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Abstract – We obtain the harmonic measure of diffusion-limited aggregate (DLA) clusters using
a biased random-walk sampling technique which allows us to measure probabilities of random
walkers hitting sections of clusters with unprecedented accuracy; our results include probabilities
as small as 10−80. We find the multifractal D(q) spectrum including regions of small and negative
q. Our algorithm allows us to obtain the harmonic measure for clusters more than an order of
magnitude larger than those achieved using the method of iterative conformal maps, which is the
previous best method. We find a phase transition in the singularity spectrum f(α) at α≈ 14 and
also find a minimum q of D(q), qmin = 0.9± 0.05.
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Introduction. – Diffusion-limited aggregation (DLA)
is a stochastic model for irreversible growth which gives
rise to fractal clusters [1,2], see figs. 1, 2. The growth
process is defined by releasing a random walker far from
the cluster and allowing it to diffuse until it sticks
to the surface and becomes part of the cluster. Then
another particle is released, and so forth. The probability
of sticking at various points on the cluster, i.e. the
distribution of the growth probability, is a function with
very large variations. It is the subject of this paper.
Since the Laplace equation is equivalent to the steady-

state diffusion equation, this probability distribution
is proportional to the perpendicular electric field on
the surface of a charged electrode with the shape of
the cluster; in this context the probability is called the
harmonic measure, and is defined for any surface. For
fractal surfaces, including that of DLA, the harmonic
measure is usually multifractal [3]. For DLA the harmonic
measure is of particular interest because of the connection
with the growth probability. For other fractal surfaces
this connection is lost. However, the measure is still of
substantial practical interest because of its relationship
with physical processes such as catalysis [4].
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For many interesting equilibrium fractals the harmonic
measure can be calculated using conformal field
theory [5–7] or Schramm-Loewner evolution (SLE) [8].
There is no corresponding theory for DLA for which the
measure must be found numerically. There are numerous
studies in the literature of this quantity, for exam-
ple [9–12]. This is a difficult problem because of the very
large variation of the growth probability. As we will see,
the dynamic range of the function is of the order of 1080

even for rather small clusters. This is far out of the range
accessible to straightforward random-walker sampling.
In this paper, we use a biased random-walk sampling

method. We can obtain extremely small growth proba-
bilities and to accurately obtain the complete harmonic
measure for DLA clusters of up to 106 particles. The
method was previously used on percolation and Ising
clusters [13]. For those (equilibrium) systems, we found
good agreement with analytic predictions for the harmonic
measure [14,15].
The harmonic measure is usually characterized in terms

of the generalized dimensions D(q). For integer q, D(q)
corresponds to the fractal dimension of the q point
correlation function. We define D(q) by partitioning the
external boundary of a DLA cluster into boxes of length l.
The probability that a diffusing particle will hit the section
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of the perimeter contained in box i is denoted by pi.
These probabilities define a “partition function” Zl(q) =∑
i(pi)

q [16]. If Zl(q) can be written as a power law in the
dimensionless ratio R/l, where R is the overall size of the
cluster, then the generalized dimension is given by

Zl(q) = (R/l)
−τq = (R/l)−(q−1)D(q). (1)

There are special values of D(q) including the box-
counting dimension, D(0)≈ 1.71 [17]. For two-dimensional
clusters we always have D(1) = 1 [18].
Another quantity of interest is f(α), which is called

the singularity spectrum. This function is the Legendre
transform of τ(q):

f(α) = q
dτ

dq
− τ, α=

dτ

dq
. (2)

As is the case for D(q), some special values of f(α) are
known: f(1) = 1 and the largest value of f(α) is equal
to D(0). f(α) can have a phase transition, namely a
maximum value of α, αmax, for which f(α) is defined.
There has been significant disagreement as to whether
f(α) for DLA has a phase transition. This controversy
is summarized in [11].
The main difficulty in resolving this issue is that large
α, or small q, corresponds to the smallest probabilities
on the cluster. The straightforward method of obtaining
the harmonic measure, sending large numbers of random
walkers to the cluster, is only capable of measuring prob-
abilities down to ≈10−10; even clusters with only 1000
particles have sections with growth probabilities signifi-
cantly smaller than that. This issue was partially resolved
by Jensen et al. [11], who used the method of iter-
ated conformal maps (CM) [19–21], to obtain significantly
smaller probabilities. Their main result was the determi-
nation of the harmonic measure of a single cluster of size
3 · 104, where they found probabilities down to 10−35. This
work [11] was a significant advance, though the CM results
are not conclusive in giving the asymptotic results for DLA
because the CM method is limited to small clusters, and it
is known that some features of DLA have slow crossover to
asymptotic scaling [22]. There are other, technical, ques-
tions about the CM method that we discuss below.
Other groups have obtained the harmonic measure for

on-lattice clusters using relaxation methods to solve the
Laplace equation. Ball and Spivack [10] grew DLA clus-
ters, corrected for lattice anisotropy, up to 105 particles.
They then solved Laplace’s equation numerically to obtain
the measure. Hanan et al. [12] measured the complete
harmonic measure of DLA clusters using a related relax-
ation technique. In contrast to [10], these authors first
grew the cluster off-lattice, then forced it on-lattice to
solve for the measure. The simulations in [12] were also
limited to small clusters of 6 · 104 particles.

Simulation methods. – We grow our DLA clusters
by the method that is now standard [2], which includes

speeding up the process by allowing the random-walker
particles to take large jumps. We store the cluster in a
data structure which allows the calculation of the size of
the jump to be performed in O(log(n)) time, where n is
the cluster size. These methods allow us to grow clusters
in O(n log(n)) time, a big improvement over the CM
method, which is O(n2). In the CM method the harmonic
measure is available at each step. In our case, we use a
biased random-walker method (the signpost method [13])
to obtain the harmonic measure once the cluster has
finished growing.
The signpost method consists of two iterated steps:

a sampling step and a measurement step. On the first
step, a large number of random-walker probe particles
(N), each with weight 1/N , are released far from the
cluster and diffuse until they hit the cluster. This allows
us to determine which areas of the cluster are poorly
sampled. Next, we place line segments (signposts) blocking
off all regions of the cluster that have sites that are hit
by fewer than some percentage of the probe particles,
say 10%. In the measurement step, we release N more
probe particles far from the cluster and allow them to
hit the cluster and signposts. The probe particles that hit
the cluster have their weight permanently added to the
perimeter site probability distribution. The locations on
the signposts where the probe particles hit in the first step
are used as the initial location of the N probe particles
released in the probe step of the second iteration. To
conserve probability, each probe particle released in the
second iteration has weight p/N , where p is the fraction
of probe particles that absorbed on the signpost in the first
iteration. The probe particles released in the probe step of
the second iteration help determine which sections of the
cluster are still poorly sampled. More signposts are added
to block off the still poorly sampled regions and then the
probe particles for the measurement step are released. This
process is repeated until the growth probability of all sites
has been measured. For a more detailed description of the
algorithm, see [13].
This method is similar to a rare-event method in chem-

ical physics that uses “milestones” [23]. The main differ-
ence between our method and that of [23] is that we choose
the locations of the signposts/milestones dynamically and
that we do not need to know an a priori distribution for
the random walkers along the milestones. See also [24].
This signpost method allowed us to measure proba-

bilities down to 10−300 for percolation and Ising clus-
ters. For DLA we have measured probabilities down to
10−80. Performing the signpost algorithm on DLA clus-
ters is more complex than the percolation and Ising cases.
DLA clusters are grown off-lattice, which means that some
sections of the exterior of the cluster are almost completely
blocked by two branches of the cluster nearly meeting,
making a narrow passage slightly larger than the diam-
eter of a probe particle; see fig. 1. The probability of a
probe particle diffusing through some of these passages
without touching the cluster is smaller than 10−8. These
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Fig. 1: (Color online) A branch of a DLA cluster with
an external border representing the Minkowski cover of the
cluster. The particles filled grey (blue online) in the center
are accessible to random walkers. The solid black particles can
never be reached. Inside the gray box is a narrow neck which
marks a low-probability pathway for random walkers.

passages are treated differently, but in a way consistent
with the signpost algorithm. Specifically, we slowly move
signposts perpendicular to the passage inward over several
iterations until the probe particles can reach other sections
of perimeter. In other words, we allow narrow passages to
have closely spaced signpost lines so that proper sampling
can be achieved.
One minor difference between the signposting we use

in this paper and the one used previously is that we now
reduce the threshold for blocking off sections of the cluster
as a function of the total number of probe particles that
hit signposts in the previous iteration. When more probe
particles hit the signposts, we move the signposts much
deeper the next time. Previously, we reduced the thresh-
old a fixed amount each iteration. We found that this
dynamic-threshold adjustment gave us more consistent
particle saturation on the signposts, which, in turn,
decreased the rate at which the error grew from step to
step.
Before we can apply the signpost method to a DLA

cluster, we first must find the perimeter of the cluster.
More precisely, we must find all sites that are accessible
to the probe particles. First, we take a ball the size of
a probe particle and roll it clockwise around the cluster
particle furthest from the center of the cluster until the
ball touches a second cluster particle. After that, the ball
is rolled clockwise about the second cluster particle until
it touches a third particle. This process is repeated until
the ball returns to its initial location. Note that a single
cluster particle can be visited more than once by the ball.
This process finds something akin to the Minkowski cover
of the cluster, fig. 1. We found that on average only 80% of
the particles in cluster are accessible to random walkers.
This means that 20% of the particles have a measure of
exactly zero and these regions of the cluster will never
grow. We found the 80% accessibility to be constant over a

Fig. 2: (Color online) The harmonic measure for a cluster with
104 particles, the lighter the color, the smaller the measure.
The size of the particles is doubled to represent the cover of the
DLA cluster. The smallest measure in the cluster is ≈ 10−49.
Sites that cannot be reached are marked grey.

range of large cluster sizes, which shows that the accessible
perimeter has the same fractal dimension of the complete
perimeter and the cluster itself, in contrast to percolation
where the corresponding accessible perimeter has a smaller
fractal dimension than the complete perimeter [14,25].
Our perimeter accessibility results agree qualitatively

with other work [26], which looked at cluster particle
accessibility as a function of probe particle size. However,
the agreement is not precise because the authors of [26]
measured the accessible cluster using 105 random walkers,
which are extremely unlikely to hit the low-measure
sections of the perimeter.
We grew DLA clusters of various sizes: 103, 3 · 103,

104, 3 · 104, 105, 3 · 105, and 106 particles. For each DLA
cluster grown, we obtained the harmonic measure using
the signpost algorithm. Figure 2 shows the harmonic
measure for a cluster with 104 particles. The different
cluster sizes required a different number of random walkers
per iteration, 106, 106, 5 · 106, 107, 2.5 · 107, 108, and
2.5 · 108 for 103, 3 · 103, 104, 3 · 104, 105, 3 · 105, and
106 sized clusters, respectively. The number of random
walkers needed was estimated by determining the number
of walkers required to get at least 104 random walkers
absorbed on each signpost for every iteration. We believe
this is a conservative criterion.

Results. – We use the method described above to
obtain D(q). First, we take the space that contains a
cluster and section it into boxes of size l and then measure
Zl(q). We do this measurement of Zl(q) for various values
of l for a given q. Next, we calculate the slope of the
function lnZl(q) vs. ln l; this is τ(q), which when divided by
(q− 1), gives D(q). The fit is performed over the range of l
for which the log-log plot is linear. This range is about one
order of magnitude for the smallest system size and larger
than one order of magnitude for larger systems. With
this set of D(q)’s for individual clusters of various sizes,
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Fig. 3: (Color online) f(α) vs. α for seven different system sizes
with error bars. Note that the spectra appear to be converging
to some asymptotic spectrum.

Fig. 4: (Color online) f(α) vs. α for n= 106 and the asymptotic
estimate, dotted, with error bars estimated from the data in
fig. 3. Note that the asymptotic estimate terminates at α= 11
only because there were too few system sizes to extrapolate
for larger α. We believe the phase transition in f(α) occurs at
α≈ 14.

we can calculate the average values of D(q) for various
sizes. We found that our results for large systems are close
to the known values for D(0) and D(1), 1.66 and 0.99,
respectively.
Using the results of D(q) for individual clusters, we

can Legendre-transform the results to obtain f(α) for
each cluster; see fig. 3. For a range of α’s, we estimated
the asymptotic value of f(α) using finite-size scaling
techniques in n, so that the correction to f(α) is of
the form n−β , where β is a crossover exponent. The
asymptotic values were determined by minimizing the
residual of the power law fit, see fig. 4. We found the
best fit for β was 0.4 for the entire range of α. Note that
exponents of 1/3 and 1/2 are also consistent with the data.
This means we are consistent with [22] where a crossover
exponent of 1/3 was found (for different quantities). The
asymptotic f(α) values are consistent with special known
values f(1) and the maximum f , measured to be 1.00
and 1.71, respectively. We believe the asymptotic f(α)
calculated is the true f(α) for DLA. The last α for which

Fig. 5: (Color online) The slope of the power law fit to the
probability distribution at various points. The slope at each
probability is averaged over about an order of magnitude in
probability.

f(α) is defined is more difficult to estimate. From visual
inspection the asymptotic point of the phase transition
appears to be about α≈ 14. This is significantly smaller
then the value found by the authors of [11], α≈ 18.
We were also able to obtain a histogram of the growth

probabilities for every system size. The bins were sized
logarithmically, to allow for a power law fit to the results.
Figure 5 shows the slope of the power law fit to the
probability distribution. The slope is fairly consistently
−0.9 which corresponds to a smallest q for which D(q)
is defined being −0.1. These values agree moderately well
with [11].

Conclusions. – In this paper we applied a rare-event
technique to obtain the complete harmonic measure of
DLA clusters. We found that probability distribution is
consistent with a power law exponent of −0.9. We also
found a slow crossover to infinite-size cluster behavior in
f(α), in agreement with previous work [12,22]. We believe
that our extrapolated f(α) is a very good approximation
to f(α) for infinite-sized DLA. We found a phase tran-
sition in f(α) at α≈ 14. This maximum α is related to
the opening angle of the branches near the seed point of
the cluster. The area around the seed point should have
the lowest measure, so the angles in that region, φmax
are related to the largest alpha by αmax ∼ 1/φmax [11].
By determining the exact relationship between αmax and
φmax, Hanan and Heffernan [12] determined the asymp-
totic αmax as αmax ≈ 15 using results from Mandelbrot
et al. [27] for the asymptotic estimate of φmax. This is in
satisfactory agreement with our results for αmax.
Our results differ significantly from those obtained by

the CM method [11] in several ways. First, we find a
significantly smaller value for αmax. Second, we find that
finite-size effects are still noticeable on clusters with 106

particles. The authors of [11] found no finite-size effects
at their largest system size, 3 · 104 particles. This is
inconsistent with our findings. Lastly, we find that the
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smallest probabilities found on clusters of size 3 · 104 are
significantly smaller, about 5 to 10 orders of magnitude,
than reported for CM clusters. We do find good agreement
for small and moderate values of α, which corresponds
to region of the spectrum which is easily measured by
random-walker sampling. This explains why the difference
between CM and standard DLA clusters was not seen
earlier.
Assuming that the signpost method and the CM

method are both successful at obtaining the measure for
their respective clusters, then the only explanation for the
discrepancy is that CM clusters are not the same as DLA
clusters grown using particles. Superficially, CM clusters
appear to be the cover of DLA clusters. If this were the
case, then both methods would obtain the same measure
because the measure for a probe particle having the same
size as a cluster particle hitting a standard cluster is
exactly the same as the measure for a point-sized particle
hitting the cover of the same cluster. The heart of the
issue may be the shape and size of the “bumps” added
to the CM clusters during each step. These bumps are
designed to have a semicircular shape, and to be of
fixed size, but they can distort as noted in [28,29]. It is
important to check that the bumps are, in fact, of fixed
size, and resize them if necessary. It is not clear whether
this was done in [11]. Even if this correction were made,
the shape of the bumps can be very distorted deep inside
the cluster.
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