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Reproduction-time statistics and segregation patterns in growing populations
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Pattern formation in microbial colonies of competing strains under purely space-limited population growth
has recently attracted considerable research interest. We show that the reproduction time statistics of individuals
has a significant impact on the sectoring patterns. Generalizing the standard Eden growth model, we introduce
a simple one-parameter family of reproduction time distributions indexed by the variation coefficient δ ∈ [0,1],
which includes deterministic (δ = 0) and memory-less exponential distribution (δ = 1) as extreme cases. We
present convincing numerical evidence and heuristic arguments that the generalized model is still in the Kardar-
Parisi-Zhang (KPZ) universality class, and the changes in patterns are due to changing prefactors in the scaling
relations, which we are able to predict quantitatively. With the example of Saccharomyces cerevisiae, we show
that our approach using the variation coefficient also works for more realistic reproduction time distributions.
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I. INTRODUCTION

Spatial competition is a common phenomenon in growth
processes and can lead to interesting collective phenomena
such as fractal geometries and pattern formation [1–3]. This
is relevant in biological contexts such as range expansions of
biological species [4,5] or growth of cells or microorganisms,
as well as in social contexts such as the dynamics of
human settlements or urbanization [6]. These phenomena often
exhibit universal features which do not depend on the details
of the particular application and have been studied extensively
in the physics literature [2,3,7–10].

Our main motivating example will be growth of microbes
in two-dimensional geometries, for which recently there have
been several quantitative studies. In general, the growth pat-
terns in this area are influenced by many factors, such as size,
shape, and motility of the individual organism [11], as well as
environmental conditions such as distribution of resources and
geometric constraints [12,13], which in turn influence the pro-
liferation rate or motility of organisms [14]. We will focus on
cases where active motion of the individuals can be neglected
on the time scale of growth, which leads to static patterns and is
also a relevant regime for range expansions. We further assume
that there is no shortage of resources, and growth and compe-
tition of species is purely space limited and spatially homoge-
neous. This situation can be studied for colonies of immotile
microbial species grown under precisely controlled conditions
on a petri dish with hard agar and a rich growth medium.

Under these conditions one expects the colony to form com-
pact Eden-type clusters [12], which has recently been shown
for various species including Saccharomyces cerevisiae, Es-
cherichia coli, Bacillus subtilis and Serratia marcescens
[14,15].

The Eden model [16] has been introduced as a basic model
for the growth of cell colonies. It has later been shown to be in
the Kardar-Parisi-Zhang (KPZ) universality class [3,7,17,18],
which describes the scaling properties of a large generic class
of growth models. In recent detailed studies of E. coli and
S. cerevisiae [14,15,19,20] quantitative evidence for the KPZ
scaling of growth patterns has been identified. The models used
in these studies ignored all microscopic details reproduction,

such as anisotropy of cells [21], and therefore could not
explain or predict differences observed for different species.
Nevertheless, they provided a good reproduction of the basic
features such as KPZ exponents, which is a clear indication
that segregation itself is an emergent phenomenon. Figure 1
shows differences in growth patterns in a circular geometry
taken from [15] for immotile E. coli and S. cerevisiae. For
both species the microbial populations are made of two strains,
which are identical except having different fluorescent label-
ing. Reproduction is asexual, and the fluorescent label carries
over to the offspring. At the beginning of the experiments
the strains are well mixed, but during growth rough sector
shaped segregated regions develop. The qualitative emergence
of these segregation patterns and connections to annihilating
diffusions has been studied in Refs. [15,19,20,22], ignoring all
details specific for a particular species.

For S. cerevisiae the domain boundaries are less rough when
compared to E. coli, leading to a finer pattern consisting of a
larger number of sectors. In general, this is a consequence of
differences in the mode of reproduction and shapes of the mi-
crobes, which introduce local correlations that are not present
in simplified models. In this paper we focus on the effect of
time correlations introduced by reproduction times that are
not exponentially distributed (as would be in continuous time
Markovian simulations), but have a unimodal distribution with
smaller variation coefficient. This is very relevant in most bi-
ological applications (see, e.g., [23–25]), and even in spatially
isotropic systems the resulting temporal correlations lead to
more regular growth and therefore smaller fluctuations of the
boundaries, with an effect on the patterns as seen in Fig. 2.

To systematically study these temporal correlations, we in-
troduce a generic one-parameter family of reproduction times,
explained in detail in Sec. II. We establish that the growth
clusters and competition interfaces still show the characteristic
scaling within the KPZ universality class, and the effect of the
variation coefficient is present only in prefactors. We predict
these effects quantitatively and find good agreement with
simulation data; these results are presented in Sec. III. More
realistic reproduction time distributions with a higher number
of parameters are considered in Sec. IV, where we show that
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FIG. 1. (Color online) Fluorescent images of colonies of
(a) E. coli and (b) S. cerevisiae. The scaling properties of both patterns
are believed to be in the KPZ universality class, and the differences
are due to microscopic details of the mode of reproduction and shape
of the microorganisms. The images have been taken with permission
from [15], copyright (2007) National Academy of Sciences, USA.

to a good approximation the effects can be summarized in
the variation coefficient and mapped quantitatively onto our
generic one-parameter family of reproduction times. Therefore
our results are expected to hold quite generally for unimodal
reproduction time distributions, and the variation coefficient
alone determines the leading order statistics of competition
patterns.

II. THE MODEL

For regular reproduction times with a small variation
coefficient, the use of a regular lattice would lead to strong
lattice effects that affect the shape of the growing cluster. To
avoid these we use a more realistic Eden growth model in a
continuous domain in R2 with individuals modeled as circular
hard-core particles with diameter 1, since we want to study
purely the effect of time correlations. This leads to generalized
Eden clusters which are compact with an interface that is rough
due to the stochastic growth dynamics.

Let B(t) denote the general index set of particles p at time
t , (xp,yp) ∈ R2 is the position of the center of particle p,
and sp ∈ {1,2} is its type. We write B(t) = B1(t) ∪ B2(t) as
the union of the sets of particles of types 1 and 2. We also

FIG. 2. (Color online) A smaller variation coefficient δ in repro-
duction times [see (4) and (6)] leads to more regular growth, smoother
domain boundaries, and finer sectors. Shown are simulated circular
populations with (a) δ = 1 and (b) δ = 0.1. Both colonies have an
initial radius of r0 = 50, and they are grown up to simulation time
t = 50, leading to final radii of approximately 120 (a) and 95 (b). The
different colors denote cell types 1 and 2.

associate with each particle the time it tries to reproduce next,
Tp > 0. Initially, Tp are independent identically distributed
(i.i.d) random variables with cumulative distribution Fδ with
parameter δ ∈ [0,1], which is explained in detail below. After
each reproduction Tp is incremented by a new waiting time
drawn from the same distribution. Note that we focus entirely
on the neutral case, i.e., the reproduction time is independent
of the type, and both types have the same fitness. We describe
the dynamics below in a recursive way.

Following a successful reproduction event of particle p at
time t = Tp, a new particle with index q = |B(Tp−)| + 1 is
added to the set Bsq

with the same cell type sq = sp, such that

Bsp
(Tp+) = Bsp

(Tp−) ∪ {q} . (1)

Here B(Tp−) and B(Tp+) denote the index set just before and
just after the reproduction event, and |B(t)| denotes the size of
the set B(t). The position of the new particle is given by

(xq,yq) = (xp,yp) + (cos φ, sin φ) , (2)

where φ ∈ [0,2π ) is drawn uniformly at random. This is
subject to a hard-core exclusion condition for circular particles,
i.e., the Euclidean distance to all other particle centers has to
be at least 1, as well as to other constraints depending on
the simulated geometry as explained below. Note that in our
model the daughter cell touches its mother, which is often
realistic but in fact not essential, and the distance could also
vary stochastically over a small range. The new reproduction
times of mother and daughter are set as

Tp �→ T old
p + T , Tq = T old

p + T ′ , (3)

where T ,T ′ are i.i.d. reproduction time intervals with distri-
bution Fδ . There can be variations on this where mother and
daughter have different reproduction times, which is discussed
in Sec. IV. The next reproduction event will then be attempted
at t = min{Tq : q ∈ B(Tp+)}. Reproduction attempts can be
unsuccessful if there is no available space for the offspring
due to blockage by other particles. In this case the attempt is
abandoned and Tp is set to ∞, as due to the immotile nature
of the cells this particle will never be able to reproduce.

The initial conditions for spatial coordinates and types
depend on the situation that is modeled. In this paper we
mostly focus on an upward growth in a strip of length L

with periodic boundary conditions on the sides, where we
take B(0) = {1, . . . ,L} with (xp,yp) = (p,0), for all p ∈ B(0).
The initial distribution of types can be either regular or
random, depending on whether we study single or interacting
boundaries, and will be specified later.

In Sec. III for our main results we use reproduction times
T distributed as

1 − δ + Exp(1/δ) , δ ∈ (0,1] , (4)

i.e., T has an exponential distribution with a time lag 1 − δ ∈
[0,1) and a mean fixed to 〈T 〉 = 1 for all δ. The corresponding
cumulative distribution function Fδ is given by

Fδ(t) =
{

0, t � 1 − δ

1 − e−(t−1+δ)/δ, t � 1 − δ
. (5)

The variation coefficient of this distribution is given by the
standard deviation divided by the mean, which turns out to be
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FIG. 3. (Color online) Populations in a linear geometry with
periodic boundary conditions in lateral direction with (a) δ = 1 and
(b) δ = 0.1. Both populations have lateral width L = 300, and the
colonies are grown to a simulation time t ≈ 50, leading to heights
of approximately 70 (a) and 40 (b). The different colors denote cell
types 1 and 2.

just √
〈T 2〉 − 〈T 〉2

〈T 〉 = δ

1
= δ . (6)

With this family we can therefore study reproduction which
is more regular than exponential with a fixed average growth
rate of unity (equivalent of setting the unit of time).

For δ = 1 this is a standard Eden cluster, but δ < 1
introduces time correlations. While the correlations affect the
fluctuations, we present convincing evidence that they decay
fast enough not to change the fluctuation exponents, so the
system remains in the KPZ universality class. Furthermore
we make quantitative predictions on the δ dependence of
nonuniversal parameters and compare them to simulations.
The more synchronized growth leads to effects similar to the
ones seen in experiments (Fig. 1). To give a visual impression
of the patterns produced by the model, we show in Fig. 2 two
growth patterns with δ = 1 and 0.1. The initial condition is a
circle, and the types are distributed uniformly at random. The
patterns are qualitatively similar to the experimental ones in
Fig. 1, and more regular growth leads to a finer sector structure.
The same effect is shown in Fig. 3 for the simulations in a
linear geometry with periodic boundary conditions, which is
analyzed quantitatively in the next section. Smaller values of
δ also lead to more compact growth and smaller height values
reached in the same time.

III. MAIN RESULTS

A. Quantitative analysis of the colony surface

In this section we provide a detailed quantitative analysis
of the δ family of models in linear geometry with periodic
boundary conditions (see Fig. 3), starting with the dynamical
scaling properties of the growth interface.

We regularize the surface to be able to define it as a function
of the lateral coordinate x and time t as

y(x,t) := max{yp : p ∈ B(t),|xp − x| � 1} . (7)

In the case of overhangs (which are very rare) we take the
largest possible height, and due to the discrete nature of our
model, this leads to a piecewise constant function.

The surface of a standard Eden growth cluster is known to
be in the KPZ universality class [16,18], i.e., a suitable scaling
limit of y(x,t) with vanishing particle diameter fulfills the KPZ
equation:

∂ty(x,t) = v0 + ν�y(x,t) + λ

2
[∇y(x,t)]2 +

√
Dη(x,t). (8)

Here v0, of the order of unity, corresponds to the growth rate
of the initial flat surface (related to the mean reproduction rate
and some geometrical effects), the surface tension term with
ν > 0 represents surface relaxation, and the nonlinear term
represents the lowest order contribution to lateral growth [18].
The fluctuations due to stochastic growth are described by
space-time white noise η(x,t), which is a mean 0 Gaussian
process with correlations

〈η(x,t)η(x ′,t ′)〉 = δ(x − x ′)δ(t − t ′). (9)

We denote the average surface height by

h(t) := 1

L

∫ L

0
y(x,t) dx , (10)

which is a monotone increasing function in t . It is also
asymptotically linear and therefore we will later also use h

as a proxy for time. The δ dependence of the average growth
velocity of height as seen in Fig. 3 does not lead to leading
order contributions to the statistical properties of the surface
or the structure of sectoring patterns.

The roughness of the surface is given by the root-mean-
squared displacement of the surface height as a function of
t [3,10], defined as

S(t) =
〈

1

L

∫ L

0
[y(x,t) − h(t)]2dx

〉1/2

. (11)

The main properties of the surface y(x,t) can then be
characterized by the Family-Vicsek scaling relation of the
roughness

S(t) = Lαf (t/Lz) , (12)

where the scaling function f (u) has the property

f (u) ∝
{

uβ u � 1

1 u � 1
. (13)

Such a scaling behavior has been shown for many discrete
models including ballistic deposition and continuum growth
[3,10,18,26,27], and holds also for other universality classes
such as Edward Wilkinson. For the KPZ class in 1 + 1
dimensions, the saturated interface roughness exponent is
α = 1/2, the growth exponent is β = 1/3, and the dynamic
exponent is z = α/β = 3/2.

Figure 4 shows a data collapse for the roughness S(t) for
two system sizes and for a number of different values of δ. As
δ gets smaller, the surface becomes less rough due to a more
synchronized growth. The dashed lines indicate the power law
growth with exponent β = 1/3 in the scaling window. This
window ends at around t/Lz ≈ 1 due to finite size effects,
where the lateral correlation length reaches the system size and
the surface fluctuations saturate. For small t the system exhibits
a transient behavior before entering the KPZ scaling due to
local correlations resulting from the nonzero particle size and
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ADNAN ALI, ELLÁK SOMFAI, AND STEFAN GROSSKINSKY PHYSICAL REVIEW E 85, 021923 (2012)

10
−5

10
−4

10
−3

10
−2

10
−1

10
−2

10
−1

t/Lz

S
(t

)/
L

α

 

 

δ=1

δ=0.8

δ=0.6

δ=0.4

δ=0.2

FIG. 4. (Color online) Family-Vicsek scaling (12) of the surface
roughness S(t). The data collapse under rescaling with α = 1/2 and
z = 3/2 occurs in a scaling window which is narrower for small δ

due to intrinsic correlations. The different symbols correspond to
different values of δ, and the color represents system size, L = 1500
(green/light gray) and L = 4000 (blue/dark gray). The dashed lines
indicate the expected slope β = 1/3. The data for L = 1500 has been
averaged over 100 samples and for L = 4000 over 30 samples. The
error bars are comparable to the size of the symbols.

stochastic growth rules. As we quantify later, these correlations
are much higher for more synchronized growth at small δ,
which leads to a significant increase in the transient regime.
The transient time scale is independent of system size and van-
ishes in the scaling limit, so that the length of the KPZ scaling
window increases with L. This behavior can be observed in
Fig. 4, where for the smallest value δ = 0.2 the scaling regime
is still hard to identify for the accessible system sizes.

Another characteristic quantity is the height-height corre-
lation function defined as [3,28,29]

C(l,t) =
〈

1

L

∫ L

0
[y(x,t) − y(x + l,t)]2dx

〉1/2

. (14)

For a KPZ surface in 1 + 1 dimensions this obeys the
scaling behavior

C(l,t) ∼
{(

D
2ν

l
)1/2

l � ξ‖(t)(
D
2ν

)2/3
(λt)1/3 l � ξ‖(t)

, (15)

where ξ‖(t) is defined to be the lateral correlation length scale
and takes the form [3,29,30]

ξ‖(t) ∼ (D/2ν)1/3(λt)2/3 . (16)

A detailed computation can be found in Appendix B. For
small values C(l,t) grows as a power law with l, and when l

exceeds the lateral correlation length ξ‖(t) it reaches a value
that depends on the time t and the parameters of (8). This is
shown in Fig. 5, where C(l,t) is plotted for various values of
δ, and the data agree well with the exponent α = 1/2 for the
KPZ class indicated by dashed lines.

The time correlations introduced by the partial synchro-
nization can be estimated by considering a chain of N growth
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FIG. 5. (Color online) The height-height correlation function
C(l,t) for L = 4000 at t = 11 000 for various values of δ. The
data has been averaged over 30 samples, and the error bars are
comparable to the size of the symbols. The dashed lines indicate the
expected slope 1/2.

events where each particle is the direct descendant of the
previous one. Each added particle corresponds to a height
change �yi and has an associated waiting time Ti with
distribution (4). During time t there are N (t) growth events,
and since the average reproduction time is 1 with variance δ2,
we have 〈N (t)〉 ≈ t and var[N (t)] ≈ δ2t . The height of the last
particle is yN(t) = ∑N(t)

i �yi , leading to

var(yN(t)) = 〈�yi〉2 var[N (t)] + 〈N (t)〉 var(�yi) . (17)

The terms in this expression correspond to two sources of
uncertainty: (i) due to the randomness in Ti the number of
growth events varies with var[N (t)], and (ii) the individual
height increments are random with var(�yi). This leads to

var(yN(t)) ≈ t 〈�yi〉2(δ2 + ε2) , (18)

where ε = √
var(�yi)/〈�yi〉 denotes the variation coefficient

of the height fluctuations due to geometric effects.
We define the correlation time τ as the amount of time

by which the uncertainty of the height of the chain becomes
comparable to one particle diameter, var[yN(τ )] = O(1). Since
〈�yi〉 is largely independent of δ (cf. Appendix A), the time
correlation induces a fixed intrinsic vertical correlation length

τ ∼ 1

δ2 + ε2
(19)

in the model. This correlation length reduces fluctuations and
leads to an increase in the saturation time tsat of the system,
namely, tsat/τ ∼ Lz, a modification of the usual relation with
the system size L. Analogous to the standard derivation of
the time dependence of the lateral correlation length [3], this
leads to

ξ‖(t) ∼ (t/τ )1/z . (20)
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FIG. 6. (Color online) Dependence of the KPZ parameters
D/(2ν) on δ. Data are obtained from (15) by fitting the prefactor
of the power law in Fig. 5, using a proportionality constant very close
to 1 [cf. derivation (B11) in the Appendix]. The data are in good
agreement with the prediction (21) with fitted parameters ε ≈ 0.42
and D/(2ν)(δ = 1) ≈ 1.1.

Together with (16), from the behavior of the correlation length
we expect

D/(2ν) ∼ (δ2 + ε2)2 , (21)

since λ turns out to be largely independent of δ. This is shown
to be in very good agreement with the data in Fig. 6, for fitted
values of ε and a prefactor. The fit value for ε and the ratio
D/(2ν) for δ = 1 (the usual Eden model) are compatible with
simple theoretical arguments (see Appendix A). So the very
basic argument above to derive an intrinsic vertical correlation
length explains the δ dependence of the surface properties
very well. By measuring height in this intrinsic length scale,
we observe a standard KPZ behavior with critical exponents
being unchanged, since the intrinsic correlations are short
range (i.e., they decay exponentially on the scale τ ). This
is in contrast to effects of long-range correlations where the
exponents typically change (see, e.g., studies with long-range
temporally correlated noise [31–33] or memory and delay
effects using fractional time derivatives and integral and/or
delay equations [34–36]).

B. Domain boundaries

In this section we derive the superdiffusive behavior of
the domain boundaries between the species from the scaling
properties of the interface. Since the boundaries grow locally
perpendicular to the rough surface, they are expected to be
superdiffusive, which has been shown for a solid on solid
growth model in [37] and has been observed in Ref. [15]
for experimental data. In order to confirm this quantitatively
for our model, we perform simulations with initial conditions
B1(0) = {1, . . . ,[L/2]} and B2(0) = {[L/2] + 1, . . . ,L}, i.e.,
the initial types are all red on the left half and all green on the
right half of the linear system. Therefore we have two sector
boundaries X1 and X2 with initial positions X1(0) = 1/2 and

X2(0) = [L/2] + 1/2. After growing the whole cluster, we
define the boundary as a function of height via the leftmost
particle in a strip of width 2 and medium height h:

X1(h) = min{xp + 1/2 : |yp − h| < 1, p ∈ B1}
(22)

X2(h) = min{xp + 1/2 : |yp − h| < 1, p ∈ B2} ,

where we take the periodic boundary conditions into account.
The simulations are performed on a system of size L = 1000
and run until a time of t = 2000, which is well before the ex-
pected time of annihilation, which is of order L3/2 proportional
to the saturation time scale in the KPZ class. Therefore we can
treat the sector boundaries as two independent realizations of
the boundary process [X(h) : h � 0].

As has been noted previously in Ref. [37] that this process
is expected to follow the same scaling as the lateral correlation
length. For the mean square displacement

M(h) := 〈[X(h) − X(0)]2〉, (23)

and we therefore get with (16) and (21), using the linear
relationship between h and t ,

M(h) ≈ σ 2
δ h2H ∼ ξ 2

‖ (h). (24)

Here σ 2
δ ∝ (δ2 + ε2)4/3 and the Hurst exponent is H = 2/3,

which quantifies the superdiffusive scaling of the mean square
displacement (23). This prediction is in very good agreement
with data for the scaling of M(h) and its prefactor as presented
in Fig. 7, and the fit value for ε2 is consistent with the one in
Fig. 6. As before, for D/(2ν) the δ dependence is absorbed
by the prefactor, and the power law exponent 4/3 for M(h)
remains unchanged from standard KPZ behavior studied also
in Ref. [37].

We can further investigate the law of the process [X(h) :
h � 0]. The data presented in Fig. 8(a) clearly support that
X(h) is a Gaussian process. A fractional Brownian motion
with stationary increments seems to be a natural model for the
X(h) in the KPZ scaling window. This is confirmed by the
behavior of the correlation function 〈X(h + �h)X(h)〉, which
is shown in Fig. 8(b) for various δ and two values of the lag
�h > 0. For a fractional Brownian motion with mean square
displacement (24) we expect

〈X(h + �h)X(h)〉 ≈ σ 2
δ

2
[(h + �h)2H + h2H − |�h|2H ]

(25)

for all �h > 0 and h > 0 sufficiently large to have no effects
from the flat initial condition. For simplicity we have assumed
here that X(0) = 0.

This is in good agreement with the data, and we conclude
that the sector boundaries can be modeled by fractional
Brownian motions with a superdiffusive Hurst exponent H =
2/3 and a δ-dependent prefactor σδ (24). We note that the
exponent H = 2/3 has also been observed in experiments [15].

C. Sector patterns

In Ref. [19], and also [20,22] under the assumption of
diffusive scaling, it was shown how the understanding of
the single boundary dynamics leads to a prediction for sector
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FIG. 7. (Color online) Scaling behavior of the mean square
displacement M(h) (24). The system size is L = 1000 and the data
is averaged over 500 samples, and the error bars are comparable to
the size of the symbols. (a) Data collapse of the normalized quantity
M(h)/σ 2

δ as a function of height h for several values of δ. The values
in the normalization σ 2

δ are taken from the best fit shown as full line
in (b). Each curve follows a power law with exponent 4/3, the line
corresponding to h4/3 is shown as comparison. (b) The prefactor σ 2

δ ,
where the data are best fits according to (24). The solid line used
for the collapse in (a) follows the prediction (δ2 + ε2)4/3 with fitted
ε = 0.40, which is compatible with the fit in Fig. 6.

statistics for well-mixed initial conditions. In this section we
shortly review this approach and show that it carries over
straightaway to systems with δ < 1. The sector boundaries
Xi(h) interact by diffusion-limited annihilation which drives a
coarsening process, as can be seen in Fig. 3 for two linear
populations with different values of δ. Both systems have
the same initial condition with a flat line of particles of
independently chosen types, and the finer coarsening patterns
for smaller values of δ result from the reduced boundary
fluctuations due to the prefactor σδ (24).

Let N (h) be the number of sector boundaries at height
h � 0 as defined in Eq. (22). For systems of diffusion-
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FIG. 8. (Color online) The sector boundary X(h) behaves like a
fractional Brownian motion. (a) The standardized probability density
function (pdf) of X(h) as a function of the rescaled argument
x/(σδh

2/3) for different heights h and values of δ. The black solid
parabola is the pdf of a standard Gaussian on a logarithmic scale.
(b) The covariance function 〈X(h + �h)X(h)〉 shows the behavior
(25), which is plotted as the solid black curve. After rescaling we get
a data collapse as a function of h/�h, which agrees well with the
prediction if h is sufficiently large and the flat boundary conditions
become irrelevant. Data are averages over 1000 realizations and the
error bars are comparable to the size of the symbols.

limited annihilation [38,39] it is known that N (h) is inversely
proportional to the root-mean-square displacement and decays
according to

〈N (h)〉 ≈ 1√
4πM(h)

∼ 1

σδ

h−2/3 . (26)

This prediction is confirmed in Fig. 9, where we plot 〈N (h)〉
for various δ and obtain a data collapse by multiplying the
data with

√
4πσ 2

δ /L [39]. We include the system size L in the
rescaling so that rescaled quantities are of order 1 and all data
collapse on the function h−2/3 without a prefactor.
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FIG. 9. (Color online) The average number of sector boundaries
〈N (h)〉 follow a power law (26) with exponent −2/3, which is indi-
cated by the full line. The data are plotted for a system size L = 1500
and various values of δ (see legend), and collapse on the function h−2/3

when rescaled by L/
√

4πσ 2
δ . Data are averages over 500 realizations,

and the error bars are comparable to the size of the symbols.

Using (26), we can predict the expected number of sector
boundaries at the final height in the simulations shown in Fig. 3.
For δ = 1 the final height is h ≈ 70, leading to 〈N (h)〉 ≈ 7.6,
and for δ = 0.1, h ≈ 40 with 〈N (h)〉 ≈ 32. These numbers are
compatible with the simulation samples shown which have 6
and 34 sector boundaries remaining, respectively.

In general, diffusion-limited annihilation is very well
understood, and there are exact formulas also for higher order
correlation functions [40], which can be derived from the
behavior of a single boundary (24). This demonstrates that
the behavior of populations is fundamentally the same for
all values of δ and are characterized by the KPZ universality
class, and the observed difference in coarsening patterns can
be explained by the functional behavior of the prefactors.

IV. REALISTIC REPRODUCTION TIMES

In this section we study the effect of more realistic
reproduction time distributions on the sectoring patterns and
how they can be effectively described by the previous δ-
dependent family of distributions in terms of their variation
coefficient. As an example, we focus on S. cerevisiae, which
is one of the species included in Ref. [15], and for which
reproduction time statistics are available [23–25] by the use
of time lapsed microscopy. S. cerevisiae cells have largely
isotropic shape so that spatial correlations during growth
should be minimal, fitting the assumptions of our previous
model. However, the results of this section cannot be applied
directly to quantitatively predict the patterns in Fig. 1, since
the variation coefficients under the experimental conditions in
Ref. [15] are not known to us.

When yeast cells divide, the mother cell forms a bud on
its surface which separates from the mother after growth to
become a daughter cell. The mother can then immediately
restart this reproduction process, whereas the daughter cell
has to grow to a certain size in order to be classed as a mother

and to be able to reproduce. We denote this time to maturity
by Tm and the reproduction time of (mother) cells by Tr .

The results in Refs. [23–25,41] suggest that Gamma
distributions are a reasonable fit for the statistics for Tm and
Tr , where

Tr is distributed as ρ0 + Gamma(ρ1,ρ2), (27)

with delay ρ0 > 0. The parameters ρ1,ρ2 denote the shape
and scale of the Gamma distribution, which has a probability
density function

fρ1,ρ2 (t) = tρ1−1 exp (−t/ρ2)

�(ρ1)ρρ1
2

, t � 0 .

The time to maturity is

Tm distributed as Gamma(ρ3,ρ4), (28)

and in Ref. [25] data are presented for which the parameters
can be fitted to ρ0 ≈ 1.0, ρ1 ≈ 1.7, ρ2 ≈ 0.51, ρ3 ≈ 9, and
ρ4 ≈ 0.3. The units of ρ0, ρ2, and ρ4 are hours and ρ1, ρ3 are
dimensionless numbers.

The random variables Tm and Tr may be assumed to be
independent, and the time until a newly born daughter cell
can reproduce is distributed as the sum Tm + Tr . Note that
the expected value of reproduction times 〈Tr〉 = ρ0 + ρ1ρ2 =
1.86 is smaller than that for times to maturity 〈Tm〉 = ρ3ρ4 =
2.52 but of the same order. The real time scale for these
numbers is hours, but we are only interested in the shape of
the distributions rescaled to mean 1 like our previous model.

The distribution (4) of δ-dependent reproduction times can
be written as T = 1 − δ + Gamma(1,δ), since exponentials
are a particular case of Gamma random variables with
shape parameter 1. The reproduction time Tr of mother and
Tm + Tr of daughter cells are also unimodal with a delay,
and very similar in shape to T in our model. This can be
seen in Fig. 10(a), where we plot the probability densities
renormalized to mean 1. Analogous to (6), we can compute
the variation coefficients of Tr and (Tm + Tr ), which turn out to
be 0.356 and 0.244, respectively. To confirm that the behavior
of sector boundaries can be well predicted by the variation
coefficient, we present data of three simulations in Fig. 10(b):
one with reproduction times Tr for mother and Td + Tr for
daughter cells as explained above, one with Tr for all cells, and
one with Tr + Tm for all cells. The mean square displacement
M(h) for these models also shows a power law with exponent
4/3 analogous to Fig. 7, and the prefactors σδ match well with
our simplified model.

To estimate the variation coefficient in the model with
mother and daughter cells, we measure the fraction of
reproduction events of daughter cells to be pd = 0.88, and
pm = 0.12 for mother cells. The reproduction time of the union
of mother and daughter cells is then taken as

T distributed as �(Tm + Tr ) + (1 − �)Tr , (29)

where the independent Bernoulli variable � = Be(pd ) ∈ {0,1}
indicates reproduction of a daughter. The variation coefficient
of T turns out to be 0.322. In all three combinations of
realistic reproduction times we find that the generic family of
Fδ introduced in Eq. (4) provides a good approximation for the
properties of domain boundaries in simulations. We expect this
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ADNAN ALI, ELLÁK SOMFAI, AND STEFAN GROSSKINSKY PHYSICAL REVIEW E 85, 021923 (2012)

Tr

Tm Tr

T 0.248

T 0.190

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

t T

pd
f

(a)

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0.08

0.1

0.12

0.14

0.16

0.18

0.2

δ

σ δ2

δ−family

M
D
M and D

(b)

FIG. 10. (Color online) Comparison of realistic reproduction
times with the δ model. (a) The probability density functions of
reproduction times of mother cells Tr (full orange line/light gray)
and daughter cells Tm + Tr (dashed orange line/light gray) with
normalized mean compared to T from (4) with corresponding δ

(blue/dark gray). (b) The prefactor of the mean square displacement
σ 2

δ as introduced in Eq. (24) and Fig. 7. The data correspond to
reproduction times Tr for all cells (denoted M), Tm + Tr for all cells
(denoted D), and the most realistic mixed model (denoted M and D)
as explained in the text. All these cases are consistent with previous
results from Fig. 7.

method of mapping realistic reproduction time distributions to
our δ-dependent family to hold for a large class of microbial
species which have similar unimodal distributions.

V. CONCLUSION

We have introduced a generalization of the Eden growth
model with competing species, regarding the reproduction
time statistics of the individuals. This is highly relevant in bio-
logical growth phenomena and can have significant influence
on the sectoring patterns observed, e.g., in microbial colonies.
Although growth of immotile microbial species is the prime
example, our results also apply to more general phenomena
of space-limited growth with inheritance, where the entities
have a complex internal structure that leads to nonexponential

reproduction times, such as colonization or range expansions,
or epidemic spreading of different virus strands. Our main
result is that as long as the reproduction time statistics have
finite variation coefficients, the induced correlations are local
and the macroscopic behavior of the system is well described
by the KPZ universality class. The dependence of the relevant
parameters in that macroscopic description on the variation
coefficient (a microscopic property of the system) is well
understood by simple heuristic arguments, which we support
with detailed numerical evidence.

Figures 2 and 3 illustrate that changes in the variation
coefficient δ of reproduction times lead to significant changes
in the competition growth patterns in our model, and we are
able to quantitatively predict this dependence. We studied the
effects of reproduction time statistics in a generalized Eden
model, isolated from other influences such as shape of the
organisms or correlations between mother and daughter cells
which might be relevant in real applications. In that sense our
results are of a theoretical nature. However, they indicate that
the variation coefficient of reproduction times can have a strong
influence on observed competition patterns. This coefficient
has been measured for various species in the literature, where it
is found that it depends on experimental conditions such as type
of strain, concentration of nutrients, temperature, etc. [42–44].
For example, it was found that for S. cerevisiae the coefficient
for mother cells can vary between δ ≈ 0.12−0.38 and for
daughter cells δ ≈ 0.19−0.28, depending on concentrations
of guanidine hydrochloride. It has also been observed that δ

can be as small as 0.047 for these yeast-type organisms [45].
For E. coli values of δ ≈ 0.32−0.51 have been observed in
Refs. [42,46,47], which is larger and compatible with the
observations in Fig. 1. But for the experimental conditions
in Ref. [15], with pattern growth the coefficient has not been
determined and therefore the results in this paper cannot
be readily applied to explain the differences in competition
patterns between S. cerevisiae and E. coli. In particular, the
latter have an anisotropic rod shape which has probably
a strong influence and is currently under investigation in
the group of Hallatschek. Another rod-shaped bacterium,
Pseudomonas aeruginosa, has a variation coefficient δ ≈
0.14−0.2 [41,46]. This bacterium along with E. coli belongs to
the gram-negative bacteria family. Despite obvious similarities
between P. aeruginosa and E. coli in the shape of their cells,
their colonies display morphological differences [48], which fit
qualitatively into our results and would be another interesting
example for a quantitative study.

In general, it is an interesting question whether the simple
mechanism of time correlations due to reproduction time
statistics with variable variation coefficients is sufficient to
quantitatively explain sectoring patterns in real experiments.
We are currently investigating this for S. cerevisiae which
are approximately of isotropic shape, in order to quantify
the influence of other factors on growth patterns, such as
correlations between mother and daughter cells. For example,
an effective attraction between cells which is often observed
in the growth of microbial colonies would influence the
growth directions, and further smoothen the surface and the
fluctuations of sector boundaries. For future research, it should
also be possible to describe spatial effects due to nonisotropic
particle shapes with the methods used in this paper.
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APPENDIX A: EFFECT OF GEOMETRIC DISORDER

The squared variation coefficient ε2 in Eq. (19) due to
geometric disorder has been consistently fitted to values
around 0.4 with our data in Sec. III. This value is compatible
with the following very simple argument. Consider a single
growth event around an isolated spherical particle with
diameter 1, with direction α chosen uniformly in a cone with
opening angle π/2 around the vertical axis. This leads to
〈�yi〉 = ∫ π/2

−π/2 cos α dα
π

≈ 0.64 and

ε2 ≈
( ∫ π/2

−π/2
cos2 α

dα

π
− 〈�yi〉2

)/
〈�yi〉2 ≈ 0.23 , (A1)

which is of the same order as the fitted values. Choosing only
a slightly larger opening angle 0.55π of the cone leads to
ε2 ≈ 0.39 and 〈�yi〉 ≈ 0.57. These are in good agreement
with the fitted values and with measurements of 〈�yi〉 (not
shown). The latter show some dependence on δ, related also
to the compactness of growth as seen in Figs. 2 and 3, but this
does not contribute to our results on a significant level so we
ignore this dependence. Actual growth events in the simulation
are of course often obstructed by neighboring particles, but the
right order of magnitude of the parameters can be explained
by the basic argument above.

APPENDIX B: DERIVING THE CORRELATION
FUNCTION C(l,t)

We use the mode coupling method [29] in order to find an
exact analytical expression of the correlation function Eq. (14)
as shown in Eq. (15). The idea of the mode coupling approx-
imation is that properties of solutions of the KPZ equation
(8) may be derived by first considering the linear Edwards-
Wilkinson equation [49] for λ = 0. We further consider the
comoving frame, so that v0 = 0, and the equation then reads

∂ty(x,t) = ν�y(x,t) +
√

Dη(x,t). (B1)

We denote by

ŷ(k,t) =
∫ ∞

−∞
dx y(x,t)e−ikx

the Fourier transform of the function y(x,t). The evolution of
the function ŷ(k,t) satisfies

∂t ŷ(k,t) = −νk2ŷ(k,t) +
√

D η̂(k,t). (B2)

Here η̂(k,t) is the spatial Fourier transform of the white noise
η(x,t), where η̂(k,t) has a mean 0 with correlations

〈η̂(k,t)η̂(k′,t ′)〉 = 1

2π
δ(k + k′)δ(t − t ′). (B3)

A formal solution of (B2) can be obtained, and after inverse
Fourier transform this leads to

y(x,t) =
√

D

∫ ∞

−∞
dk eikx

∫ t

0
ds η̂(k,s)e−νk2(t−s) . (B4)

The correlation function C(l,t), defined in Eq. (14), can be
represented as

C(l,t)2 = 2
∫ L

0
dx〈y(x,t)2 − y(l + x,t)y(x,t)〉 . (B5)

Using the solution (B4) we can compute∫ L

0
dx〈y(l + x,t)y(x,t)〉= D

2νπ

∫ ∞

0
dk

cos(kl)

k2

[
1 − e−2νk2t

]
,

(B6)

where we have used that the Fourier transform is even in k.
Taken together, this leads to an expression for the correlation
function (14) of the Edwards-Wilkinson equation

C(l,t)2 = D

νπ

∫ ∞

0
dk k−2[1− cos(kl)]

[
1 − e−2νk2t

]
. (B7)

In order to compute the correlation function for the KPZ
equation (8) we substitute length scale dependent parameters
D(k) and ν(k) into (B7), which are obtained from the
renormalization group flow equations [3,18,29]. In d = 2
dimensions these are given by

ν(k) = ν1[(1 − αB) + αB/k]1/2 ,
(B8)

D(k) = D1[(1 − αB) + αB/k]1/2 ,

and λ(k) = λ1, where

αB = λ2
1D1

4π2ν3
1

.

Here (λ1,ν1,D1) are the parameters for k = 1 where no
renormalization has taken place. Plugging this into (B7) and
only considering the most dominant terms, we obtain

C(l,t)2 = D1

ν1π

∫ ∞

0
dk k−2[1− cos(kl)]

[
1 − e−Bk3/2t

]
, (B9)

where B = 2ν1α
1/2
B =

√
2

π
λ
√

D1/2ν1 .
If we take t → ∞ in Eq. (B9) we get

C(l,t)2 → D1

ν1π

∫ ∞

0
dk k−2[1 − cos(kl)] = D1

2ν1
l . (B10)

With (B8) D/ν = D1/ν1 is independent of the scale k, and
thus

C(l,t) ≈
(

D

2ν
l

)1/2

for l � ξ‖(t) . (B11)

For finite time, numerical integration of (B9) in the large l

limit gives

lim
l→∞

C(l,t)2 ≈ 2.7
D

νπ
(Bt)2/3.

Together with (B11) and the definition (14) of the correlation
length this leads to

lim
l→∞

C(l,t) ≈
[

5.4 × 21/3

(
D

2ν

)4/3

π−5/3(λt)2/3

]1/2

(B12)

and

ξ‖(t) ≈ 5.4 × 21/3

(
D

2ν

)1/3

π−5/3(λt)2/3 . (B13)
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