PHYSICAL REVIEW E 66, 026109 (2002
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Off-lattice diffusion-limited aggregatiofDLA) clusters grown with different levels of noise reduction are
found to be consistent with a simple fractal fixed point. Cluster shapes and their ensemble variation exhibit a
dominant slowest correction to scaling, and this also accounts for the apparent “multiscaling” in the DLA mass
distribution. We interpret the correction to scaling in terms of renormalized noise. The limiting value of this
variable is strikingly small and is dominated by fluctuations in cluster shape. Earlier claims of anomalous
scaling in DLA were misled by the slow approach to this small fixed point value.
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[. INTRODUCTION of them hold. We find that DLA is consistent with simple
scaling, and the apparently anomalous scaling can all be ex-
Since its introduction in 1981, the diffusion-limited aggre- plained by a slow correction to scaling.
gation (DLA) model of Witten and Sanddi] has been a
paradigm of self-organized scaling behavior in irreversible
growth. However, even after more than 20 years, there is still
controversy about its scaling properties; many authors have Noise reduction for théattice versionof DLA has been
claimed, for example, that DLA clusters do not scale asntroduced7,8] with the aim of suppressing the shot noise of
simple fractals, but instead have various anomalous featurethe individual incoming particles. When growing at lower
In this paper we give data on DLA clusters with noise reduc-hoise levels, the clusters achieve more asymptotic behavior
tion, which enables us to refute conclusively the basis ofit smaller sizes: a prime example of this is that the lattice
these claims of anomalous scaling. We will show that theeffects show up earlier. These lattice effects on noise-reduced
apparent anomalies arise from a slowly decaying correctioglusters(or without noise reduction on very large clusfers
to scaling which can be associated with the level of intrinsic@® duite strong, so in order to avoid them, any analysis of
growth fluctuations, as suggested in R&l. The analysis of large scale DLA clusters has to be made off-lattice.
these corrections to scaling gives us considerable insight intg N OUr version of noise-reduced off-lattice DLA the par-
the asymptotic behavior of DLA, i.e., the DLA fixed paint. fucles dlf_fuse free!y.untll they contact a particle in the clqster,
In (off-lattice) DLA a cluster is rigid and stationary, grow- Just as in the or|g!nal model. Hovx{eve_r, on contact with a
ing from one seed particle by accretion at first contaciof _parUcIe of the_ existing cluster, the dlﬁuslng pa_rtlc_le_ls _moved
mobile diffusing hard sphere particles. The diffusing par-Into _that particle by a factor .OA’ at which point it is irre-
ticles are sufficiently dilute so that they c.an be taken to arriveverSIny stuck(see Fig. 1. This means that shallow pumps
are added to the cluster, and that we must addddrticles

one at a time. We consider the distribution of where growth | top of one another to protrude the growth by a particle

(bgldep?s(;tlom oceurs adt ?. g'\éen clu_ster S'Zﬁ' Thg avr?ragediameter. A cluster grown with this method of noise reduc-
radius of deposition is defined Bye,=(r), wherer is the 4 is shown in Fig. 2. Another way to do noise reduction of

the dis_tance of deposition from thltlaD center_ of the .clusterthis type was introduced by Stepanov and Levifey, who
There is no controversy th&qe<N™", consistent with a

simple fractal of dimensio® =1.71 for large clusters in two
dimensions. However the spread of the deposition radius ig
thought to show anomalies. Plischke anatR@] introduced

the penetration deptlg, the standard deviation of radius of
deposition of a given cluster, and claimed that it scaled dif-
ferently from Ry, More recently, Davidovitchet al. [4]
considered the standard deviation of the cluster average rg
diusacross the ensembt# clusters,6R.¢, and claimed that

it was asymptotically negligible compared to the mean. An-
other anomalous feature that has been claimed of DLA i
multiscaling[5,6]: the fractal dimension of the cluster is said  F|G. 1. The noise-reduced DLA algorithm. A particle is allowed
to depend on the distanéeelative to the cluster radiifrom  to diffuse freely until it contacts a cluster particle. The diffusing
the center. We will examine these claims using finite sizeparticle is moved onto the cluster particle, reducing the distance
scaling with the help of noise reduction and show that nonéetween their centers by a factar

Il. OFF-LATTICE NOISE REDUCTION
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FIG. 2. Clusten(@ grown with noise reductioA=0.03 is com- o ) ) ) - M.
pared with clusters grown without noise reductiéns 1: (b) has 800 0.05 0.10 0.15 0.20 0.25 0.30
same gyration radiugc) has same number of particles, aadl has N3
same correction-to-scaling properti€e.g., relative penetration

depth. The numbers shown are the particle number and gyration FIG. 3. Behavior of the relative penetration defih= §/Rep,
radius. with varying cluster size at various levels of noise reduction. The

abscissa is chosen according to the correction to scaling exponent
measured from Fig. 4. The relative penetration depth clearly con-
verges to a nonzero common value. Also shown are curves for
clusters grown by the Hastings-LevitédML) method with expected
equivalence indicated in the legend. The top right panel is a mag-
IIl. FINITE SIZE SCALING nification of the asymptotic end of the curves.

generalized the method of iterated conformal midk4] to
add shallow bumps.

Growing clusters at a variety of levels of noise reduction
gives us a very clear picture of the finite size scaling effect
in DLA. We grew 1000 DLA clusters to 1000 000 particles

with noise reduction levels oA=0.3,0.1,0.03,0.01, and per are not arbitrary fits, but directly measured as follows. If

4000 clusters withA=1 as well as 25 clusters witih . ; :
=0.001. At various points in the growth, 100 000 probe par-We posit a leading asympitotic form of some quanty,

ticles were fired at each cluster to measure its properties. In

ably well the relationship between our noise reduction and
Shat of Ref.[9].
The correction-to-scaling exponents we report in this pa-

the following measurements the center of the cluster was Q(N)=Q.(1+CN™"), (1)
taken naturally as the center of mass of these probe particles
(i.e., center of charge then a plot ofd Q(N)/d In(N) vs Q(N) should have an inter-

Figure 3 shows a primary test of scaling: how the relativeCept on theQ axis of Q.. approached with slope- », both

penetration depth, the ratio of penetration depth to mean ra}ﬁdependent of the magnitude & Figure 4 shows this

ldiusl of ?epqsition; Et.gleeP’ valllries W.itTN'tTh?hdiﬁer?nt nalysis applied t&& and this is the basis for the choice of
EVE'S O noise reduction are a consSISIent With a UnVersay, yonentr=0.33 for Fig. 3. This provides unbiased evi-

= it~ 0-33 _ ; X -
asymptote=..~0.12, and withN as the common cor dence that all the different levels of noise-reduction approach

tre_ctlodn t(')thS(t;r?“na attllargesl. zl?_uretsv-lalisqtsmtwds dat? ob- the same asymptotic valug.., consistent with a common
ained wi e Hastings and Levitd¥L) iterated confor- correction to scaling exponent. Interestingly the “fixed

mal map method 10]. We can make a naive geometrlc oint” can be approached from either side, corresponding to
argument to see how the HL bumps correspond to differen pposite signs o€

Ibevels of off—latucet ndcnse reducfnon. lln the HL meihog]jﬂ;e A deeper test of the universality of these clusters and their
umps are generated by a contormal map parametriz yscaling comes from the multipole moments of the growth

(see Ref.[10] for detaily, with small a giving shallow G . s
bumps. Using the scheme of Fig. 1, and working out Whe§r0bablllty distribution. Thenth multipole moment is given
the aspect ratios of the two types of bumps match, we fin y

(1/a—1)?>=2/A—1. Thusa=0.5 corresponds to ordinary
DLA. Other equivalent cases are indicated in the legend of M= | datx+iv)n 5
Fig. 3, showing that this naive argument represents reason- n qx-+iy)", )
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FIG. 4. Rate of change of the relative penetration depth  ;
dE/d In(N) plotted againsE&. The common dashed asymptote in-
dicates thaE has a dominant correction to scaling of the fofin
=E.,(1+CN™") with E.,,=0.121+ 0.003 from the intercept of the
plots andv=0.33+0.06 from the slope.

0.05

whereq is the probability distribution for where growth will

next occur(Note thatq is equivalent to the charge density on <

the cluster surface when it is considered to be a conducto%

held at a fixed potentigdlThe multipole moments for positive

n fully characterize the cluster shape, and can be relatec 0.0

invertibly to the Laurent coefficients of its conformal map

from the unit circle[4]. In practice we measured ti\, by

Sam_plmg &-+iy)" with nongrowing probe_pamcles. _ 0.15 — o o5
Figure 5 shows the correction-to-scaling analysis of the p

corresponding multipole powers

/d (InN)

FIG. 5. The rate of change of the multipole pow&sand Py
with respect to In{) against the multipole powers. Each show a
’ 3) correction to scaling exponent of 0.88otted lineg, within statis-
tical error.

_IM?

2n
Reff

n

_ (/v _/\2
where we have scaled eabh, by the appropriate power of §o=V{rH =% @
the effective(or Laplacef4]) radius,Re, which is given by  rather than computing the variance cluster-by-cluster before
In Reg= [dqIn(r). Each ofP,—Pg is consistent with a uni- averaging, i.e.,
versal nonzero asymptote, and moreover they are all compat-
ible with a single common correction-to-scaling exponent 2
é= qurz— qur .

0.33, see Table I. Figure 6 collects the resulting finite size ©)
scaling plots assuming this exponent. Together with the rela-
tive penetration depth results, this presents strong evidendeégure 7 shows the fits of the following form:
for universal asymptotic geometry for DLA clusters, and a R
universal leading correction-to-scaling exponert0.33. R(N)=RNY(1+RN""), (6)

In all of the measurements discussed above, the cluster
center used was the center of charge, natural to a snapshot@id the coefficients are collected in Table 1.
the growth. In the following section, however, we will re- It is worth noting that the effect of changing the center is
quire to compare data at different cluster sizes where it benegligible except perhaps for the penetration depth, where
comes natural to use a fixed center, namely the cluster _ _
“seed.” Accordingly we have also measured the finite size TABLE |. Best fit scaling exponents fdP,—-Ps. We have also
scaling of various lengths with the seed as fixed origin, andnéasuredPe—Po. These yield somewhat larger apparent expo-
in all cases using direct ensemble averages and for clusteP€NtS ith large statistical errors.
with no noise reductionA=1). Using the seed as center
also naturally leads to the measurement of penetration depth
as the rms spread of deposition radius about its ensemblg 0.41+0.08 0.27-0.06 0.410.12 0.46-0.12
average,
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FIG. 6. Finite size scaling plots foP,—P5 for A=1 and A

=0.01. All the multipole powers exhibit the same correction-to-

scaling exponent.

for £ using the center of chargas for Figs. 3 and ¥ the

coefficients are¢=0.089 andé=5.8 as opposed to those

shown for&, in Table II.

IV. MULTISCALING

Now we consider the anomalous scaling claim of multi-
scaling, when the aggregate has a fractal dimension that d
pends upon the distance from the seed as a fraction of clustffeur
radius. It was proposed in Réb] that the ensemble average

of the density of particlegy(r) of an N-particle cluster at
distancer away from the seed obeys

IN(XRgy) =A(X)Rya TP, (7)

where the dimensioD (x) is function ofx=r/Rg,,, and the
size N and (averagg radius of gyrationR,, are, of course,
mutually dependent. Using the above formula at fixedne

can extract the dimensidD(x) by the scaling withRy,,,

1.8 —

O ¢ @ > e
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TABLE Il. Coefficients of correction-to-scaling fits of form Eq.
(6), with D=1.711 andv=0.33. The various lengths are radius of
deposition Rye,=(r), seed to center of charge distand.
={[fdqr[?), effective radiusRes=expInr), gyration radius
Rgyr= VINZ ],:1(r2)N,, and ensemble penetration depth
= \/<r2>—(r)£, where the averages are over the ensemble of clus-
ters at fixedN.

Rdep RC Reff ngr fo
R 0.733 0.027 0.726 0.501 0.091
R —0.04 15 —0.14 0.12 6.9

din gN(ngr)(Xngr)

—d+D(x)= JInR M
gyr
_ ngr dln gN(Xngr(N))‘ (8)
dRyy/dN IN |

Simple fractal scaling would requim®(x) =D independent
of x, but the dimension measured this way in Héf. using
medium size clustersN=10*~1C°) was observed to be a
nontrivial function(see Fig. 8 Others partly confirmed that
findings, although with mixed resulf41,12,.

Now we will repeat the same measurement procedure but
instead of a direct simulation we use the correction-to-
g’caling results of the preceding section, within a scaling
nction assumption(see below This turns out to agree
quantitatively with the earlier publishdd(x) data, but im-
plies that the ultimate behavior is simple fractal scaling with
D(x)—D for all x.

Consider the distribution of, the distance of attaching
particles from the seed: as we have seen, this has iRgan
and variance,. Now we assume that thehapeof the prob-
ability density function is independent &f,

1 H ( r— Rdep(N))
&o(N) &(N) )’
whereh is a normalized probability density with zero mean

and unit variance. After replacing the sum over particles with
an integral, for the particle density we get

(©)

C [N AN'[1=RyefN")
2mgN(r>_fo PTG BT

A similar formula has been suggested in Rgf3]. Given
that we have already studiéle{N), Ry, (N), and&y(N),
the only outstanding quantity to be found is the scaling func-
tion h, which we find to be very close to the standard normal
distribution, see Fig. 9.

Figure 8 shows how welD(x) derived from our finite
size scaling results and a normal distribution folagrees
with the raw data of Ref.6]. Also shown is what our results

) . (10

FIG. 7. Correction-to-scaling plots of various quantities of di- Imply for the behavior at largel, and asN— < with Ryep,

mension lengtliwithout noise reductiond=1). The largest correc-

Ry, and &, approaching pure scalinfp(x) —D. Thus we

gyr:

tion is obtained by the penetration degthThe inset magnifies the conclude that all the apparent reportedependence db (x)

y axis around 1.

arises from corrections to scaling, and indeed almost all the
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FIG. 10. Ensemble spread of extremal cluster radius, which

FIG. 8. Comparison of “multiscaling dimensions” from R¢6] éends 1o the value 0.0350.003.

and the finite size scaling prediction discussed in the text. The finit

size scaling prediction implies that &—, D(x)—D for all x, . .
and the predicted approachht=10’ is shown. The only inputs to undamentally related, which can be understood by using the
the finite size scaling curves aRye,, Ry, and &, using Eq.(6) renormalization theory of noise reduction of Barker and Ball

with parameters from Table II, and a Gaussian model for the scalin%8]- In this view, the cluster is approximated as being at its
function (see Fig. 9. arge N fixed point if one unit of growth acts as a coarse
graining of DLA on finer length scales. This seems to occur

effect cames from the relatively large corrections to scalind’ We grow with input noise nea. This is equivalent to
in &, Our interpertation of this data also resolves a previ-naving SN/N= /A, for relative fluctuation in the number of
ously noted paradop6], namely, thaD (x) increasing witrx ~ Particles to advance the growth locally by one particle diam-

cannot be asymptotic scaling as it would imply some de-£ter. _ o _ _
crease ofgy(r) with increasingN at fixedr. We can also view this in terms of a fixed point for the

noise output of the growthy/A,,= dN/N, in terms of the
relative fluctuation in the number of particles to span a fixed
radius. Figure 10 shows our data for the ensemble spread of

We now present an interpretation of the leading correctior?Xtremal cluster radius. Since this spread is small, we can
to scaling, based on observations from our data and buildinf‘fer
on earlier work{8]. The amplitude of the leading correction
to scaling crosses zero at a common value of noise reduction ﬁ
A¢~0.01, forall of the plots in Figs. 3 and 6. This suggests N
that the noise reduction and the correction to scaling are

from our extrapolated value. Thus we find an asymptotic

0.5 : . , . | . renormalized noisé* =0.0036+ 0.0006. This is in qualita-
—reasured i tive agreement with our observed valueAgf. Furthermore,
Fig. 11 shows how well this vindicates Barker and Ball's
earlier estimates of the fixed point, using our valuevatio
extrapolate from their finite size calculations. By contrast,
_ the more recent work of Cafieet al.[14] using a very small
scale renormalization scheme disagrees by two orders of
magnitude.

. Our interpretation is thus that the renormalized noise is
the slow variable that dominates convergence of other quan-
tities to scaling. Our observed input noise value Af
=10 2 (for the leading correction to scaling to vanisind

the extrapolated fixed point output noi&é& are equal within

a factor of order unity, showing the consistency of the pic-
ture.

We can take this interpretation a step further to infer that
FIG. 9. The scaling functiom. The measured data &t=10*  the dominant fluctuations dR.,; determining the noise re-
(continuous ling are compared to standard normal distribution duction are fluctuations in cluster shape rather than overall
(smooth dotted line For the measurement, the histogram bin width cluster radius. The basis for this is that the logarithmic aver-

wasAu=0.01. age radiusR.¢, has much smaller spread, asymptotically

V. SIZE FLUCTUATIONS AND FIXED POINT

_ é Rext
Rext R ext

=0.06Q* 0.005 (12)
N

04 -

0.3

h(u)

021
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W T T T T T noise,6N/N= \A* is not of order unity, as we might expect
T . a priori, and_ as has_been suggesféd]. We dq not und.er- .
w-x Barker and Ball, with best fit line stand the origin of this small number, and tracing its origin is
® our results a central remaining challenge in understanding DLA. An-

. other puzzle that we hope to address in a later paper is why
the fractal dimension is comparatively insensitive to the con-
vergence of the renormalized noise.

< Also, we need to understand the full scaling of the prob-
,,,,,,,, U ability distribution for growth in DLA, corresponding to the
0>k e e harmonic measure of the perimeter. To this end the more

"""""""""""""""""""""""""""""" expensive cluster growth methods of HILO] are likely to
o come into their own as they yield the harmonic measure
directly. Stepanov and Levitd\®] have already shown some

0 T T T results for HL clusters grown with shallow bumps, corre-
0 0.1 0.2 0.3 04 0.5 0.6 0.7 sponding rather closely to our noise-reduction technique.
| Pt The richer, simpler area to explore is the response to an-

isotropy and its sensitivity to noise. Small DLA clusters ap-
. . . . ear robust to the intrinsic bias of growing on a square lat-
W't.h previous estimates from Bark_er and Bahe middle three 'Ei)ce, whereas large clustefand equi?/alentl?/ noise ?educed
po'n.ts) and Cafierdthe ”gh_tmOSt point The Barker anc.l Ball data .oneg are driven to grow a four-fingered dendrite. The first
are in good agreement with our results, but the Cafiero data dis-_ . . - : .
agree. requirement is a systematic anaIyS|_s of hovy this is a relevant
perturbation of the isotropic DLA fixed point. Second, we
might ask whether the anomalous response for small simple
DLA clusters is dominated by some other hitherto unsus-
pected fixed point with much larger noise level. There is
another rather neglected nearby fixed point, that of spherical
growth, which becomes more pertinent at high noise
reduction—where it takes longer to exhibit its instability. We
suggest that the influence of this fixed point may be respon-
sible for shifting the observed; somewhat abové&*, and
this should be relatively amenable to analytic theory.

FIG. 11. Estimate of the fixed point value Af(A*), combined

SRt/ Re=0.012£0.001 compared t0SRqy/Rey=0.035
+0.003. SinceR.; is an average that emphasizes typical
size, the larger fluctuations R.,; which gave uA\* must be
attributed to shape(However, we showed in Ref2] that
R has the same crossover exponentas the other quan-
tities discussed hepeln this sense DLA clusters are funda-
mentally stochastic objects with a distribution of shape.

VI. SUMMARY
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