities Cs = 〈(� − 〈�〉)2〉 may also serve as a measure of the
contrast. Here, � is the intensity of an individual pixel and
〈. . .〉 denotes averaging over the whole image. This definition
is simpler, although it has the disadvantage of not being able to
distinguish various pattern morphologies. Actually, Cs would
coincide with Cq if the summation of the spectral intensities
were extended over the whole Fourier space.

Figure 3 exhibits and compares the time dependence of
contrast within a driving period for both definitions given
above, measured in a d = 10.4 μm thick cell at T − TNI =
21.7 ◦C driven by an f = 22 mHz, U = 18 V voltage.
Figure 3(a) shows Cq obtained by the Fourier method for the
EC (solid line) and the FD (dashed line) patterns. Both curves
exhibit a single peak in each half period, but at different time
intervals; hence, these two pattern types are well separated not
only in the Fourier space, but in time as well. In Fig. 3(b),
the contrast Cs calculated by the square deviation is plotted.
This curve has two, well separated peaks per half period [looks
similar to the superposition of the two curves in Fig. 3(a)], thus
can also be used to detect the appearance of both pattern types.
Therefore, for simplicity, in the following we will use Cs as
the measure of the contrast of the patterns.

Figure 3(c) depicts the time dependence of the electrical
current which was measured simultaneously with image
acquisition. At this f and U , the current is highly nonlinear;
it can be characterized by sharp peaks rather than by a

harmonic response. It can be deduced from the figure that,
surprisingly, the location of the maxima of the current peaks
coincide precisely with the contrast peaks corresponding to
the EC flashes (see the dashed-dotted vertical lines in Fig. 3).
Numerous different voltages, frequencies, and temperatures
were tested. Although at various conditions the time instant
of the EC flash may change [9], it still equals to that of
the current peak; thus, we can conclude that this is not an
accidental coincidence. We suggest that the current spikes
trigger the emergence of the EC pattern. Therefore, it appears
earlier within the half period (a phase-locking behavior) than
expected otherwise.

We note that the spiky behavior of the current is not a
consequence of the appearance of the EC pattern. Current
spikes have been detected at low voltages (much below any
pattern threshold) where no patterns are observable and also
in the isotropic phase. We think that the nonlinear current
behavior is due to ionic effects and to the presence of insulating
polyimide orienting layers on the electrode surfaces of the
cell. The presence of (relatively low) concentration of ionic
impurities in the nematic makes it to behave as a weak
electrolyte. In the studied ultralow frequency range, the current
due to the linear impedance of the cell (i.e., the capacitive
and the Ohmic components) is at least an order of magnitude
smaller than the transient currents due to building or destroying
the Debye screening layers near the electrodes; the latter occurs
at each polarity reversal of the voltage.

In order to describe the behavior of weak electrolytes in
electric fields, several models were developed, differing in their
sets of assumptions [18–26], i.e., they take into consideration
different subsets of the possible effects listed below: generation
and recombination of ions; different mobilities, diffusion
coefficients and charges of ionic species; surface adsorption;
charge injection; chemical reactions; voltage attenuation due to
the orienting layers; etc. Due to the complexity of the models,
they mostly focused on the linear response and calculated the
low frequency complex impedance which could be compared
to low f dielectric spectroscopy data.

Recently, theoretical calculations of the nonlinear current
characteristics in response to a low frequency sinusoidal volt-
age driving were also reported [18,19], yielding curves similar
to those shown in Fig. 3(c), however, without comparison with
experiments. This gives the hope that after measurements or
intelligent guesses of the unknown material parameters of the
model, the measured current response can be reproduced; it is
remaining a task for the future.

The nematic being a weak electrolyte has consequences on
the pattern formation processes. It was shown that the weak
electrolyte model (WEM) of EC [7], which considers ionic
dissociation and recombination, can account for the traveling
of EC roll patterns found occasionally at frequencies above a
few tens of Hz. This model has not yet been analyzed for low
driving frequencies; due to its high complexity, it remains a
challenge for the future to decide whether it is able to describe
the phase locking of EC flashes to current spikes.

B. Threshold characteristics

Flexodomains and electroconvection both are threshold
phenomena, i.e., the patterns with a critical wave number
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qc = |qc| occur above a threshold voltage Uc. Determination
of Uc and qc is therefore the primary task at pattern char-
acterization. At high frequencies (f > 10 Hz) for U > Uc,
patterns usually develop within seconds; therefore, thresholds
can easily be estimated by increasing U as the voltage at which
the pattern becomes perceptible by eyes in the microscope.
This simple technique practically does not work at our ultralow
frequency driving since the driving period is quite long and in
addition the patterns appear as flashes, which means they can
be observed only in a short time window.

In order to determine Uc precisely, one has to follow quanti-
tatively the emergence of patterns from the homogeneous state,
i.e., to record and then analyze the contrast-voltage curves.
As the contrast varies within the driving period [as shown in
Fig. 3(b)], the maximum Cm of the contrast Cs in the FD (or
EC) peak can be regarded as a measure to what extent the FD
(or EC) pattern has been developed at a given applied voltage.

In an ideal case (perfect bifurcation), the contrast Cm should
be zero at voltages below the threshold. Experimentally, a
nonzero background contrast Cb is always found even in the
homogeneous state at no applied voltage [Cb = Cs(U = 0)].
This background contrast comes from various sources: the
electronic noise of the camera, the thermal fluctuation of the
director in a planar nematic, imperfections of the orientation
or inhomogeneity of the illumination. This background was
automatically subtracted from each data point; thus, it will not
be indicated in the forthcoming figures.

As the voltage is increased above Uc, the initial planar
director orientation n0 = (1,0,0) becomes unstable and a
spatially periodic director distortion δn = nlinA exp[i(qxx +
qyy)] appears. Here, nlin = (0,ny,nz) is a linear eigenvector,
A ∝ √

U 2 − U 2
c characterizes the amplitude of the distortion,

and qc = (qx,qy) is the wave vector of the pattern. The spatially
periodic director distortion results in a shadowgraph image
whose intensity modulation Is depends on the amplitude of
the vertical distortion Anz. For small distortion amplitudes (not
too far from threshold), the intensity modulation in the leading
order is given [27] by Is = caA + cpA2 with the first order am-
plitude term and the second order phase term. For EC patterns
[normal rolls with qc = (qx,0)], the linear term is dominating
and Is ∝ A. In case of FD, where qc = (0,qy), the relevant
contribution to the shadowgraph intensity is of the second
order [28]: Is ∝ A2. The contrast of the shadowgraph image
defined as the mean square deviation of the image intensities
is then Cs ∝ I 2

s . Thus, the maximum of the contrast within
the driving period is expected to be CmEC ∝ (U 2 − U 2

cEC)
for an EC pattern and CmFD ∝ (U 2 − U 2

cFD)2 for the FD [8].
In the vicinity of the threshold (U 2 − U 2

cFD) ≈ 2Uc(U − Uc),
therefore CmEC as well as

√
CmFD should grow linearly with

the voltage.
Figure 4 shows the measured

√
CmFD(U ) curves for a few

frequencies. It is seen that the linear relation near the threshold
is obeyed quite well, although the transition is smeared a
little (due to imperfections and/or the occurrence of subcritical
fluctuations). Therefore, the threshold voltage UcFD is actually
determined by a linear extrapolation, as the intersection of the
horizontal axis with the line fitted onto the linear section of
the Cm(U ) curve slightly above the suspected threshold. This
procedure is going to be referred to as method A.

FIG. 4. (Color online) The voltage (rms) dependence of the
square root of the FD contrast peaks for different frequencies
(symbols). The dashed lines indicate the linear extrapolation.

The voltage dependence of CmEC for EC is shown in Fig. 5
for several driving frequencies. It is clearly seen that the
frequency affects not only the threshold voltages, but also the
character (the shape) of the CmEC(U ) curves. Evidently, the lin-
ear relation holds only at high frequencies; there, the thresholds
UcEC A can be determined by extrapolation (method A).

Below 1 Hz, however, there is no sharp increase of
the contrast; the Cm(U ) curves show rather a slow gradual
increase, while the contrast levels and thus the visibility of the
patterns vary in the same range as at high frequencies. The
determination of thresholds is then not so straightforward. In
the absence of a well defined linear part of the contrast curve,
method A becomes unreliable; the choice of points used for
the extrapolation (the dashed lines in Fig. 5) is to some extent
arbitrary.

An alternative way (method B) is to select (arbitrarily) a
critical contrast value C0 (the dashed-dotted line in Fig. 5)
where the EC pattern is visible by eye. The voltage UcEC B,
where CmEC(UcEC B) = C0, can be regarded as another estimate
of the threshold. In the case of forward bifurcations, which the
standard EC pattern formation is an example for, the contrast
increases continuously from zero. Therefore, UcEC B slightly
overestimates the threshold.

FIG. 5. (Color online) The voltage (rms) dependence of the
contrast peaks Cm of EC for different frequencies (symbols). Solid
lines are fits with the imperfect bifurcation model, the dashed lines
indicate the linear extrapolation.
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FIG. 6. (Color online) Square of the pattern amplitude A2 as a
function of the applied voltage U for δ = 0.01 (solid line), δ = 0.2
(dashed line), and δ = 0.5 (dotted-dashed line). UcEC = 5, g = 0.5.

The change in the shape of the CmEC(U ) curves may be
interpreted so that the nearly perfect bifurcation (at high f )
becomes imperfect at lower f . For an imperfect bifurcation,
the amplitude of the director distortion A satisfies the equation

εA − gA3 + δ = 0. (1)

Here, ε = U 2/U 2
cEC − 1, U is the rms applied voltage, UcEC

is the threshold voltage, g > 0 characterizes the saturation of
the amplitude, and δ � 0 is the measure for the imperfection
(δ = 0 corresponds to the perfect forward bifurcation). For
g > 0 and δ > 0, only one of the three solutions of Eq. (1) is
stable in the whole range of ε > −1 and thus relevant; it reads
as

A =
(

δ

2g

)1/3

F (ε̃),

F (ε̃) =
(

ε̃

f̂ (ε̃)
+ f̂ (ε̃)

)
for ε̃ � 1,

(2)

F (ε̃) = 2
√

ε̃ cos

(
1

3
arctan (

√
ε̃3 − 1)

)
for ε̃ > 1,

ε̃ = 2

3

ε

(2gδ2)1/3
, f̂ (ε̃) = (1 +

√
1 − ε̃3)1/3.

As mentioned above, the maximum contrast CmEC of the
EC patterns observed using the shadowgraph technique is
proportional to A2. In Fig. 6, the dependence of A2 on
the applied voltage U is shown for different values of the
imperfection parameter δ at fixed values of UcEC and g. It
demonstrates that the shape of the curve changes substantially
if the imperfection (δ) increases.

For a precise quantitative analysis, we can use the same
background subtraction here, just as was done with the
experimental data; therefore, the contrast depicted in Fig. 5
will be related to the amplitude as

CmEC = Cmax − Cb = α[A2(U ) − A2(U = 0)], (3)

where Cmax is the maximum contrast of the pattern, Cb is
the background contrast at U = 0, and α > 0 is a scaling
factor. By combining Eqs. (2) and (3), one can fit the experi-
mental CmEC(U ) curves by this phenomenological model for
imperfect bifurcation using four parameters: α, g, δ, and UcEC

(method C).

FIG. 7. Frequency dependence of the imperfection parameter δ.

The actual value of the scaling parameter α is determined
by the optical setup and the optical properties. As qc of the
EC pattern depends weakly on f , we can assume that α is
frequency independent. Its value could be obtained from the
fit at f = 60 Hz, leaving only three free parameters for the fits
at lower frequencies.

The results of the fit procedure are shown by solid lines
in Fig. 5. The match with the experimental data is quite
convincing. The frequency dependence of the imperfection
parameter δ is plotted in Fig. 7. It clearly shows (what we have
already expected from the experimental data in Fig. 5) that the
imperfection grows at lower frequencies. Several reasons could
be responsible for the increase of the apparent imperfection.

In planar samples aligned by rubbed polyimide layers, a
small director pretilt at the confining plates is practically
unavoidable. Such pretilt is known to yield imperfect bifur-
cation (i.e., lack of a sharp threshold) in the case of splay
Freedericksz transition. The effect of a tilted alignment on the
EC characteristics has theoretically been studied only for high
frequencies [29], the pretilt modified Uc, but did not affect
the sharpness of the threshold, which is in agreement with our
observations (Fig. 5) at high f .

Decreasing the frequency of the applied ac voltage well
below the inverse director relaxation time may, however, alter
the situation as one enters the regime of quasistatic director
response. Here, a small pretilt may enhance the director de-
formations and correspondingly the contrast of the pattern can
develop already at lower voltage amplitudes compared to the
high frequency case. Unfortunately, a detailed theoretical anal-
ysis of this regime in the presence of pretilt is not yet available.

The nonlinear electric current characteristics presented
in Sec. III A may provide another reason for the apparent
softening of the ultralow f EC thresholds. The coincidence
of the electric current peaks and the EC flashes clearly
shows the strong correlation between pattern formation and
ionic phenomena: the massive ionic flow helps the electrohy-
drodynamical instability to emerge. The spatial distribution
of the current is not necessarily uniform, mainly due to
surface inhomogeneities (which may originate, e.g., from
crystallization of the compound) or small variations in the
cell thickness and/or pretilt. The current inhomogeneities may
locally reduce the threshold of EC. In fact, this effect has been
observed: the EC pattern first appears in germs and extends
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FIG. 8. (Color online) The frequency dependence of threshold
voltages (rms) of EC and FD determined by various methods.

gradually to larger areas by increasing the voltage. The location
of these germs can be identified even in the well developed
pattern as small spots or patches of higher contrast [a few such
spots can be seen in Fig. 2(a)]. The contrast CmEC(U ) of the
pattern plotted in Fig. 5 is calculated over the whole image;
thus, a continuous increase of the area filled with pattern leads
to a continuous increase of CmEC(U ). Consequently, a locally
sharp transition yields a softened, gradual contrast variation.
While ionic effects are mostly negligible at high frequencies
(linear current response), they become crucial at ultralow
frequencies (spiky current response), which may explain the
increase of the imperfection parameter for f → 0.

We note that the formation of flexodomains is not affected
by the electric current spikes as they occur in different time
windows. Therefore, the above scenario of germ-induced
pattern evolution does not apply to FD, i.e., the onset of FD
remains sharp over the full frequency range of its existence, as
shown in Fig. 12.

The frequency dependence of the threshold voltages of
both patterns can be seen in Fig. 8. It depicts the UcEC

values determined by all three methods introduced above.
The data by methods A (extrapolation) and B (comparison)
almost coincide, while the thresholds obtained from fitting
to the imperfect bifurcation model are significantly larger at
lower frequencies. This is not surprising since methods A
and B intrinsically assume that no deformation exists below
a threshold, while an imperfect bifurcation actually means a
thresholdless deformation with Uc being a parameter only.

Otherwise, the UcEC(f ) curve exhibits the expected behav-
ior. The reduction of the threshold at lowering f in the 0.5 <

f < 10 Hz range corresponds to the theoretical predictions
and matches the behavior of other nematics [30]. The increase
of UcEC toward ultralow frequencies is attributed to the internal
attenuation due to the insulating polyimide alignment layers on
the electrodes [9]. The frequency dependence of UcFD seems
to be significantly weaker than that of UcEC in the same f

range. Taking into account the internal attenuation, the actual
FD threshold voltage (on the liquid crystal layer) grows much
stronger with f than the apparent threshold plotted in the figure
(the voltage applied to the cell), which is in agreement with
the theoretical predictions [10].

Figure 8 clearly shows that the two distinct patterns, EC
and FDs, coexist in a relatively wide (0.02 Hz < f < 0.4 Hz)

FIG. 9. (Color online) The frequency dependence of the threshold
wave numbers for EC and FD.

range, even though their threshold voltages are quite different.
This is possible because they remain separated in time until the
half period of driving voltage is large enough for both patterns
to emerge and decay; thus, they can build up from the same
almost homogeneous initial state. For f > 0.4 Hz, however,
this does not hold any more. In that range, aside from the
shorter period time, UcEC is much lower than UcFD. Thus, the
EC contrast spikes become much broader and the EC pattern
does not decay fully before FD should emerge. Under such
conditions, the FD pattern (which has a lower contrast than
EC) can not be recognized any more.

As the frequency is reduced, at around 0.05–0.07 Hz, there
is an intersection of the two threshold curves (UcFD and UcEC).
At f below this intersection, the threshold of FDs is lower than
that of EC; thus, upon increasing the voltage FD is the first
instability EC sets on at a higher voltage. This is in accordance
with the finding that when applying a pure dc voltage, no EC
pattern, only FDs can be detected.

Characterization of the threshold behavior is incomplete
without addressing the frequency dependence of the critical
wave number qc = |qc|. Figure 9 exhibits the relevant curves
both for EC (qEC) and FD (qFD). The values were determined
using the 2D fast Fourier transformation (FFT) of images
taken slightly above the threshold, at U = 1.05Uc, in order
to have sufficient contrast for the evaluation. Note that for the
oblique EC rolls qEC =

√
q2

x + q2
y , while FDs are parallel to

the initial director, so qFD ≈ qy . The wave numbers increase
for both patterns with the frequency. In the case of FD, there
is a moderate f dependence even at ultralow frequencies. For
EC, the change of qEC seems to be very small until 5 Hz.
Between 5 and 10 Hz, however, the wave number increases
suddenly, which is attributed to the transition between oblique
conductive and oblique dielectric EC. To our knowledge,
no such transition was reported before in the literature. We
note that the obliqueness angle decreases with the frequency,
and the Lifshitz point is reached in the dielectric regime at
fL ≈ 80 Hz.

C. Temperature dependence of the flexoelectric coefficients

Although several experimental methods have been pro-
posed to measure the flexoelectric coefficients, measurements
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usually can not be done without serious compromises [14].
Analysis of the threshold parameters (qcFD, UcFD) of the
flexoelectric instability is one of the possible methods. Its
drawback is that only a few compounds exhibit this effect
because (1) the material needs to have a quite low dielectric
anisotropy (|εa| � 1), (2) the concentration of its ionic
impurities should be sufficiently low in order to avoid large
screening effects, and (3) other phenomena (e.g., EC or
Freedericksz transition) should not influence the homogeneous
planar initial state below the threshold of FD.

The threshold characteristics for dc driving voltage have
long ago been calculated analytically [2] using the one-elastic-
constant approximation (K11 = K22 = K)

ŨcFD = 2πK

|e1 − e3|(1 + μ)
, (4)

q̃cFD = π

d

√
1 − μ

1 + μ
, (5)

where e1 and e3 are the splay and bend flexoelectric coeffi-
cients, respectively, and

μ = (ε0εaK)/|e1 − e3|2. (6)

According to Eq. (5), the flexodomains can only exist for
the material parameter combination |μ| < 1. This leads to the
requirement |εa| < |e1 − e3|2/(ε0K) that should be valid for
materials showing FDs. Combining Eqs. (5) and (6) yields

|e1 − e3| =
√

ε0εaK
1 + q2

cFD

1 − q2
cFD

. (7)

For 1OO8, both qcFD and UcFD were measured as the
function of temperature using 10 mHz ac sine voltage. We
assumed that 10 mHz is low frequency enough to be considered
as a quasistatic case, hence we have fitted the results with
a static model. Therefore, UcFD here is presented in voltage
amplitude values instead of rms since FD appears when the
driving voltage reaches its maxima. Therefore, UcFD in Fig. 10
is presented in voltage amplitudes instead of rms values.

FIG. 10. (Color online) The temperature dependence of (a) the
wave number qcFD and (b) the voltage UcFD (amplitude) at the onset
of flexodomains.

FIG. 11. (Color online) The temperature dependence of (a) the
dielectric (εa) and the diamagnetic (χa) anisotropies, and (b) the
three elastic moduli.

Both qcFD and UcFD increase strongly toward higher
temperatures. Above T − TNI = −8 ◦C, we could not detect
flexodomains up to the voltage of 135 V.

In order to determine |e1 − e3|, we have measured some
material parameters of 1OO8 using methods based on electric
and magnetic Freedericksz transitions. The temperature depen-
dence of εa and of the diamagnetic susceptibility anisotropy
(χa) is shown in Fig. 11(a). εa is negative and relatively
small, as it was expected. Therefore, in our planar sandwich
cell geometry the dielectric interaction stabilizes the planar
structure; no electric field induced Freedericksz transition
occurs. The values and the thermal behavior of χa are in the
regular range of those in rodlike nematics. This also holds for
the elastic constants K11, K22, and K33, which are plotted in
Fig. 11(b). We note that K33 is shown only for the sake of
completeness; we do not use it further on.

The temperature dependence of |e1 − e3|, presented in
Fig. 12, was calculated from the measured data by two
different techniques. The first method (square symbols) was
based on the analytical formula (7) of the one-elastic-constant

FIG. 12. (Color online) The temperature dependence of the
combination |e1 − e3| of the flexoelectric coefficients.
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approximation, taking K = (K11 + K22)/2. The second tech-
nique (triangle symbols) utilized the recent theory [10] of
flexoelectric domains that takes into account the anisotropic
elasticity (K11 = K22), calculating |e1 − e3| numerically. As
seen in Fig. 12, the second method provided values about 7%
higher than those by the first one; both values of |e1 − e3| fall
in the regular range of that of rodlike nematics.

In order to check the consistency of our models and the ob-
tained data, we have calculated UcFD using the |e1 − e3| values
determined from qcFD. The results, depicted in Fig. 10(b), show
that the first model gave about 2% lower, while the second one
about 11% higher values for UthFD than the experiments.

Knowing the temperature dependence of |e1 − e3| gave
us an opportunity to compare our results with the predic-
tions of the molecular theory of flexoelectricity. It is ex-
pected [31–33] that the difference of flexoelectric coefficients
should be proportional to the square of the order parameter
S(T ):

|e1 − e3| = êS2(T ), (8)

where the proportionality constant is denoted by ê.
In Fig. 12, |e1 − e3| is decreasing with the temperature,

which is consistent with the similar tendency of the order
parameter. For a more quantitative comparison, the knowledge
of S(T ) would be essential. S(T ) can only be accessed via
measuring physical quantities that are directly coupled to it.
The diamagnetic susceptibility, which is already determined
from the Freedericksz-transition measurements [Fig. 11(a)]
is a good candidate since it should be proportional to
S [35]:

χa(T ) = χ̂S(T ), (9)

where χ̂ is a constant. In order to determine χ̂ and S(T ), the
generalized form of the empirical Haller-extrapolation [34,35]
method is applied via fitting the experimental data of χa(T )
with

χa(T ) = χ̂

(
1 − β

T

TNI

)γ

, (10)

where β, γ are constants, and the temperature data (T , TNI ) are
measured in the Kelvin scale. The result of the fit can be seen in
Fig. 11(a) (solid line). The parameters of the best fit correspond
to χ̂ = 1.64 × 10−6, β = 1, and γ = 0.2. Aside from the
dimensionless SI quantity of χ̂ , its molar version is often
used: χ̂M = χ̂Mm/ρ, where Mm and ρ are the molar weight
and the density, respectively. Using Mm = 356.5 g/mol and
ρ = 1 g/cm3, one gets χ̂M = 585 × 10−6 cm3/mol, a value
that fits well in the range of earlier results [35,36] obtained for
different compounds with two aromatic rings.

Combining Eqs. (8) and (9) yields

χa = a
√

|e1 − e3|, (11)

with a = χ̂/
√

ê.
Figure 13 provides a test of this relation, as it plots the

measured χa values against
√|e1 − e3| calculated for the same

temperatures (determined from the model with anisotropic
elasticity). The fit corresponding to Eq. (11), represented by
the dashed line, seems to be quite good in spite of the fact
that there was only one fit parameter. The best fit results

FIG. 13. (Color online) The relation between χa and
√|e1 − e3|.

a = 0.38 (C/m)−0.5, which with χ̂ determined above yields
ê = 18.6 pC/m.

IV. CONCLUSIONS

We have investigated the pattern forming phenomena
induced by ultralow frequency sinusoidal voltages applied onto
the calamitic nematic liquid crystal 1OO8. It was found that
the behavior in this low frequency range is characteristically
different from that typical for high frequencies: here, patterns
appear as flashes in a short time interval within each half
period of driving. Two kinds of pattern morphologies were
detected: electroconvection rolls and flexodomains. The types
of patterns differ in their wave vector (EC rolls are oblique to,
while FDs are parallel with, the initial director); moreover,
their flashes occur subsequently with a time separation,
although in the same (and each) half period of driving. These
scenarios are similar to those reported recently [8,9] for the
nematic mixtures Phase 5 and Phase 4.

Electric current measurements carried out simultaneously
to pattern recording indicated strongly nonlinear current
responses: the time dependence of the current showed sharp
peaks after each polarity reversal of the applied voltage. The
current nonlinearity in 1OO8 was much more pronounced than
in Phase 5. This behavior is attributed to the ionic conductivity
of the liquid crystal. The transient current may be due to the
motion of ions during building up a Debye screening layer
at the electrodes, while the (insulating) polyimide coating
ensuring the planar alignment blocks the charge transfer
through the electrodes.

We found that, interestingly, the time instant of the flashing
EC patterns (the time of the EC contrast peak) and that of
the electric current peak coincide. This coincidence holds
for all voltages, frequencies, and temperatures that we have
tested. The shape of the current signal is not affected by the
occurrence of EC significantly, indicating that it originates
from the more robust ionic effects described above. This is
also supported by the fact that the current peaks could be
observed below as well as above the EC threshold, and even
in the isotropic phase. We think that the current peak has a
significant effect on the formation of EC, but not vice versa;
the appearance of the EC flashes is synchronized to the current
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peaks. Recently, we reported a comparison [9] between the
measured and the theoretically calculated time instants of the
EC flashes for Phase 5. It indicated that in the experiment at
ultralow f , EC occurred earlier within the half period than
expected from the extended standard model of EC [6,10].
We suggest that the phase locking of EC to the ionic current
peaks might be the reason for this mismatch (the extended
standard model does not consider ionic effects). We guess
that an adequate extension of the theory to weak electrolytes
could reveal this problem and additionally explain the role
of the robust current peaks in the pattern formation; proving
that, however, represents a great theoretical challenge for the
future.

By studying the threshold characteristics of the patterns, we
found that the behaviors of EC and FD are essentially different.
Flexodomains have a sharp threshold, i.e., the pattern contrast
increases suddenly for U > Uc. For EC, this holds only at high
f ; reducing the frequency the EC threshold becomes gradually
less sharp (the contrast changes smoothly with the voltage).
On the one hand, it hinders the precise determination of the
EC threshold. On the other hand, we showed that this tendency
can be followed quantitatively using an imperfect bifurcation
model. In this approach, the amount of imperfection increases
as the frequency is lowered.

EC and FD have different frequency dependencies of their
thresholds. At high f , the EC threshold is lower, while at dc
driving flexodomains are seen. Therefore, it is not surprising
that there is a crossover between EC and FD at around 60 mHz,
where their thresholds become equal. Such a scenario was
already anticipated from measurements on Phase 5, but could
first be demonstrated explicitly now on 1OO8.

Interestingly, the two kinds of patterns can appear in
the same half period in some frequency range on both
sides of the crossover point, including frequencies where
the two thresholds are quite different. This is made possible
by the narrow time interval and time separation of the
flashes.

The qcEC(f ) curve of 1OO8 shows a discontinuity at
fc ≈ 7 Hz, indicating a crossover from conductive to dielec-
tric convection rolls. Interestingly, unlike similar crossovers
reported at high frequencies in other compounds, here both

the conductive and the dielectric rolls are oblique around this
crossover frequency; consequently, the Lifshitz frequency is
located in the dielectric regime. Although oblique dielectric
rolls have already been reported recently in Phase 4 (which had
no conductive regime at all) [8], 1OO8 is a substance which
exhibits a directly observable transition from oblique conduc-
tive to oblique dielectric rolls with increasing the frequency
of the ac voltage. The low fc indicates a fairly low electrical
conductivity, which also helps distinguishing between EC and
FD patterns by increasing their time separation and may also
be responsible for the enhanced nonlinearity of the current.

Measuring the critical wave number of the flexoelectric
domains offers a way to calculate the combination |e1 − e3| of
the flexoelectric coefficients using theoretical models based
either on the one-elastic-constant approximation or on a
rigourous handling of anisotropic elasticity. It has turned out
that the values determined by the two methods differ only
by about 7%. The reason for this small difference is that the
relevant material parameters (K11, K22, and εa) of 1OO8 fall
into that range, where qcFD is only slightly sensitive to the
elastic anisotropy. The threshold voltages of FDs, calculated
from the theoretical models using the above values of |e1 − e3|,
show a satisfactory agreement with the measured data; this
proves the consistency of the models.

In cooling, 1OO8 has a nematic temperature range of about
25◦. The temperature dependence of the elastic moduli, the
dielectric and the magnetic anisotropies, was determined for
the whole nematic range. For |e1 − e3|, data could be obtained
only for the lower temperature part of the nematic phase
as flexodomains did not exist for T − TNI > −8 ◦C. The
temperature dependence of |e1 − e3| was compared with that
of χa , the latter being proportional to S(T ). It was found that
|e1 − e3| ∝ S2 is satisfied, as it is expected from the molecular
theory of dipolar flexoelectricity, and also the proportionality
constant was determined.
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SALAMON, ÈBER, KREKHOV, AND BUKA PHYSICAL REVIEW E 87, 032505 (2013)

[13] E. Kochowska, S. Németh, G. Pelzl and Á. Buka, Phys. Rev. E,
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