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Diffusion-controlled growth: Theory and closure approximations

R. C. Ball and E. Somfai
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

~Received 29 October 2002; published 13 February 2003!

We expand upon a new theoretical framework for diffusion-limited aggregation and associated dielectric
breakdown models in two dimensions@R. C. Ball and E. Somfai, Phys. Rev. Lett.89, 135503~2002!#. Key
steps are understanding how these models interrelate when the ultraviolet cut-off strategy is changed, the
analogy with turbulence, and the use of logarithmic field variables. Within the simplest, Gaussian, truncation of
mode-mode coupling, all properties can be calculated. The agreement with prior knowledge from simulations
is encouraging, and a new superuniversality of the tip scaling exponent is discussed. We find angular reso-
nances relatable to the cone angle theory, and we are led to predict a new screening transition in the DBM at
largeh.
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I. INTRODUCTION

Diffusion-controlled growth first attracted attention in th
literature on solidification, where the advance of a solidific
tion front can be limited by diffusion of either latent heat
compositional excess ahead of the front. Under these co
tions a planar front is linearly unstable with respect to lo
wavelength corrugation, the Mullins-Sekerka instability@1#,
leading to a rich variety of problems in pattern formatio
Viscous fingering, arising when a viscous fluid is driv
through a porous medium by a less viscous one, is rec
nized as being a problem in the same class. The diffus
limited aggregation model~DLA ! of a rigid cluster growing
by the irreversible accretion of dilute diffusing particles, i
troduced by Witten and Sander@2#, focussed attention on th
extreme limit of these problems, where all of the diffusion
ahead of the growth and quasi-static, with the added sim
fication that the Mullins-Sekerka instability applies on
length scales above the size of the accreting particles.

Mathematically these problems share the same gen
form for the equations governing their growth, with the
local interfacial velocity controlled by a conserved gradie
flux,

vn}u]nfuh, ¹2f50, f interface'0, ~1!

where ~at least naively! h51 @3#. The generalization to a
range of positiveh was introduced by Niemeyer, Pietroner
and Wiesmann@4# to model dielectric breakdown pattern
and in our recent paper@5# we introduced the idea that thi
can support equivalences between models where
Mullins-Sekerka instability is controlled locally in math
ematically quite different ways.

The DLA model has attracted enormous attention beca
it contains no limiting length scale~except for the particle
size! and so pattern formation must continue nontrivially
all larger length scales, the Mullins-Sekerka instability ruli
out simple planar growth. Theoretical interest has been
eled by the fractal and multifractal@6,7# scaling properties of
the clusters produced, with controversial claims@8–10# ~and
counterclaims@11–13#! of anomalous scaling, and by th
long-standing absence of an overall theoretical framewor
1063-651X/2003/67~2!/021401~11!/$20.00 67 0214
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understand the problem. A simple mean field theory@14#
does not capture the fractal aspects, which are better un
stood through various relations between exponents@15–17#
and@18#. The cone angle theory@17# gives a plausible argu
ment for the fractal dimension of DLA, whilst the screen
growth model@19# and Makarov’s theorem@20# give insight
into how the multifractal spectrum of the growth is gene
ated.

The presence of a cut-off length scalea below which the
physics dictates smooth growth is a crucial ingredient
diffusion-controlled growth; it is known that otherwise infi
nitely sharp cusps develop in the interface within finite tim
@21#. In DLA this cutoff is fixed and set by the size of ac
creting particles, but in solidification and also in viscous fi
gering it is set by surface free energy leading to a local off
in the value off interface: this is dependent on the local inte
facial curvature and leads to a velocity-dependent selec
of approximately constantva2 for growing tips@22#. We will
gather these different possibilities together with the gene
ized cut-off law, that advancing tips have radius

a}u]nfu2m. ~2!

In terms ofm, simple DLA corresponds tom50 and solidi-
fication and viscous fingering correspond tom51/2; in the
theory below in two dimensions we will map onto the ca
wherea is such that each growing tip has fixed integrat
flux, corresponding tom51.

This paper explains and expands the theory announce
our recent paper@5#. In Sec. II we establish mappings be
tween models with differenth and m. This opens up the
opportunity to discuss the full class of models via the sect
at m51, which we will show in Sec. IV is particularly ame
nable to continuum theoretical description in two dime
sions. Section III discusses the other key input to Sec.
that we regard diffusion-controlled growth as a turbulen
problem with self-organizing fluctuations. In Sec. V we d
cuss how to cast the theory of Sec. IV in renormalized for
with divergent factors factored out consistently. Closure
proximations are required to obtain explicit theoretical p
dictions, and in Sec. VI we show how the simplest Gauss
closure leads to a complete theory of the fractal and mu
©2003 The American Physical Society01-1
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fractal scaling. This turns out to be quantitatively quite ac
rate for the zone of active growth. In Sec. VII we show ho
one outstanding exponent, the tip scaling of the harmo
measure, can be pinned down through the use of the ele
static scaling law leading to a very surprising prediction w
which numerical data seems compatible. Section VIII give
more detailed discussion of what happens to the DBM ex
nents at largeh. In Sec. IX we show examples of how th
theory can be deployed to tackle deeper quantities suc
the relative penetration depth in DLA, which has been
subject of several numerical studies and some controve
Angular resonances appear to be leading us to draw para
in Sec. XI with the earlier cone angle theory.

II. SCALING PROPERTIES AND MAPPINGS BETWEEN
MODELS AT DIFFERENT h AND m

It is central to fractal~and multifractal! behavior in DLA
that the measure given by the diffusion flux~density! j
[]nf onto the interface has singularities@7#, such that the
integrated flux onto the growth within distancer of a singu-
lar point is given by

m~r !;~r /R!a, ~3!

whereR is the overall linear size of the growth. Multifracta
scaling of the flux density leads to a whole spectrum ofa
values, with the number of regions of length scaler having
m(r );(r /R)a varying as (r /R) f (a), but in the following we
focus particularly on advancing tips and their associated
ponent valuea tip .

Applying this phenomenology to the scaling arou
growing tips, we can establish an equivalence between m
els at differenth andmby requiring thatthe relative advance
rates of different growing tips are matched. See Fig. 1. Con-
sider two growths, growing governed by different paramet
(h,m) and (h8,m8), respectively, which at a given mome
have the same overall geometry down locally to the leve
~the coarser of! their cut-off length scales. For any give
growing tip ~labeledk), the tip radiusak and flux densityj k
in the unprimed growth will be related to those in the prim
growth by j kak

d21/ak
a5 j k8a8k

d21/a8k
a , wherea is the local

scaling exponent@as per Eq.~3!# of the harmonic measur
between length scalesak and ak8 . We take this exponent to
have valuea5a tip on the grounds that this is locally a tip o
the growth. Now let us focus on two different growing tip

FIG. 1. For equivalence between growth models with differ
values ofh andm, we consider a pair of realizations matched dow
to, but not including, tip radii. The equivalence then requires t
the two models agree about the relative velocities of competing
02140
-

ic
ro-

a
-

as
e
y.

els

x-

d-

s

f

labeled 1,2 whose radii and flux densities are interrelated
the unprimed growth according to Eq.~2! by a1 j 1

m5a2 j 2
m ,

and similarly in the primed growth bya18 j 81
m85a28 j 82

m8 . If
we now insist that the advance velocities are in the sa
ratio ~between tips 1 and 2) in both models, this requir
( j 1 / j 2)h5( j 18/ j 28)

h8, which forces the parameter relation

11m~11a2d!

h
5

11m8~11a2d!

h8
. ~4!

For the two models to be equivalent in the relative velocit
of all tips requires their parameters be related as abo
where a5a tip is the singularity exponent associated wi
growing tips~see Fig. 2!.

Although we have not strictly proved the equivalence
the models related above, we have shown that any such
lationship must follow Eq.~4! and we will assume in the res
of this paper that this equivalence holds. All such models
then classifiable in terms of a convenient reference such
h0, the equivalenth whenm50, corresponding to the origi
nal dielectric breakdown model~DBM!. For example den-
dritic solidification with h51 and m51/2 corresponds to
h052/(31a2d): it is thus not equivalent to DLA, but to
another member of the DBM class.

Another puzzle resolved by our classification is a rec
study showing conflicting scaling between DLA and diffe
ent limits of a ‘‘Laplacian growth’’ model@23#. The latter
model grows bumps of width proportional to flux density,
in the present terminology it corresponds tom521. The
bumps are also grown with protrusion proportional to fl
density. When the coverage of the growing surface~per time
step of growth! is low, then as the bumps are also distribut
proportional to flux density, this limit corresponds toh53.
By contrast high coverage~with significant suppression o
overlapping bumps! corresponds toh51. Usinga50.7 ~see
below! these map through Eq.~4! into h052.31 andh0
50.77, respectively, so the way their scaling was obser
@23# to bracket that of DLA is quite expected.

III. THE ROLE OF NOISE

DLA and DBM have been widely regarded as models
statistical physics, in that the local advance rate in Eq.~1!
has been implemented as the probability per unit time for
growth locally to make some unit of advance, entailing
inherent shot noise. Here we argue that diffusion-control
growth is a problem of turbulence type, with noise se
organizing from minimal input. This was suggested
Sanderet al. @24# but was only pursued in the case wi
surface tension cutoff,m51/2 in the present terminology
where it has been recognized more recently as chaotic
cous fingering@25#.

The renormalization of noise with length scale has hi
erto been discussed~at least for DLA! in the context of noise
reduction@26,27,13#, focussing on the idea that as one go
up in length scale an equivalent coarse-scale model m
have a lower level of noise than crude shot noise. The l
iting or ‘‘fixed-point’’ level of noise in DLA is small~at least

t

t
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according to Refs.@26# and@13#! but certainly not zero, so i
is natural to ask whether it can be approached from below
well as from above. The data in Fig. 3 show clearly that
DLA grown with very low noise by the methods of Ref.@13#,
the relative fluctuations do indeed approach their limiti
value from below as well as from above, and the same re
was implicit in the earlier renormalization group results
@26#.

The above discussion leads us to conjecture that for
full range of diffusion-controlled growth under a continuu
description of the interface, disorder in the initial conditio
alone should suffice to feed instability, leading to the sa
limiting levels of structural fluctuation on larger length sca
as in the discrete models. The agreement we obtain be
from simulations of the continuum model without tempo

FIG. 2. According to the mapping~4! models lying along any
given line shown are fundamentally related and should have equ
lent scaling properties. They should therefore be classifiable
terms of the valuehm corresponding to any chosen reference va
of m, such ash0 or h1. For simplicity the graphic has been plotte
for d52 and takinga52/3 completely independent ofh ~see
later!: if a does vary from line to line, then the lines will not b
confocal.

FIG. 3. The size fluctuations~‘‘output noise’’! Aout5(dN/N)2,
measured at fixed radiusR for DLA clusters grown with off-lattice
noise reduction@13# at various~‘‘input’’ ! noise levelsAin . For low
Ain , Aout self-organizes from below in the manner of a turbule
system.
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noise provides direct evidence for this idea, which might a
be argued obviously on the grounds that the Mullins-Seke
instability @1# corresponds to a preponderance of posit
Lyaponov exponents in the dynamics.

IV. CONTINUUM THEORETICAL DESCRIPTION
AND SELF-ORGANIZATION

The ideas above—that we can balance changing the
off exponentm by adjustment ofh, and that noise can be lef
to self-organize—are the key to a theoretical formulation
the problem, at least in two dimensions of space to which
now specialize. In two dimensions the Laplace equation
Eq. ~1! can be solved in terms of a conformal transformati
between the physical plane ofz5x1 iy and the plane of
complex potentialv5f1 iu, in which we take the growing
interface to be mapped into the periodic intervalu
5@0,2p),f50 and the region outside of the growth mapp
ontof.0. Then adapting Ref.@21#, Eq.~1! leads to a closed
equation for the dynamics of just the interfacez(u) at f
50,

]z~u!

]t
52 i

]z

]u
P FU]u

]zU
11hG . ~5!

The linear operatorP is most simply described in terms o
Fourier transforms: P @(ke

2 iku f k#5(kP(k)e2 iku f k5 f 0

12(k51
K e2 iku f k , where we have introduced here an upp

cut-off wave vectorK. It is easily shown that on scales ofu
greater thanK21 a smooth interface is linearly unstable wi
respect to corrugation forh.0 ~the Mullins-Sekerka insta-
bility @1#!, whereas for scales ofu less thanK21 the equation
drives smooth behavior~corresponding locally to the cas
h521). This cutoff on a scale ofu, the cumulative integral
of flux, corresponds in terms of tip radii and flux densities
a j'K21, that is anm51 cutoff law. Thus the parameterh
in Eq. ~5! is more specificallyh15ah0, using Eq.~4! with
d52.

We will present a numerical study of Eq.~5! after a vari-
able change in Sec. VII, where disorder was supplied o
through the initial conditions. The results clearly confirm th
the equation self-organizes critical scaling behavior, with
the supply of time-dependent noise. The surprising form
the scaling is interpreted below.

V. RENORMALIZATION AND THE DBM SCALING LAW

We now turn to a theoretical analysis of Eq.~5!, and for
generality we will consider growth in a wedge of angle 2pc
~with periodic angular boundary conditions! so that c→0
corresponds to growth along a channel whilstc51 corre-
sponds to ‘‘radial growth,’’ which is growth out from a poin
in the plane. The primary theoretical requirement is that
must obtain results explicitly independent of the cutoff
K→`: this is hard because we will see that the mean
vance rate of the interface diverges as a power ofK, and on
fractal scaling grounds one would expect the same diverg
factor to appear in the rate of change of other simple v
ables. One can of course take ratios of rates of change
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look to order terms such that divergences cancel. To m
this work we have been forced to introduce yet anot
change of variables,

2 i
]z

]u
5cRexp@ icu2l~u!#5cRexpS icu2 (

k.0
lke

2 ikuD ,

~6!

which corresponds to Fourier decomposing the logarithm
the flux density. HereR is the effective radius of the growt
and the nonanalytic factoreicu gives the mean winding of the
conformal map through the wedge angle 2pc, leavingl(u)
as a simple Fourier series~except one-sided; see details
Appendix A!. The key to the success of the ‘‘logarithm
variables’’ l is that they decompose the flux density its
multiplicatively and, as we shall see, quite naturally capt
its multifractal behavior. In terms of these, time resca
through dt5(cR)2yd t̂ and y5(11h)/2, the equation of
motion ~5! becomes

dlk

d t̂
52(

j ,k
~k2 j !lk2 j P~ j !~ey(l1l̄)! j

12~k2c!~ey(l1l̄)!k , ~7!

where subscripts on bracketed expressions imply the ta
of a Fourier component, by analogy withlk . The advance
rate of the mean interface is correspondingly given by

dR

dt̂
5cR~ey(l1l̄)!0 . ~8!

Details of the above analysis are given in Appendix A.
At this point we can evaluate the multifractal spectrum

terms of these logarithmic variables. The multifractal sp
trum of the harmonic measure follows from computing t
general moment@7# Z(q,t)5(uduuqudzu2t, in the limit
where all the intervalsudzu and correspondinglydu approach
zero; then the locus (q21)D(q)5t(q) separates the limit-
ing behaviorZ(q,t)→` from Z(q,t)→0. In our case it is
convenient to fixdu ~admitting wide variations inudzu) and
we must focus on the restricted rangeK21,du,1. For
du.1 we have triviallyZ.(cR)2t, whilst for du.K21 the
growth begins to look smooth so we can approxim
Z(q,t).(uduuq2tu]z/]uu2t.K2q1t11*duu]z/]uu2t. Av-
eraging giveŝ u]z/]uu2t&5^(cR)2te(l1l̄)t/2&, yielding

Z~q,t!.K2q1t11~cR!2t^e(l1l̄)t/2&. ~9!

The multifractal spectrum is then readily obtained from t
separator behavior discussed above, provided we can e
ate the average in Eq.~9!. In Sec. VI we show how this can
be done quite explicitly in the Gaussian closure approxim
tion.

We can now derive an elegant combination of Halse
electrostatic scaling law@18# combined with the tip scaling
law of Ball and Witten@15–17#, that for DLA t(3)5D f
511a tip . This new derivation~unlike the earlier results! is
not restricted to them50 case. The key idea is that w
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match the advance rate of the forward tips of the grow
~governed bya tip) to that of the mean radius governed by
multifractal moment through Eq.~8!. For consistency with
the rest of this paper it is convenient to present the argum
for the m51 representation, leading to tip velocitydR/dt
5 j h1'(K21/a)h1, where the tip radiusa is set by the con-
dition K21'a j'(a/R)a tip and hence dR/dt
'R2h1Kh1(1/a tip21). The overall advance rate of the grow
~in terms of its effective radius! is given from Eq.~8! by
dR/dt'(cR)2h1^ey(l1l̄)&. For the special valuet/25y this
can be substituted into Eq. ~9!, giving dR/dt
'R2h1Kq(t)2t21, whenZ is kept at itsK-independent value
(cR)2t. Comparing the two results leads to the DBM sc
ing law

q~t511h1!521h1 /a tip521h0 , ~10!

or its inverse form

t~q521h0!511h1511a tiph0 . ~11!

The same result can be found, much more tortuously, fr
growth at generalm.

Now we turn back to the equation of motion of the log
rithmic variables. Let us suppose some ignorance of the
tial conditions and describe the system in terms of a jo
probability distribution over thelk , and let us denote aver
ages over this~unknown! distribution by^•••&. We can, in
principle, determine the distribution through its momen
whose evolution we now compute. For simplicity in this p
per we assume translational invariance with respect tou, so
that only moments of zero total wave vector need be con
ered, of which the lowest gives

d

d t̂
^lkl̄k&5S 2(

j ,k
~k2 j !P~ j !^lk2 j l̄kej

y(l1l̄)&

12~k2c!^l̄kek
y(l1l̄)& D 1~c. c.!. ~12!

All of the higher moments lead to the same for
of averages on the right-hand side ~RHS!,

^multinomial(l,l̄)ey(l1l̄)&, and all of these terms are con
veniently expressed in terms of cumulants@28# as detailed in
Appendix B. The key helpful feature is that the expressio
we require all naturally divide by one factor of^ey(l1l̄)&
5(1/c)(d/d t̂)^ ln Rt&, which is what we need in order to re
move divergences by eliminating increment of timed t̂ in
favor of (1/c)d^ ln R&. The latter quantifies the update o
large scale geometry, in terms of the advance in radius r
tive to the circumference of the wedge~or width of channel!.
The evolution of the second moments is then given in ren
malized form by
1-4
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c
d

d^ lnR&
^lkl̄k&5S 2~k2c!^l̄kek

y(l1l̄)&c2(
j ,k

~k2 j !P~ j !

3@^lk2 j l̄kej
y(l1l̄)&c

1^lk2 jej 2k
y(l1l̄)&c^l̄kek

y(l1l̄)&c# D 1~c. c.!,

~13!

where^ &c denotes the Kubo cumulant@28#.
The above result~13! is the key analytical step in thi

paper, because it removes divergent factors form the e
tions of motion. It is not dependent on the closure appro
mation discussed below, and should support other
proaches also. Moreover, Eq.~13!, with the hierarchy of
analogous equations for the evolution of higher mome
offers a new entry point towards exact results in the clas
DLA and DBM models.

VI. GAUSSIAN CLOSURE APPROXIMATION

To obtain simple tractable results we need to introdu
some closure approximation~s! and we present here the sim
plest, neglecting all cumulants higher than the seco
equivalent to assuming a joint Gaussian distribution~of zero
mean! for l. This is entirely characterized by its secon
momentsS(k)5^lkl̄k& which by Eq. ~7! we find evolve
according to

c
dS~k!

d^ lnR&
52y2S~k!S h1

y2
~k2k* !2kS~k!22(

j ,k
jS~ j !D ,

~14!

wherek* 5c(111/h1), and again the details are in Appe
dix B.

Equation~14! evolves to a unique steady state. The key
understanding this is to note that fork,k* the whole factor
in large braces is negative definite, soS(k)50 is the unique
attractor. Then fork5kmin , the first integer value abovek* ,
S(kmin)50 is unstable and the zero of the last factor leads
the global attractor havingkminS(kmin)5(h1 /y2)(kmin
2k* ). The attractor values for higherk now follow by in-
duction: denote the factor in large braces byB(k) and as-
sume that the attractor hasB(k)50 and 0<kS(k)<h1 /y2,
which are true fork5kmin . Then it follows thatB(k11)
5h1 /y22kS(k)2(k11)S(k11) and for kS(k),h1 /y2

the attractor must in turn haveB(k11)50 and hence a
value of S(k11) conforming to 0<(k11)S(k11)
<h1 /y2. In the casekS(k)5h1 /y2 the only and stable so
lution is S(k11)50 which leads to the same conclusion
Thus by induction the only stable attractor of the system
B(k)50 for all k.k* and the corresponding steady sta
values are

kS~k!50, k,kmin

kS~k!5
h1

y2
~kmin2k* !, k5kmin ,kmin12, . . .
02140
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kS~k!5
h1

y2
~11k* 2kmin!, k5kmin11,kmin13, . . . .

~15!

Note that whenk* is an integer, particularly in the casec
50 corresponding to growth in a channel as discussed in@5#,
kmin511k* and alternate values ofkS(k) are zero: in the
case of channel growth this absence of evenk is readily
interpreted in terms of the dominance of one major fing
and one major fjord.

Within the Gaussian approximation and its predicted va
ances~15! we can now compute all~static! properties of
diffusion-controlled growth. From Eq.~9! we obtain
Z(q,t).(cR)2t exp(t2/4(k

KS(k)).R2tKt2h1/8y2
, using the

values from Eq. ~15!, and hence Z(q,t)
.R2tK2q1t111(t2h1/8y2). Thus the separator of limiting be
havior ~now asK→`) is given by

q~t!511t1t2
h1

2~11h1!2
. ~16!

It is also easy to see that any closure scheme based on k
ing cumulants ofl up to some finite order leads to a corr
sponding degree polynomial truncation ofq(t).

From the Legendre transform of the inverse functiont(q)
~as detailed in Appendix C! we obtain the correspondin
spectrum of singularities,

f ~a!522
1

a
1

1

2 S h11
1

h1
D S 22a2

1

a D , ~17!

which in Fig. 4 is compared to measured data for DLA@29#,
which later measurements@30# reinforce. For the region of
active growtha<1 (q>0) the theory is quantitatively ac
curate. Ata51 it conforms to Makarov’s theorem@20#, and
in contrast to the screened growth model@19# it does this
without adjustment. Fora.1 the spectrum is only qualita

FIG. 4. Multifractal spectra from the Gaussian theory (a tip

52/3), compared to measured values for DLA@29#. Agreement is
excellent for the active regiont>0, a<1, and there are no adjust
able parameters.
1-5
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tively the right shape, and for such screened regions
equations based on tip scaling may not hold.

VII. SCALING PREDICTIONS FOR DBM

To compare with the conventional DBM atm50 and pa-
rametrized byh0, we still need to compute theoretically th
value of the tip scaling exponent which enters throughh1
5a tiph0. We can use the DBM scaling law~10! with the
Gaussian closure approximation~16! for q(t) to fix the
value ofa tip , and the resulting prediction isa tip52/3 inde-
pendent ofh1. For DLA in two dimensions this value is
respectably close to~but outside! measured values,a tip5D
2150.7160.01 known from large direct simulations o
DLA @31,32#, but its suggested independence ofh over a
range of DBM is quite shocking. Numerical evidence, ho
ever, appears to lend support.

We have investigated numerically what value ofa tip is
seleced by the dynamics of Eq.~5!, with disorder supplied
only through the initial condition. Changing variables toc
5@2 i (]z/]u)(cR)21e2 icu#2(11h1)/25eyl, we obtain

]c

] t̂
52 i

]c

]u
P @cc̄#1 iyc

]

]u
P @cc̄#

2cyc$P @cc̄#2~cc̄!0%, ~18!

where the rescaled timet̂ is defined in terms of the evolutio
of cluster radius in Eq.~8!. The trilinear form of the RHS
enables us to compute numerically the motion within
purely Fourier representation.

In Sec. V we have seen that the cutoff dependence of
tip velocity is v;Kh1(1/a tip21). This can be compared with
the growth rate of the effective radius,dR/dt;^ey(l1l̄)&
5^cc̄&5^cc̄&0. Soa tip can be obtained from theK depen-
dence of̂ cc̄&0 ~measured at fixedR). We can obtain it even
from simulations with singleK: the truncated sumvcum(k)
5( j ,kuc j u2 is expected to scale withk in the same way as
the full sum^cc̄&0 does withK, because the Fourier com
ponents far below the cutoff should be insensitive to
value of K. Figure 5 shows the measured variation
vcum(k)5( j ,kuc j u2 vs kh1: this is expected to exhibit a
power law with exponent (1/a21) and remarkably we ob
tain a'0.7460.02 with no significant dependence onh1 in
the range studied.

It is a remarkable success for the Gaussian theory to h
predicted the completely unexpected insensitivity ofa tip to
h. Whether this result can be truly an exact ‘‘superunivers
ity’’ is another matter, as certainly the Gaussian value fora tip
is only approximate and, as we discuss below, matters
come more complicated for largeh.

VIII. BREAKDOWN OF THE DBM MODEL AT LARGE h

Sanchez and Sander@33# noted that at high enoughh0 the
DBM degenerates because all growth is dominated by
most active site, showing by direct simulations~at m50)
that this happened aroundh0

c'4, a value reinforced by late
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discussions@34,35# and new data@36#. These discussions ar
particular to them50 representation and we believe the
can be associated with the degeneration of the moment
erning the rate of gain of cluster mass: this scales with
ponentt(h0) which degenerates to valueh0amin when the
moment becomes dominated by the~left! end point f (a)
50 of the multifractal spectrum. The fractal dimensio
given by df511h0a tip2t(h0) then degenerates todf51
1h0a tip2amin). If the least screened sites are the tips,a tip

5amin , then this also leads todf51 whenh5h0
c .

The electrostatic scaling law leads to anearlier transition
in the behavior, that is at lowerh, which is also more ge-
neric in that it doesnot depend on growth at some particul
value ofm. This transition should also limit the applicabilit
of calculating @34,35# exponents perturbatively abouth0

c .
The screening transition arises because the moment gov
ing the mean screening of sites has exponentt(21h0)
which duly appears in the DBM version, Eq.~11!, of the
electrostatic scaling law, and this moment must hit the end
the f (a) spectrum before that corresponding tot(h0) dis-
cussed above. Once we have hit this regime, ath0>h0

s , we
have t(21h0)5(21h0)amin and the electrostatic scalin
law degenerates to a form which can be rearranged to g

22
1

amin
5h1S 1

amin
2

1

a tip
D . ~19!

This then leads us to choose between two scenarios: eithe~i!
a tip.amin in which case the behavior remains nontrivial,
else~ii ! amin51/2 which means the arms of the growth a
essentially straight and we might suspect the self-affi
structure.

The Gaussian closure approximation, witha tip set by the
electrostatic scaling law, hasa tip.amin for almost all h,
leading to scenario~ii ! above. Figure 6 shows the predicte
variation ofa tip , amin and the valueascreeningcorresponding
to the exponentt(21h0). The screening transition wher
ascreeninghits amin occurs~it can be checked exactly! at h1

s

52 corresponding toh0
s53. Beyond this pointa tip is no

FIG. 5. Cumulative contribution to the mean growth veloc
plotted against wave vector askh1 with logarithmic scales. The data
are ~bottom to top! for h150.5,0.6,0.7,0.8,0.9,1.0 and all exhibit
common power law slope 1/a21'0.3560.04 as per the guideline
shown. The results were obtained by numerical integration of
~18! for c50 ~periodic strip geometry!.
1-6
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longer quite constant and stays clear ofamin , because of the
changed functional form fort(21h0), while of course
ascreeningfollows amin .

The corresponding predicted behavior of the fractal
mension calculated fromdf511h0a tip2t(h0) is shown in
Fig. 7 ~upper curve! as a function ofh0 up toh0

c'5.4, where
it has not fallen to unity becausea tip.amin is maintained.
There is some change of functional form acrossh05h0

s but
it is scarcely noticeable graphically. Also shown for compa
son ~lower curve! is the behavior when we forcea tip5amin
instead of obeying the electrostatic scaling law: in this c
the fractal dimension does smoothly approach unity ash0

→h0
c , but unfortunately having sacrificed the electrosta

scaling law we cannot see anything relating to the screen
transition. The predicted screening transition ath0

s53 seems
to mark a break in the match to the simulation data of Ha
ings @36#: below this conforming to the electrostatic scalin

FIG. 6. Singularity exponents reflecting the strength of scre
ing as calculated from the Gaussian closure approximation witha tip

set by the electrostatic scaling law. Note that for this theorya tip

.amin meaning that~within the theory! the leading tips are not the
most active sites. The screening transition arises whenascreening

governing the overall screening hitsamin , which it must subse-
quently follow.

FIG. 7. The fractal dimension for them50 dielectric break-
down model as a function ofh0, using the Gaussian closure a
proximation ~curves! compared with published simulation da
~points! @36#. The upper curve usesa tip set by the electrostatic
scaling law, which givesa tip.amin, which is whydf does not ap-
proach unity at the end pointh0

c . The lower curve shows howdf

does smoothly approach unity when we forcea tip5amin .
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law gives the better agreement, whereas beyond this b
agreement comes from forcinga tip5amin . The simplest in-
terpretation is that the exact answer conforms to both co
tions, and it is just their relative importance which chang
around the screening transition.

IX. THE PENETRATION DEPTH

The multifractal spectrum suggests that the Gaussian
proximation is good in the growth zone, so we have co
puted as a further test the relative penetration depthJ, de-
fined for DLA as the standard deviationj of the radius of
deposition divided by the effective radiusR. For DBM more
generally, we have for tractability used as a measure
diffusion flux rather than the local growth rate.

The key idea behind the calculation is that we calcul
the relative distortion of the conformal map of the interfa
z(u)5Reicu(11(k.0wke

iku), away from the circular arc
z0(u)5Reicu. Following Ref.@12#, the squared relative pen
etration depth is then given by

j2

R2
5E

0

2p du

2p S Re
z~u!2z0~u!

z0~u! D 2

, ~20!

which can be expressed in terms of the coefficientswk as

j2

R2
5

1

2 (
k.0

uwku2. ~21!

From the definition~6! of l(u), the coefficients can be iden
tified aswk5@c/(c2k)#(e2l(u))k , giving

j2

R2
5

1

2 (
k.0

c2

~c2k!2E0

2p du

2p
eikuE

0

2pdf

2p
e2 ikf

3 S e2(
p

lpe2 ipu2(
p

l̄peipf D . ~22!

This expression remains to be averaged over the distribu
of cluster geometries. Appendix D details the averaging
this under the Gaussian closure approximation, leading to
results shown in Fig. 8.

For radial DLA the theory predictsJ5(j/R)r.m.s.50.20
in rather modest agreement with 0.13 extrapolated fr
simulations@12#, and the prediction over a range of the DB
parameter is shown in Fig. 8. The predicted variation ofJ
for DLA grown in a wedge is also shown, and in the limit o
zero wedge angle the value for the penetration depth rela
to the width of the channel is theoretically 0.13 compar
with 0.14 measured@32#. What is perhaps more interesting
the prediction of resonant features which arise whenc, the
wedge angle relative to 2p, is an integer multiple of
h1 /(11h1), corresponding to integerk* , because theidea
of resonant angles in DLA has been much discus
@37,16,17#: this is a direct and explicit prediction, which w
look forward to seeing tested by simulations.

-
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X. GROWTH FLUCTUATIONS

Numerical confidence in the scaling properties of DL
was greatly bolstered by the idea of an intrinsic but low le
of self-organized noise@13#, so it is natural to ask if the
present theory can address this. The simulation studie
noise have rested on tracking the extremal radius, whic
hard to extract from our analytic formulation, so we have h
to compromise on something more accessible theoretic
The relative penetration depth has fluctuations which refl
the differing geometry of the growth, and for the case
growth in channel we have measured these fluctuations t
(dJ/J)simulation50.18.

The corresponding theoretical calculation is a fai
straightforward generalization of the penetration depth ca
lation itself: we simply calculate the average square of
expression in Eq.~22!, minus the square of Eq.~D1! to ob-
tain the variance ofJ2. The evaluation of this under th
Gaussian closure approximation is detailed in Appendix

The most useful comparison is for the channel,c→0, for
which the penetration depth itself happened to be gi
rather accurately by the theory. In this case we obtain
relative variance of the square of the penetration depth
^(j/R)4&/^(j/R)2&22151.26, leading to (dJ/J) theory

FIG. 8. Upper panel shows the penetration depth relative to
radius, for radial DBM growth as a function ofh15ah0. The
lower panel shows the prediction for the DLA case, when grow
in a wedge of angle 2pc, plotted againstc. The lower curve used
h152/3 and the upper curve usedh150.71. The solid point corre-
sponds to measurement for radial DLA, and the dashed line sh
the limiting slope implied by measurements on DLA in a chann
Note the cusps predicted wherec is an integer multiple ofh1 /(1
1h1).
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50.56, which is substantially higher than the simulati
value. It is clear physically that the penetration depth com
predominantly from the lowest index modes ofl, and this is
apparent from our expressions above if we linearize Eq.~22!.
Keeping onlyl1 for the channel would then makej/R be the
magnitude of a single Gaussian distributed complex sca
leading to very similardJ/J. Thus it seems to be quite
fundamentally the Gaussian form of our closure approxim
tion which leads to an overstatement of the penetration de
fluctuations.

XI. RELATION TO CONE ANGLE THEORY

The angular resonances predicted in the penetration d
turn out to be in interesting correspondence with part of
earlier cone angle theory~CAT! of DLA @17#. In that theory
a growing cluster was viewed as having an identifiable nu
ber of major armsn, and it was then further supposed that t
growth should be marginally stable with respect to the loss
major arms through competition for growth. The strong
mode of such competition is where alternate fingers gain
lose, and the condition for this mode to be marginally sta
is in the present notation

S n/c

2
21Dh0a51, ~23!

as calculated in Ref.@17# for the casec51 andh051. In the
CAT fractionaln was presumed an acceptable approximat
and condition~23! was combined with geometrical approx
mations to predicta, but here let us focus on the values ofn
implied. Usingh15ah0 this gives

n

2
5c

11h1

h1
, ~24!

so our resonance condition corresponds directly to the c
where the number of marginally stable major arms is an e
number—which is of course required for the alternati
mode stability calculation to be strictly applicable.

The CAT was closed in Ref.@17# by approximating the
cluster as a solid polygon ofn sides, for whicha51/1
12n/n, leading to aCAT5(211h01A116h01h0

2)/4h0

which is clearly quite different in principle from the Gaus
ian closure prediction of constanta tip . However, it is not
easy to distinguish between them on the basis of previou
published DBM data, as shown in Fig. 9, and unlike GC
the CAT does not predict any other exponents.

XII. DISCUSSION

For DLA and its associated dielectric breakdown mod
we have shown a theoretical framework which is complete
the sense that essentially all measurable quantities ca
calculated. This extends to amplitude factors such as the r
tive penetration depth for which there is no theoretical p
cedent. For the full spectrum of exponents the practical
vance over the screened growth model is the elimination
fitting parameters, and it remains an open challenge to
tend our theory to give quantitatively credible predictions

e

g

s
l.
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the largea part of the spectrum. For the exponenta tip we
have in the Gaussian approximation a striking new result
this is predicted constant over a wide range ofh, which begs
direct confirmation by~expensive! particle-based simula
tions. We look forward to addressing this in a following p
per.

For the DBM at highh we find structure more rich tha
discussed hitherto, with a screening transition interven
before the upper critical valueh0

c is reached. Beyond the
screening transition the scenario whereamin5a tip looks pro-
spectively solvable~at least in terms of exponents! given the
degenerate form of the electrostatic scaling law which
plies. The Gaussian closure approximation leads to the ric
but quite possibly misleading scenarioamin,a tip , so sorting
out the truth of this inequality would be very interesting.

We have shown that the GCA naturally exhibits angu
resonances which are in interesting correspondence with
ideas of the earlier cone angle theory. Notably these re
nances now have clear predicted consequences such a
demonstrated for the relative penetration depth, and they
be explored either by growing in a wedge of variable an
or by varyingh—so once again behavior vsh is a key probe
of our understanding of the problem. For DLA in particul
the best theoretical value ofa tip remains 1/A2'0.71 from
the CAT @17#, but the greater test now lies in theh depen-
dence on which CAT and GCA differ qualitatively.

Within DLA and DBM we look forward to calculating
more properties such as the response to anisotropy, whi
fairly readily incorporated into our equations of motion. T
hard part is that in breaking angular symmetry we can
longer exclude nonzero first cumulants^lk&, and a full ma-
trix of second cumulants, but the calculation is in princip
straightforward. A conceptually more challenging avenue
to improve on the Gaussian approximation itself which
have used to obtain explicit theoretical results. Truncating
a cumulant of higher order than the second is hard, and m
seriously it does not correspond to a positive~semi-!definite
probability distribution. An alternative route of improveme
which we are exploring is closure at the level of the f
multifractal spectrum.

Whilst our main use of the equivalences within the cla

FIG. 9. The tip singularity exponenta tip as a function ofh0 for
the dielectric breakdown model. Rising curve: Gaussian closure
proximation; falling curve: cone angle theory; points: simulati
data foramin from Ref. @33#.
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of (h,m) models has been to facilitate calculation, throu
mapping ontom51, the particular associated claim that su
face tension control is included throughm51 may prove
controversial. This would imply that the scaling properties
the chaotic viscous fingering regime can be predicted fr
suitable DBM simulations. The DBM simulations require
are relatively accessible and the greater difficulty in pursu
this agenda lies in obtaining suitably calibrated experimen
data or accurate direct simulations of fingering out to h
degrees of ramification.

There are possibilities for wider application of ideas
this paper, where we have formulated DLA and DBM as
turbulent dynamics governed by a complex scalar field
111 dimensions. Decomposing this field multiplicative
~through Fourier representation of its logarithm! was the cru-
cial step to obtain renormalizable equations and theoret
access to the multifractal behavior, even though other re
sentations offered equations of motion~18! with weaker non-
linearity. It is natural to speculate whether the same strat
might apply to turbulent problems more widely, where t
key issue appears to be identifying suitable fields to deco
pose multiplicatively which are of local physical signifi
cance, and subject to closed equations of motion.
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APPENDIX A: LOGARITHMIC VARIABLES

In this appendix we present some details about the lo
rithmic variables in Eq.~6! and their equations of motion~7!
and ~8!. We begin by explaining the choice of the analyt
form in Eq. ~6!. In terms ofv5f1 iu, in which complex
plane the region exterior to the growth is mapped to a~half!
strip, Eq.~6! analytically continues to

dz

dv
5cRecve2 (

k.0;k5” c

lke2kv
. ~A1!

Expanding the second exponential factor above to all ord
gives

dz

dv
5cRecv@12l1e2v2~l22l1

2/2!e22v

2~l32••• !e23v2•••# ~A2!

and integrating with respect tov gives a conformal map
from the right-hand part of the strip to the exterior region
the wedge as required. Whenc is a positive integer, periodic
boundary conditions put a restriction on thel ’s: l150 when
c51, and for the less interesting casesc52,3, . . . , thepref-
actor in front ofe2cv has to vanish. The Gaussian closu
solutions~15! automatically satisfy this constraint, becau
they havelk50 for k<c.

p-
1-9
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In the region far from the growth the leading term dom
nates, givingz(v)5R ecv which shows the significance o
R: it is the apparent radius of the growth~corresponding to
f50) as seen from far away.

To obtain the transformed equation of motion~7!, first
take the logarithm of Eq. ~6!, giving 2l(u)1 ln R
5ln(]z/]u)1ln(2i/ce2icu). Then differentiating both side
with respect to time~at constantu) gives

2
]l

]t
1

]R

R]t
5S ]z

]u D 21 ]

]u

]z

]t

5S c1 i
]l

]u DP @~cR!22yey(l1l̄)#

2 i
]

]u
P @~cR!22yey(l1l̄)#, ~A3!

where we have usedu]u/]zu5(cR)21eRel and subsequently
the powers ofR can be taken outsideP. It is then trivial to
take Fourier components of both sides to obtain Eqs.~7! and
~8!, the latter coming from the zeroth component which
chose to be absent froml.

APPENDIX B: CUMULANT EXPANSION

The Kubo cumulants for independent variablesXi are
given in terms of their moments by ln^e(ibiXi&5^e(ibiXi21&c ,
whereb i are arbitrary~scalar! parameters@28#. From this it
is well known that by differentiation with respec
to parameters one obtainŝX1eW&5^X1eW&c^e

W& and
^X1X2eW&5(^X1X2eW&c1^X1eW&c^X2eW&c)^e

W&, where
W[( ib iXi , and similar results for higher moments such
^X1X2X3eW&.

To obtain the renormalized equation of motion~13! from
the unrenormalized equation~12! we need first to apply the

above to ^l̄kek
y(l1l̄)&. Writing this as *(du/2p)

3eiku^l̄ke
y(l(u)1l̄(u))& allows us to apply the cumulant iden

tities directly, giving *(du/2p)eiku^l̄ke
y(l(u)1l̄(u))&c

3^ey(l(u)1l̄(u))& and hence( j^l̄kek2 j
y(l1l̄)&c^ej

y(l1l̄)&. In the
translationally invariant case considered here only
j 50 term survives in the latter summation, leadi

to ^l̄kek
y(l1l̄)&5^l̄kek

y(l1l̄)&c^e0
y(l1l̄)& as required. The

calculation of ^lk2 j l̄kej
y(l1l̄)&5(^lk2 j l̄kej

y(l1l̄)&c

1^lk2 jej 2k
y(l1l̄)&c^l̄kek

y(l1l̄)&c)^e0
y(l1l̄)& proceeds along

precisely analogous lines.

APPENDIX C: LEGENDRE TRANSFORM
OF AN INVERSE FUNCTION

In Eq. ~16! we are confronted with a slightly unusu
situation: we wish to find the Legendre transformf (a) of the
function t(q), that is f (a)5qa2t(q) where a5dt/dq,
given a simple form for the inverse functionq(t). Let g(x)
be the Legendre transform ofq(t), that isg(x)5xt2q(t)
where x5dq/dt. Thus x51/a and we haveg(1/a)5t/a
02140
s

e

2q52 f (a)/a, so the two Legendre transforms are ve
simply related.

The example needed from Eq.~16! has the formq(t)
511t1bt2, leading tox5112bt and henceg(x)521
1b@(x21)/2b#2. Then we havef (a)52ag(1/a), leading
directly to Eq.~17!.

APPENDIX D: CALCULATION OF THE PENETRATION
DEPTH

We start from the expression given in Eq.~22! for the
square of the relative penetration depth without any aver
ing over clusters. As the expression is simple exponentia
the lk it is straightforward to average over a Gaussian d
tribution leading to

J25K j2

R2L 5
1

2 (
k>0

c2

~c2k!2E0

2pds

2p

3eiksS e(p
S(p)e2 ips

21D . ~D1!

Note that the term21 in the integrand makes no differenc
for k5” 0, but we can includek50 in the outer summation
This enables us to rearrange the combination of summa
over k and integration, giving

J25
c2

2 E0

`

dxxecxS e(
p

S(p)e2px
21D , ~D2!

as is readily verified upon expanding the exponen
e(pS(p)e2px

to all orders. The summation in this exponent
can be evaluated in closed form using the variances from
~15! and the standard forms u1u3/31u5/51•••

5 ln A(11u)/(12u) and u2/21u4/41u6/61•••

5 ln A1/(12u2). This leaves one numerical quadrature
obtain the results shown in Fig. 8.

To compute the fluctuations in relative penetration de
we again start from Eq.~22! and now average its square
give

^~j/R!4&5
1

4 (
k.0

c2

~c2k!2E E
0

2p du

2p

df

2p
eik(u2f)

3 (
k8.0

c2

~c2k8!2E E
0

2pdu8

2p

df8

2p
eik8(u82f8)

3K expS 2(
p

lpe2 ipu2(
p

l̄peipf

2(
p

lpe2 ipu82(
p

l̄peipf8D L , ~D3!

where averaging the last factor gives exp((pS(p)@eip(f2u)

1eip(f2u1u2u8)1eip(f82u81u82u)1eip(f82u8)#). One integration
with respect to an absolute angle is now redundant, and
integrations with respect tof2u and f82u8 can be rear-
1-10
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ranged using the same trick as in calculating^(j/R)2& pre-
viously, leading after some cancellations to

d~J2!25 K S j

RD 4L 2 K S j

RD 2L 2

5
c4

4 E0

`

dxxecxE
0

`

dx8x8ecx8E
0

2pdc

2p

3~e(pS(p)[e2px1e2p(x2 ic)1e2p(x81 ic)

1e2px8] 2e(pS(p)[e2px1e2px8] ! . ~D4!

Above we used the simplification*0
2pdc/2pe(pS(p)e2p(x2 ic)

51, which follows upon expanding the exponential whe
ev

s.

B

s

02140
only the leading term survives. This can be further appl
leading to the more compact form

d~J2!25E
0

2p

dc/2pUc2

2 E0

`

dxxecxe(
p

S(p)e2px

3 S e(
p

S(p)e2p(x2 ic)
21DU2

.

Particularly in order to address the limit of channel grow
c→0, it is convenient to bypass normalization conventio
by looking at the relative fluctuations inJ2, which are now
given by
S d~J2!

J2 D 2

5

E
0

2pdc

2p U E
0

`

dxxecxe(
p

S(p)e2pxS e(
p

S(p)e2p(x2 ic)
21DU2

F E
0

`

dxxecxS e(
p

S(p)e2px
21D G2 . ~D5!

From this we obtained the result cited in Sec. IX by numerical quadrature.
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