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Off-lattice noise reduction and the ultimate scaling of diffusion-limited aggregation
in two dimensions
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Off-lattice diffusion-limited aggregation~DLA ! clusters grown with different levels of noise reduction are
found to be consistent with a simple fractal fixed point. Cluster shapes and their ensemble variation exhibit a
dominant slowest correction to scaling, and this also accounts for the apparent ‘‘multiscaling’’ in the DLA mass
distribution. We interpret the correction to scaling in terms of renormalized noise. The limiting value of this
variable is strikingly small and is dominated by fluctuations in cluster shape. Earlier claims of anomalous
scaling in DLA were misled by the slow approach to this small fixed point value.
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I. INTRODUCTION

Since its introduction in 1981, the diffusion-limited aggr
gation ~DLA ! model of Witten and Sander@1# has been a
paradigm of self-organized scaling behavior in irreversi
growth. However, even after more than 20 years, there is
controversy about its scaling properties; many authors h
claimed, for example, that DLA clusters do not scale
simple fractals, but instead have various anomalous featu
In this paper we give data on DLA clusters with noise red
tion, which enables us to refute conclusively the basis
these claims of anomalous scaling. We will show that
apparent anomalies arise from a slowly decaying correc
to scaling which can be associated with the level of intrin
growth fluctuations, as suggested in Ref.@2#. The analysis of
these corrections to scaling gives us considerable insight
the asymptotic behavior of DLA, i.e., the DLA fixed point

In ~off-lattice! DLA a cluster is rigid and stationary, grow
ing from one seed particle by accretion at first contact oN
mobile diffusing hard sphere particles. The diffusing p
ticles are sufficiently dilute so that they can be taken to arr
one at a time. We consider the distribution of where grow
~by deposition! occurs at a given cluster size. The avera
radius of deposition is defined byRdep5^r &, wherer is the
the distance of deposition from the center of the clus
There is no controversy thatRdep}N1/D, consistent with a
simple fractal of dimensionD51.71 for large clusters in two
dimensions. However the spread of the deposition radiu
thought to show anomalies. Plischke and Ra´cz @3# introduced
the penetration depth,j, the standard deviation of radius o
deposition of a given cluster, and claimed that it scaled
ferently from Rdep. More recently, Davidovitchet al. @4#
considered the standard deviation of the cluster average
diusacross the ensembleof clusters,dReff , and claimed that
it was asymptotically negligible compared to the mean. A
other anomalous feature that has been claimed of DLA
multiscaling@5,6#: the fractal dimension of the cluster is sa
to depend on the distance~relative to the cluster radius! from
the center. We will examine these claims using finite s
scaling with the help of noise reduction and show that no
1063-651X/2002/66~2!/026109~6!/$20.00 66 0261
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of them hold. We find that DLA is consistent with simp
scaling, and the apparently anomalous scaling can all be
plained by a slow correction to scaling.

II. OFF-LATTICE NOISE REDUCTION

Noise reduction for thelattice versionof DLA has been
introduced@7,8# with the aim of suppressing the shot noise
the individual incoming particles. When growing at low
noise levels, the clusters achieve more asymptotic beha
at smaller sizes: a prime example of this is that the latt
effects show up earlier. These lattice effects on noise-redu
clusters~or without noise reduction on very large cluster!
are quite strong, so in order to avoid them, any analysis
large scale DLA clusters has to be made off-lattice.

In our version of noise-reduced off-lattice DLA the pa
ticles diffuse freely until they contact a particle in the clust
just as in the original model. However, on contact with
particle of the existing cluster, the diffusing particle is mov
into that particle by a factor ofA, at which point it is irre-
versibly stuck~see Fig. 1!. This means that shallow bump
are added to the cluster, and that we must add 1/A particles
on top of one another to protrude the growth by a parti
diameter. A cluster grown with this method of noise redu
tion is shown in Fig. 2. Another way to do noise reduction
this type was introduced by Stepanov and Levitov@9#, who

FIG. 1. The noise-reduced DLA algorithm. A particle is allowe
to diffuse freely until it contacts a cluster particle. The diffusin
particle is moved onto the cluster particle, reducing the dista
between their centers by a factorA.
©2002 The American Physical Society09-1
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generalized the method of iterated conformal maps@10,4# to
add shallow bumps.

III. FINITE SIZE SCALING

Growing clusters at a variety of levels of noise reducti
gives us a very clear picture of the finite size scaling effe
in DLA. We grew 1000 DLA clusters to 1 000 000 particle
with noise reduction levels ofA50.3,0.1,0.03,0.01, and
4000 clusters withA51 as well as 25 clusters withA
50.001. At various points in the growth, 100 000 probe p
ticles were fired at each cluster to measure its properties
the following measurements the center of the cluster w
taken naturally as the center of mass of these probe part
~i.e., center of charge!.

Figure 3 shows a primary test of scaling: how the relat
penetration depth, the ratio of penetration depth to mean
dius of depositionJ[j/Rdep, varies withN. The different
levels of noise reduction are all consistent with a univer
asymptote,J`'0.12, and withN20.33 as the common cor
rection to scaling at largeN. Figure 3 also shows data ob
tained with the Hastings and Levitov~HL! iterated confor-
mal map method@10#. We can make a naive geometr
argument to see how the HL bumps correspond to differ
levels of off-lattice noise reduction. In the HL method th
bumps are generated by a conformal map parametrizeda
~see Ref.@10# for details!, with small a giving shallow
bumps. Using the scheme of Fig. 1, and working out wh
the aspect ratios of the two types of bumps match, we
(1/a21)252/A21. Thus a50.5 corresponds to ordinar
DLA. Other equivalent cases are indicated in the legend
Fig. 3, showing that this naive argument represents rea

FIG. 2. Cluster~a! grown with noise reductionA50.03 is com-
pared with clusters grown without noise reduction,A51: ~b! has
same gyration radius,~c! has same number of particles, and~d! has
same correction-to-scaling properties~e.g., relative penetration
depth!. The numbers shown are the particle number and gyra
radius.
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ably well the relationship between our noise reduction a
that of Ref.@9#.

The correction-to-scaling exponents we report in this
per are not arbitrary fits, but directly measured as follows
we posit a leading asymptotic form of some quantity,Q,

Q~N!5Q`~11CN2n!, ~1!

then a plot ofdQ(N)/d ln(N) vs Q(N) should have an inter-
cept on theQ axis of Q` approached with slope2n, both
independent of the magnitude ofC. Figure 4 shows this
analysis applied toJ and this is the basis for the choice o
exponentn50.33 for Fig. 3. This provides unbiased ev
dence that all the different levels of noise-reduction appro
the same asymptotic valueJ` , consistent with a common
correction to scaling exponent. Interestingly the ‘‘fixe
point’’ can be approached from either side, corresponding
opposite signs ofC.

A deeper test of the universality of these clusters and th
scaling comes from the multipole moments of the grow
probability distribution. Thenth multipole moment is given
by

Mn5E dq~x1 iy !n, ~2!

n FIG. 3. Behavior of the relative penetration depthJ5j/Rdep,
with varying cluster size at various levels of noise reduction. T
abscissa is chosen according to the correction to scaling expo
measured from Fig. 4. The relative penetration depth clearly c
verges to a nonzero common value. Also shown are curves
clusters grown by the Hastings-Levitov~HL! method with expected
equivalence indicated in the legend. The top right panel is a m
nification of the asymptotic end of the curves.
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whereq is the probability distribution for where growth wil
next occur.~Note thatq is equivalent to the charge density o
the cluster surface when it is considered to be a condu
held at a fixed potential.! The multipole moments for positive
n fully characterize the cluster shape, and can be rela
invertibly to the Laurent coefficients of its conformal ma
from the unit circle@4#. In practice we measured theMn by
sampling (x1 iy)n with nongrowing probe particles.

Figure 5 shows the correction-to-scaling analysis of
corresponding multipole powers

Pn5
uMnu2

Reff
2n

, ~3!

where we have scaled eachMn by the appropriate power o
the effective~or Laplace@4#! radius,Reff , which is given by
ln Reff5*dq ln(r). Each ofP2–P5 is consistent with a uni-
versal nonzero asymptote, and moreover they are all com
ible with a single common correction-to-scaling expone
0.33, see Table I. Figure 6 collects the resulting finite s
scaling plots assuming this exponent. Together with the r
tive penetration depth results, this presents strong evide
for universal asymptotic geometry for DLA clusters, and
universal leading correction-to-scaling exponentn50.33.

In all of the measurements discussed above, the clu
center used was the center of charge, natural to a snapsh
the growth. In the following section, however, we will re
quire to compare data at different cluster sizes where it
comes natural to use a fixed center, namely the clu
‘‘seed.’’ Accordingly we have also measured the finite s
scaling of various lengths with the seed as fixed origin, a
in all cases using direct ensemble averages and for clu
with no noise reduction (A51). Using the seed as cente
also naturally leads to the measurement of penetration d
as the rms spread of deposition radius about its ensem
average,

FIG. 4. Rate of change of the relative penetration de
dJ/d ln(N) plotted againstJ. The common dashed asymptote i
dicates thatJ has a dominant correction to scaling of the formJ
5J`(11CN2n) with J`50.12160.003 from the intercept of the
plots andn50.3360.06 from the slope.
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j05A^r 2&2^r &2, ~4!

rather than computing the variance cluster-by-cluster be
averaging, i.e.,

j5AK E dq r22S E dq rD 2L . ~5!

Figure 7 shows the fits of the following form:

R~N!5R̂N1/D~11R̃N2n!, ~6!

and the coefficients are collected in Table II.
It is worth noting that the effect of changing the center

negligible except perhaps for the penetration depth, wh

h

FIG. 5. The rate of change of the multipole powersP2 and P5

with respect to ln(N) against the multipole powers. Each show
correction to scaling exponent of 0.33~dotted lines!, within statis-
tical error.

TABLE I. Best fit scaling exponents forP2–P5. We have also
measuredP6–P10. These yield somewhat larger apparent exp
nents with large statistical errors.

P2 P3 P4 P5

n 0.4160.08 0.2760.06 0.4160.12 0.4060.12
9-3
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for j using the center of charge~as for Figs. 3 and 4!, the
coefficients areĵ50.089 andj̃55.8 as opposed to thos
shown forj0 in Table II.

IV. MULTISCALING

Now we consider the anomalous scaling claim of mu
scaling, when the aggregate has a fractal dimension tha
pends upon the distance from the seed as a fraction of clu
radius. It was proposed in Ref.@5# that the ensemble averag
of the density of particlesgN(r ) of an N-particle cluster at
distancer away from the seed obeys

gN~xRgyr!5A~x!Rgyr
2d1D(x) , ~7!

where the dimensionD(x) is function ofx5r /Rgyr , and the
size N and ~average! radius of gyrationRgyr are, of course,
mutually dependent. Using the above formula at fixedx, one
can extract the dimensionD(x) by the scaling withRgyr ,

FIG. 6. Finite size scaling plots forP2–P5 for A51 and A
50.01. All the multipole powers exhibit the same correction-
scaling exponent.

FIG. 7. Correction-to-scaling plots of various quantities of
mension length~without noise reduction,A51). The largest correc-
tion is obtained by the penetration depthj. The inset magnifies the
y axis around 1.
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2d1D~x!5
] ln gN(Rgyr)

~xRgyr!

] ln Rgyr
Ux

5
Rgyr

dRgyr /dN

] ln gN„xRgyr~N!…

]N U
x

. ~8!

Simple fractal scaling would requireD(x)5D independent
of x, but the dimension measured this way in Ref.@6# using
medium size clusters (N5104–105) was observed to be a
nontrivial function~see Fig. 8!. Others partly confirmed tha
findings, although with mixed results@11,12#.

Now we will repeat the same measurement procedure
instead of a direct simulation we use the correction-
scaling results of the preceding section, within a scal
function assumption~see below!. This turns out to agree
quantitatively with the earlier publishedD(x) data, but im-
plies that the ultimate behavior is simple fractal scaling w
D(x)→D for all x.

Consider the distribution ofr, the distance of attaching
particles from the seed: as we have seen, this has meanRdep
and variancej0. Now we assume that theshapeof the prob-
ability density function is independent ofN,

1

j0~N!
hS r 2Rdep~N!

j0~N! D , ~9!

whereh is a normalized probability density with zero mea
and unit variance. After replacing the sum over particles w
an integral, for the particle density we get

2prgN~r !5E
0

N dN8

j0~N8!
hS r 2Rdep~N8!

j0~N8!
D . ~10!

A similar formula has been suggested in Ref.@13#. Given
that we have already studiedRdep(N), Rgyr(N), andj0(N),
the only outstanding quantity to be found is the scaling fu
tion h, which we find to be very close to the standard norm
distribution, see Fig. 9.

Figure 8 shows how wellD(x) derived from our finite
size scaling results and a normal distribution forh agrees
with the raw data of Ref.@6#. Also shown is what our results
imply for the behavior at largerN, and asN→` with Rdep,
Rgyr , andj0 approaching pure scaling,D(x)→D. Thus we
conclude that all the apparent reportedx dependence ofD(x)
arises from corrections to scaling, and indeed almost all

TABLE II. Coefficients of correction-to-scaling fits of form Eq
~6!, with D51.711 andn50.33. The various lengths are radius
deposition Rdep5^r &, seed to center of charge distanceRC

5A^u*dq r u2&, effective radius Reff5exp̂ ln r&, gyration radius
Rgyr5A1/N(N851

N ^r 2&N8, and ensemble penetration depthj0

5A^r 2&2^r &2, where the averages are over the ensemble of c
ters at fixedN.

Rdep RC Reff Rgyr j0

R̂ 0.733 0.027 0.726 0.501 0.091

R̃ 20.04 15 20.14 0.12 6.9

-
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effect cames from the relatively large corrections to scal
in j0. Our interpertation of this data also resolves a pre
ously noted paradox@6#, namely, thatD(x) increasing withx
cannot be asymptotic scaling as it would imply some
crease ofgN(r ) with increasingN at fixed r.

V. SIZE FLUCTUATIONS AND FIXED POINT

We now present an interpretation of the leading correct
to scaling, based on observations from our data and build
on earlier work@8#. The amplitude of the leading correctio
to scaling crosses zero at a common value of noise reduc
Af'0.01, forall of the plots in Figs. 3 and 6. This sugges
that the noise reduction and the correction to scaling

FIG. 8. Comparison of ‘‘multiscaling dimensions’’ from Ref.@6#
and the finite size scaling prediction discussed in the text. The fi
size scaling prediction implies that asN→`, D(x)→D for all x,
and the predicted approach atN5107 is shown. The only inputs to
the finite size scaling curves areRdep, Rgyr , andj0 using Eq.~6!
with parameters from Table II, and a Gaussian model for the sca
function ~see Fig. 9!.

FIG. 9. The scaling functionh. The measured data atN5104

~continuous line! are compared to standard normal distributi
~smooth dotted line!. For the measurement, the histogram bin wid
wasDu50.01.
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fundamentally related, which can be understood by using
renormalization theory of noise reduction of Barker and B
@8#. In this view, the cluster is approximated as being at
large N fixed point if one unit of growth acts as a coar
graining of DLA on finer length scales. This seems to occ
if we grow with input noise nearAf . This is equivalent to
havingdN/N5AAf for relative fluctuation in the number o
particles to advance the growth locally by one particle dia
eter.

We can also view this in terms of a fixed point for th
noise output of the growth,AAout5dN/N, in terms of the
relative fluctuation in the number of particles to span a fix
radius. Figure 10 shows our data for the ensemble sprea
extremal cluster radius. Since this spread is small, we
infer

dN

N URext
5D

dRext

Rext
U

N

50.06060.005 ~11!

from our extrapolated value. Thus we find an asympto
renormalized noiseA* 50.003660.0006. This is in qualita-
tive agreement with our observed value ofAf . Furthermore,
Fig. 11 shows how well this vindicates Barker and Bal
earlier estimates of the fixed point, using our value ofn to
extrapolate from their finite size calculations. By contra
the more recent work of Cafieroet al. @14# using a very small
scale renormalization scheme disagrees by two orders
magnitude.

Our interpretation is thus that the renormalized noise
the slow variable that dominates convergence of other qu
tities to scaling. Our observed input noise value ofAf
.1022 ~for the leading correction to scaling to vanish! and
the extrapolated fixed point output noiseA* are equal within
a factor of order unity, showing the consistency of the p
ture.

We can take this interpretation a step further to infer t
the dominant fluctuations ofRext determining the noise re
duction are fluctuations in cluster shape rather than ove
cluster radius. The basis for this is that the logarithmic av
age radius,Reff , has much smaller spread, asymptotica

te

g

FIG. 10. Ensemble spread of extremal cluster radius, wh
tends to the value 0.03560.003.
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dReff /Reff50.01260.001 compared todRext/Rext50.035
60.003. SinceReff is an average that emphasizes typic
size, the larger fluctuations inRext which gave usA* must be
attributed to shape.~However, we showed in Ref.@2# that
Reff has the same crossover exponent,n, as the other quan
tities discussed here.! In this sense DLA clusters are funda
mentally stochastic objects with a distribution of shape.

VI. SUMMARY

We believe our work opens the way to a definitive view
DLA in two dimensions, and the extension of this work
three dimensions is in hand. The identification of ‘‘DL
fixed point behavior’’ is now reasonable, as we have sho
the sort of universal limiting amplitudes and correction-
scaling exponents associated with such terminology.

Some main areas are outstanding. First, the renormal

FIG. 11. Estimate of the fixed point value ofA (A* ), combined
with previous estimates from Barker and Ball~the middle three
points! and Cafiero~the rightmost point!. The Barker and Ball data
are in good agreement with our results, but the Cafiero data
agree.
ia,

s.
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noise,dN/N5AA* , is not of order unity, as we might expec
a priori, and as has been suggested@14#. We do not under-
stand the origin of this small number, and tracing its origin
a central remaining challenge in understanding DLA. A
other puzzle that we hope to address in a later paper is
the fractal dimension is comparatively insensitive to the c
vergence of the renormalized noise.

Also, we need to understand the full scaling of the pro
ability distribution for growth in DLA, corresponding to th
harmonic measure of the perimeter. To this end the m
expensive cluster growth methods of HL@10# are likely to
come into their own as they yield the harmonic meas
directly. Stepanov and Levitov@9# have already shown som
results for HL clusters grown with shallow bumps, corr
sponding rather closely to our noise-reduction technique

The richer, simpler area to explore is the response to
isotropy and its sensitivity to noise. Small DLA clusters a
pear robust to the intrinsic bias of growing on a square
tice, whereas large clusters~and equivalently noise reduce
ones! are driven to grow a four-fingered dendrite. The fir
requirement is a systematic analysis of how this is a relev
perturbation of the isotropic DLA fixed point. Second, w
might ask whether the anomalous response for small sim
DLA clusters is dominated by some other hitherto uns
pected fixed point with much larger noise level. There
another rather neglected nearby fixed point, that of spher
growth, which becomes more pertinent at high no
reduction—where it takes longer to exhibit its instability. W
suggest that the influence of this fixed point may be resp
sible for shifting the observedAf somewhat aboveA* , and
this should be relatively amenable to analytic theory.
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