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Diffusion-controlled growth: Theory and closure approximations
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We expand upon a new theoretical framework for diffusion-limited aggregation and associated dielectric
breakdown models in two dimensiofR. C. Ball and E. Somfai, Phys. Rev. Le®&9, 135503(2002]. Key
steps are understanding how these models interrelate when the ultraviolet cut-off strategy is changed, the
analogy with turbulence, and the use of logarithmic field variables. Within the simplest, Gaussian, truncation of
mode-mode coupling, all properties can be calculated. The agreement with prior knowledge from simulations
is encouraging, and a new superuniversality of the tip scaling exponent is discussed. We find angular reso-
nances relatable to the cone angle theory, and we are led to predict a new screening transition in the DBM at
large 7.
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[. INTRODUCTION understand the problem. A simple mean field thefiy]
does not capture the fractal aspects, which are better under-
Diffusion-controlled growth first attracted attention in the stood through various relations between exponghis-17
literature on solidification, where the advance of a solidifica-and[18]. The cone angle theof\L 7] gives a plausible argu-
tion front can be limited by diffusion of either latent heat or ment for the fractal dimension of DLA, whilst the screened
compositional excess ahead of the front. Under these condggrowth mode[[19] and Makarov’s theorerf20] give insight
tions a planar front is linearly unstable with respect to longinto how the multifractal spectrum of the growth is gener-
wavelength corrugation, the Mullins-Sekerka instability, ated.
leading to a rich variety of problems in pattern formation. The presence of a cut-off length scaléelow which the
Viscous fingering, arising when a viscous fluid is drivenphysics dictates smooth growth is a crucial ingredient of
through a porous medium by a less viscous one, is recogdiffusion-controlled growth; it is known that otherwise infi-
nized as being a problem in the same class. The diffusionaitely sharp cusps develop in the interface within finite time
limited aggregation moddDLA) of a rigid cluster growing [21]. In DLA this cutoff is fixed and set by the size of ac-
by the irreversible accretion of dilute diffusing particles, in- creting particles, but in solidification and also in viscous fin-
troduced by Witten and Sandgt], focussed attention on the gering it is set by surface free energy leading to a local offset
extreme limit of these problems, where all of the diffusion isin the value ofg erace: this is dependent on the local inter-
ahead of the growth and quasi-static, with the added simplifacial curvature and leads to a velocity-dependent selection
fication that the Mullins-Sekerka instability applies on all of approximately constanta? for growing tips[22]. We will
length scales above the size of the accreting particles. gather these different possibilities together with the general-
Mathematically these problems share the same generaed cut-off law, that advancing tips have radius
form for the equations governing their growth, with their
local interfacial velocity controlled by a conserved gradient ax|d,p|™™. 2
flux,
In terms ofm, simple DLA corresponds tm=0 and solidi-
Un®|0nd|”, V2h=0, dinerrace=0, (1) fication and viscous fingering correspondrte=1/2; in the
theory below in two dimensions we will map onto the case
where (at least naively =1 [3]. The generalization to a wherea is such that each growing tip has fixed integrated
range of positiven was introduced by Niemeyer, Pietronero, flux, corresponding tan=1.
and Wiesmanni4] to model dielectric breakdown patterns,  This paper explains and expands the theory announced in
and in our recent pap¢b] we introduced the idea that this our recent papef5]. In Sec. Il we establish mappings be-
can support equivalences between models where thieveen models with differenty and m. This opens up the
Mullins-Sekerka instability is controlled locally in math- opportunity to discuss the full class of models via the section
ematically quite different ways. atm=1, which we will show in Sec. IV is particularly ame-
The DLA model has attracted enormous attention becauseable to continuum theoretical description in two dimen-
it contains no limiting length scaléexcept for the particle sions. Section 1ll discusses the other key input to Sec. IV,
size and so pattern formation must continue nontrivially onthat we regard diffusion-controlled growth as a turbulence
all larger length scales, the Mullins-Sekerka instability rulingproblem with self-organizing fluctuations. In Sec. V we dis-
out simple planar growth. Theoretical interest has been fueuss how to cast the theory of Sec. IV in renormalized form,
eled by the fractal and multifractph,7] scaling properties of with divergent factors factored out consistently. Closure ap-
the clusters produced, with controversial claifs-10] (and  proximations are required to obtain explicit theoretical pre-
counterclaims[11-13) of anomalous scaling, and by the dictions, and in Sec. VI we show how the simplest Gaussian
long-standing absence of an overall theoretical framework telosure leads to a complete theory of the fractal and multi-
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labeled 1,2 whose radii and flux densities are interrelated in
the unprimed growth according to E) by a,j'=a,j5,

I a, o and similarly in the primed growth ba}j'™ =aj’'T . If
we now insist that the advance velocities are in the same
ta, 4] ratio (between tips 1 and 2) in both models, this requires

(i1/i2)"=(j1/j%)™ , which forces the parameter relation

1, m growth rule 1n’,m” growth mle

1+m(l+a—d) 1+m'(1+a—d)
FIG. 1. For equivalence between growth models with different 7 - 7 ' (4)
values ofn andm, we consider a pair of realizations matched down

to, but not including, tip radii. The equivalence then requires thaly the two models to be equivalent in the relative velocities
the two models agree about the relative velocities of competing tipsof all tips requires their parameters be related as above

. . L . where a= a4, IS the singularity exponent associated with
fractal scaling. This turns out to be quantitatively quite accu- o~ ip g y exp

rate for the zone of active growth. In Sec. VII we show howgrox\lliﬂg tiphs(seehFig. z - d th val f
one outstanding exponent, the tip scaling of the harmonic though we have not strictly proved the equivalence o

measure, can be pinned down through the use of the electr{ne models related above, we have shown that any such re-

static scaling law leading to a very surprising prediction with a“of‘Sh'p must fOHO.W Eq(4) and we will assume in the rest
which numerical data seems compatible. Section VIII gives f this paper that .th's equivalence hOId.S' All such models are
then classifiable in terms of a convenient reference such as

more detailed discussion of what happens to the DBM expo- . . o
nents at largey. In Sec. IX we show examples of how the 70 the equ]valen'rr; whenm=0, corresponding to the origi-
theory can be deployed to tackle deeper quantities such _I_dlelel_%t_rfl_c b_reakdp\r/]vn inOdé%BMl' I/:or example dden-
the relative penetration depth in DLA, which has been theMtic solidification with »=1 and m=1/2 corresponds to

subject of several numerical studies and some controvers%:z(%“_d): it is thus not equivalent to DLA, but to

Angular resonances appear to be leading us to draw parall€ other member of the DBM class. e
in Sec. XI with the earlier cone angle theory. Another puzzle resolved by our classification is a recent

study showing conflicting scaling between DLA and differ-
ent limits of a “Laplacian growth” mode[23]. The latter
model grows bumps of width proportional to flux density, so
in the present terminology it correspondsrtc=—1. The
It is central to fractaland multifractal behavior in DLA  bumps are also grown with protrusion proportional to flux
that the measure given by the diffusion flddensity j  density. When the coverage of the growing surfgmer time
=g,¢ onto the interface has singulariti€g], such that the step of growthis low, then as the bumps are also distributed
integrated flux onto the growth within distancef a singu- ~ proportional to flux density, this limit corresponds #e-3.
lar point is given by By contrast high coveragéwith significant suppression of
overlapping bumpscorresponds tagy=1. Usinga=0.7 (see
p(r)~(r/R)*, (3)  below) these map through Eq4) into 7,=2.31 and 7,

. . , . =0.77, respectively, so the way their scaling was observed
whereR is the overall linear size of the growth. Multifractal [23] to bracket that of DLA is quite expected.

scaling of the flux density leads to a whole spectrunwof
values, with the number of regions of length scaleaving
w(r)~(r/R)® varying as ¢/R)'(®), but in the following we lll. THE ROLE OF NOISE
focus particularly on advancing tips and their associated ex- p| A and DBM have been widely regarded as models in
ponent \{a|UEHtip- ) statistical physics, in that the local advance rate in @&g.
Applying this phenomenology to the scaling aroundpas been implemented as the probability per unit time for the
growing tips, we can establish an equivalence between modyrowth locally to make some unit of advance, entailing an
els at differenty andmby requiring thathe relative advance jnherent shot noise. Here we argue that diffusion-controlled
rates of different growing tips are matcheSlee Fig. 1. Con-  growth is a problem of turbulence type, with noise self-
sider two growths, growing governed by different parametergrganizing from minimal input. This was suggested by
(»,m) and (7",m’), respectively, which at a given moment sanderet al. [24] but was only pursued in the case with
have the same overall geometry down locally to the level okyrface tension cutoffin=1/2 in the present terminology,
(the coarser oftheir cut-off length scales. For any given \yhere it has been recognized more recently as chaotic vis-
growing tip (labeledk), the tip radiusa, and flux densityjy  cous fingerind25].

in the unprimed growth will be related to those in the primed  The renormalization of noise with length scale has hith-
growth by jaf Yag=ja’'y Ya'y, wherea is the local  erto been discussddt least for DLA in the context of noise
scaling exponenfas per Eq.(3)] of the harmonic measure reduction[26,27,13, focussing on the idea that as one goes
between length scales, anda, . We take this exponent to up in length scale an equivalent coarse-scale model must
have valuen = a;j, on the grounds that this is locally a tip of have a lower level of noise than crude shot noise. The lim-

the growth. Now let us focus on two different growing tips iting or “fixed-point” level of noise in DLA is small(at least

Il. SCALING PROPERTIES AND MAPPINGS BETWEEN
MODELS AT DIFFERENT # AND m
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4 noise provides direct evidence for this idea, which might also
be argued obviously on the grounds that the Mullins-Sekerka
instability [1] corresponds to a preponderance of positive
Lyaponov exponents in the dynamics.

IV. CONTINUUM THEORETICAL DESCRIPTION
AND SELF-ORGANIZATION

The ideas above—that we can balance changing the cut-
0.5¢ off exponentm by adjustment ofy, and that noise can be left
to self-organize—are the key to a theoretical formulation of
0.5 1 1.5 2 2.5 3 the problem, at least in two dimensions of space to which we
now specialize. In two dimensions the Laplace equation in
FIG. 2. According to the mappin(#) models lying along any Eq. (1) can be solved in terms of a conformal transformation
given line shown are fundamentally related and should have equivdbetween the physical plane a=x+iy and the plane of
lent scaling properties. They should therefore be classifiable irtomplex potentialv= ¢+i 6, in which we take the growing
terms of the valuey,, corresponding to any chosen reference valueinterface to be mapped into the periodic interval
of m, such asy, or #,. For simplicity the graphic has been plotted =[0,27), =0 and the region outside of the growth mapped
for d=2 and takinga=2/3 completely independent of (see  onto>0. Then adapting Ref21], Eq. (1) leads to a closed
laten: if o does vary from line to line, then the lines will not be equation for the dynamics of just the interfazgd) at ¢

confocal. =0,
according to Refd.26] and[13]) but certainly not zero, so it az(6) 9z _[log|ttm
is natural to ask whether it can be approached from below as a ! 20 oz ®)

well as from above. The data in Fig. 3 show clearly that for

DLA grown with very low noise by the methods of ReL3],  Tne Jinear operatof is most simply described in terms of
the relative fluctuations do indeed approach their limitinggqyrier  transforms: PIS e %, ]=3 P(k)e K, =1,
value from below as well as from above, and the same result 2257 e k%f,  where we have introduced here an upper

was implicit in the earlier renormalization group results of . . & \vov e vectolK. It is easily shown that on scales 6f

[261]"he above discussion leads us to conjecture that for th reater thark * a s_mooth interface s Iir_learly unstab_le with

full range of diffusion-controlled growth under a continuum gspect to corrugation fop=0 (the Mullins-Sekerka m;ta-
bility [1]), whereas for scales @fless thark ! the equation

description of the interface, disorder in the initial conditions | . ; :
) e i . h behaviofc locall h
alone should suffice to feed instability, leading to the samedrﬂles smooth behaviofcorresponding locally to the case

limiting levels of structural fluctuation on larger length scales” . 1). This cutoff on a scale Cﬂ the._cumulatwe mtegral

as in the discrete models. The agreement we obtain beI0\9vf. flux, clzorresp_onds in terms of tip radii and flux densities to

from simulations of the co.ntinuum model without temporal dj=K"~, thatis anm=1 cutoff law. Thus the parameter
in Eqg. (5) is more specificallyp, = anq, using Eq.(4) with

d=2.

X We will present a numerical study of E(p) after a vari-

10

N o Z 2 o able change in Sec. VII, where disorder was supplied only
L T . “a ] through the initial conditions. The results clearly confirm that
- * s . %o 1 the equation self-organizes critical scaling behavior, without
2| = Eoe L ° the supply of time-dependent noise. The surprising form of
107 F * s g E . ..
F *x K * s ] the scaling is interpreted below.
. L = T o u & & x & & ]
g [ $ 2 ;2 xaxx]
< x £
L ox T s 85 = o A =10 V. RENORMALIZATION AND THE DBM SCALING LAW
107 s ° * AFI0" E We now turn to a theoretical analysis of E&), and for
F s 2 a A =10" ] generality we will consider growth in a wedge of angle@
L 4 A =107 (with periodic angular boundary conditionso thatc—0
i o A =107 corresponds to growth along a channel whist1 corre-
10 S M S = sponds to “radial growth,” which is growth out from a point
10 10 10 in the plane. The primary theoretical requirement is that we

must obtain results explicitly independent of the cutoff as
FIG. 3. The size fluctuation€output noise”) A,,=(SN/N)2, K—wo: this is hard because we will see that the mean ad-
measured at fixed radit® for DLA clusters grown with off-lattice ~ vance rate of the interface diverges as a powef,cdnd on
noise reductiori13] at various(“input” ) noise levelsA,,. For low  fractal scaling grounds one would expect the same divergent
A, Aoy Self-organizes from below in the manner of a turbulent factor to appear in the rate of change of other simple vari-
system. ables. One can of course take ratios of rates of change and
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look to order terms such that divergences cancel. To makmatch the advance rate of the forward tips of the growth
this work we have been forced to introduce yet anothergoverned byayy) to that of the mean radius governed by a
change of variables, multifractal moment through Eq8). For consistency with
5 the rest of this paper it is convenient to present the argument
.9z C _ C —ike for the m=1 representation, leading to tip velocityr/dt
I M—cRexmcﬂ A(H)]—cRexp( 'co go M@ ) =]~ (K~ /a)™, where the tip radius is set by the con-
(6) diton K l=~aj~(a/R)*» and hence dR/dt
, , _ , ~R~mKnMaip=1) The overall advance rate of the growth
which corresponds to I_:our|er decc_)mposmg the logarithm Ofin terms of its effective radiysis given from Eq.(8) by
e gl el e of i A ot (cr) (e ). For e speial valunz—y i
can be substituted into Eq.(9), giving dR/dt

conformal map through the wedge angle@ leaving\(6) ~R~ 7KDL \whenZis kept at itsk-independent value

as a simple Fourier serigexcept one-sided; see details in . !
Appendipr). The key todthe spuccess of the “logarithmic _(CR) . Comparing the two results leads to the DBM scal-

variables” A is that they decompose the flux density itself "9 law

multiplicatively and, as we shall see, quite naturally capture

its multifractal behavior. In terms of these, time rescaled Q(7=1+5;) =2+ 7,/ ag=2+ 70, (10
through dt=(cR)2ydi and y=(1+»)/2, the equation of

motion (5) becomes o
or its inverse form

dn =
—X = (k= )\ PG (&N,
dt i<k T(q=2+70) =1+ 7=1+ ayyno- (13)
+2(k—c)(e¥O*V), | (7)

) ) ) ~ The same result can be found, much more tortuously, from
where subscripts on bracketed expressions imply the takingrowth at generain.

of a Fourier component, by analogy wily. The advance Now we turn back to the equation of motion of the loga-
rate of the mean interface is correspondingly given by rithmic variables. Let us suppose some ignorance of the ini-
tial conditions and describe the system in terms of a joint
d_chR(ey(Hf))o ®) probability distribution over the,, and let us denote aver-

ages over thigunknown distribution by(---). We can, in
principle, determine the distribution through its moments,
Details of the above analysis are given in Appendix A. whose evolution we now compute. For simplicity in this pa-
At this point we can evaluate the multifractal spectrum inper we assume translational invariance with resped, teo
terms of these logarithmic variables. The multifractal specthat only moments of zero total wave vector need be consid-
trum of the harmonic measure follows from computing theered, of which the lowest gives
general momen{7] Z(q,7)=X|66|%6z|~7, in the limit
where all the intervalsz| and correspondinglyé approach
zero; then the locusg—1)D(q) = 7(q) separates the limit- d — , . — =
ing behaviorZ(q,7)— from Z(q,7)—0. In our case it is ?<)‘k7‘k>= ! (k=P N hgf ™)
convenient to fix56 (admitting wide variations inéz|) and
we must focus on the restricted range '<56<1. For — 0N
56=1 we have triviallyZ=(cR) ", whilst for 56=K ~* the +t2(k—c)(he” V) [+(c.c). (12
growth begins to look smooth so we can approximate
Z(q,7)==|86|9""9z196| " =K~ 97 1{dg|9z/ 96| ". Av-

eraging gives|9z/96| "y ={((cR) "e**MN72) yielding Al of the higher moments lead to the same form
_ of averages on the right-hand side(RHS),
Z(q,7) =K~ 9" (cR) " (e V72, (9 (multinomial(\,x)e?™*M), and all of these terms are con-

veniently expressed in terms of cumulaj@28] as detailed in

The multifractal .spec'trum is then readily qbtained from theAppendix B. The key helpful feature is that the expressions
separator behavior discussed above, provided we can evalu- N

ate the average in E¢9). In Sec. VI we show how this can "€ requireAaII naturally divide by one factor ¢&"**")
be done quite explicitly in the Gaussian closure approxima= (1/c)(d/dt){InRf), which is what we need in order to re-
tion. move divergences by eliminating increment of tirdé in

We can now derive an elegant combination of Halsey'sfavor of (1€)d{InR). The latter quantifies the update of
electrostatic scaling layl8] combined with the tip scaling large scale geometry, in terms of the advance in radius rela-
law of Ball and Witten[15—17], that for DLA 7(3)=D¢ tive to the circumference of the wedgar width of channel
=1+ ayp. This new derivatior(unlike the earlier resulids ~ The evolution of the second moments is then given in renor-
not restricted to then=0 case. The key idea is that we malized form by
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d — _ _
CainRy (M =| 20— e )= 2 (k=])P() [ i
X[("k—jrke}/(ﬂr))c

+ (@AM ) T | + (e e,

q(t)

13

where( ), denotes the Kubo cumulafi28].

The above resul{13) is the key analytical step in this
paper, because it removes divergent factors form the equa
tions of motion. It is not dependent on the closure approxi-
mation discussed below, and should support other ap:
proaches also. Moreover, E@L3), with the hierarchy of 1
analogous equations for the evolution of higher moments,

offers a new entry point towards exact results in the class of 2'/::1)? C‘é‘mMaL:g'g?gtf‘T:eZZi‘;g: Vf;‘l’u";st?oer g[azlgsﬁnretgri%?ﬁs
DLA and DBM models. ' P - Ag

excellent for the active region=0, o<1, and there are no adjust-
able parameters.

VI. GAUSSIAN CLOSURE APPROXIMATION

To obtain simple tractable results we need to introduce 7 .
some closure approximatit and we present here the sim-  KS(K)=—(1+K* —knin),  k=Kmint LKpin+3, ... .
plest, neglecting all cumulants higher than the second, y (15)
equivalent to assuming a joint Gaussian distributiohzero
mean for A. This is entirely characterized by its second Note that wherk* is an integer, particularly in the case
momentsS(k) =(\ Ay ) which by Eq.(7) we find evolve =0 corresponding to growth in a channel as discuss¢d]in
according to kKmin=1+k* and alternate values &fS(k) are zero: in the
case of channel growth this absence of ekers readily
dsS(k) ) m . . interpreted in terms of the dominance of one major finger
“d(InR) =2y"S(k| 75 (k=k )—kS(k)—ZZk is() |, and one major fjord.
y J Within the Gaussian approximation and its predicted vari-
(14 : .
ances(15) we can now compute allstatio properties of

wherek* =c(1+1/7,), and again the details are in Appen- diffusion-controlled growth. From Eq.(9) we obtain

dix B. Z(q,r)z(cR)*Texp(72/4EES(k)):R”K’zﬁl’syz, using the
Equation(14) evolves to a unique steady state. The key tovalues from Eq. (15, and hence Z(q,7)

understanding this is to note that flerk* the whole factor  ~Rr-7k ~a+7+1+ (778" Thys the separator of limiting be-

in large braces is negative definite, Sgk) =0 is the unique  hayior (now ask —) is given by

attractor. Then fok=k,,, the first integer value aboue",

S(kmin) =0 is unstable and the zero of the last factor leads to m

the global attractor havingKminS(Kmin) = (71/Y?) (Kmin q(r)=1+7+ 7'2—2.

—k*). The attractor values for highdérnow follow by in- 2(1+m)

duction: denote the factor in large braces Bfk) and as-

sume that the attractor h&k) =0 and O<kS(k)< 5, /y?,

which are true fork=Kk,,,. Then it follows thatB(k+1)

=n1/y?—kS(k)—(k+1)S(k+1) and for kS(k)< 7, /y?

the attractor must in turn havB(k+1)=0 and hence a

value of S(k+1) conforming to G<(k+1)S(k+1)

<, /y%. In the cas&kS(k) = 5, /y? the only and stable so-

(16)

It is also easy to see that any closure scheme based on keep-
ing cumulants o\ up to some finite order leads to a corre-
sponding degree polynomial truncationafr).

From the Legendre transform of the inverse functdq)
(as detailed in Appendix Cwe obtain the corresponding
spectrum of singularities,

lution is S(k+1)=0 which leads to the same conclusions. 1 1 1

Thus by induction the only stable attractor of the system has fla)=2——+ > m+—||2—a——|, 17)
B(k)=0 for all k>k* and the corresponding steady state @ 7 @

values are

which in Fig. 4 is compared to measured data for D24],
KS(K)=0, k<K which later measuremenf80] reinforce. For the region of
’ min active growtha<1 (q=0) the theory is quantitatively ac-

curate. Atae=1 it conforms to Makarov's theoref20], and

kS(k)= ﬂ(kmin_ K*), k=K Kont 2, + . . in contrast to the screened growth mod#9] it does this
2 without adjustment. Foer>1 the spectrum is only qualita-
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tively the right shape, and for such screened regions our
equations based on tip scaling may not hold. 7.5 //
VII. SCALING PREDICTIONS FOR DBM = 7 I
, : 265 /
To compare with the conventional DBM at=0 and pa- s T
rametrized byr,, we still need to compute theoretically the = 6 LT -/_
value of the tip scaling exponent which enters through e /
= aypmo. We can use the DBM scaling lawd0) with the S R
Gaussian closure approximatidd6) for q(7) to fix the -
value of ap, and the resulting prediction ig;,= 2/3 inde- 1 2 3 4
pendent ofy,. For DLA in two dimensions this value is In k™
respectably close ttut outsid¢ measured valuesy;,=D FIG. 5. Cumulative contribution to the mean growth velocity

—1=0.71+0.01 known from large direct simulations of piotted against wave vector &&: with logarithmic scales. The data

DLA [31,32, but its suggested independence ipfover a  are (bottom to top for 5,=0.5,0.6,0.7,0.8,0.9,1.0 and all exhibit a

range of DBM is quite shocking. Numerical evidence, how-common power law slope &/~ 1~0.35+0.04 as per the guidelines

ever, appears to lend support. shown. The results were obtained by numerical integration of Eq.
We have investigated numerically what value @, is (18) for c=0 (periodic strip geometjy

seleced by the dynamics of E(b), with disorder supplied

only through the initial condition. Changing variables#o  discussion$34,35 and new datf#36]. These discussions are

=[~i(9z/96)(cR) te '¢?](1*m)2=e¥* we obtain particular to them=0 representation and we believe they
can be associated with the degeneration of the moment gov-
Yy Oy — . d — erning the rate of gain of cluster mass: this scales with ex-
i o Lwdl+ivy—Plyy] ponentr(7,) which degenerates to valug o, when the
moment becomes dominated by tkleft) end pointf(«)
—cy{PLyy]— (¥ih)o}, (18 =0 of the multifractal spectrum. The fractal dimension

given by d¢=1+ noay,— 7(1770) then degenerates ty=1
where the rescaled tinteis defined in terms of the evolution + 70@ip— @min)- If the least screened sites are the tipg,
of cluster radius in Eq(8). The trilinear form of the RHS = amin, then this also leads td=1 whenzn= 7.
enables us to compute numerically the motion within a The electrostatic scaling law leads to earlier transition
purely Fourier representation. in the behavior, that is at lowen, which is also more ge-

In Sec. V we have seen that the cutoff dependence of theeric in that it doesiot depend on growth at some particular
tip velocity is v ~K7:(M@ip~1) This can be compared with Vvalue ofm. This transition should also limit the applicability
the growth rate of the effective radiugR/dt~(e/®+V) of calculating[34,35 exponents perturbatively aboutf .

— (W= (Pde. SO g, can be obtained from the depen- The screening transition arises because the moment govern-
—~ ) . ing the mean screening of sites has expone(®+ 7,)

dence 'Of(z,/u/f)'o (megsurgd at f!xeR). We can obtain iteven |\ piop duly appears in the DBM version, E6L1), of the

from 5|muI2af[|ons with single<: the truncated sumcun(k)  glectrostatic scaling law, and this moment must hit the end of

=32 j<il1j|” is expected to scale witkin the same way as the f(4) spectrum before that corresponding #6r,) dis-

the full sum(y+)o does withK, because the Fourier com- cussed above. Once we have hit this regimeyg 75, we

ponents far below the cutoff should be insensitive to thengye 7(2+ 10) = (2+ 70) amin and the electrostatic scaling

value of K. Figure 5 shows the measured variation ofjaw degenerates to a form which can be rearranged to give
VeunK) =2 <l z//j|2 vs k7t this is expected to exhibit a

power law with exponent (/—1) and remarkably we ob- 1 1 1
tain a=~0.74+0.02 with no significant dependence gn in 2— = ( — —) (19
the range studied. ®min ®min  Xiip

It is a remarkable success for the Gaussian theory to have ) )
predicted the completely unexpected insensitivityagf to This then I.eads'us to choose betwegn two scenarios: egllher
7. Whether this result can be truly an exact “superuniversal-tip= @min in Which case the behavior remains nontrivial, or
ity” is another matter, as certainly the Gaussian valuedfgy €IS (ii) amin=1/2 which means the arms of the growth are
is only approximate and, as we discuss below, matters pe&ssentially straight and we might suspect the self-affine

come more complicated for large. structure. o _
The Gaussian closure approximation, with, set by the

electrostatic scaling law, has,> any, for almost all »,
leading to scenaridii) above. Figure 6 shows the predicted
Sanchez and Sandgd3] noted that at high enough, the  variation ofa,, @i, and the valuergeeningcorresponding
DBM degenerates because all growth is dominated by th&o the exponentr(2+ 7,). The screening transition where
most active site, showing by direct simulatiof@ m=0) @sereeningNitS amin OCcurs(it can be checked exaciiyat 7
that this happened aroung§~4, a value reinforced by later =2 corresponding topg=3. Beyond this pointay,is no

VIlIl. BREAKDOWN OF THE DBM MODEL AT LARGE
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1 law gives the better agreement, whereas beyond this better
agreement comes from forcing;,= ay,,. The simplest in-
0.9} terpretation is that the exact answer conforms to both condi-
Ascreening tions, and it is just their relative importance which changes
0.8} around the screening transition.
0.7} Qeip
IX. THE PENETRATION DEPTH
0.6} \>{ The multifractal spectrum suggests that the Gaussian ap-
proximation is good in the growth zone, so we have com-

puted as a further test the relative penetration dé&pttde-
fined for DLA as the standard deviatighof the radius of
deposition divided by the effective radii& For DBM more
FIG. 6. Singularity exponents reflecting the strength of screengenerally, we have for tractability used as a measure the
ing as calculated from the Gaussian closure approximationayith  diffusion flux rather than the local growth rate.
set by the electrostatic scaling law. Note that for this theegy The key idea behind the calculation is that we calculate
> amin Meaning thatwithin the theory the leading tips are not the  the relative distortion of the conformal map of the interface
most active sites. The screening transition arises Wlgh.ening Z(g)zRéCG(l+Ek>0Wkeika), away from the circular arc
governing the overall screening hitg,;,, which it must subse- zo( 0)=Ré°0. Following Ref.[12], the squared relative pen-
quently follow. etration depth is then given by

0 1 2 4 5 6

3
m

longer quite constant and stays clearagf;,, because of the 5 ) )
changed functional form forr(2+ 7,), while of course f_:J ”%( 2(6) —zo( 9)) 20
@screeningfOIIOWS amin. RZ Jo 27 Zy(0) ,
The corresponding predicted behavior of the fractal di-

mension calculated frord;= 1+ nyay,— 7(1770) is shown in
Fig. 7 (upper curveas a function ofy, up to »5~5.4, where
it has not fallen to unity because;,> a, is maintained. )
There is some change of functional form acrags= 7g but g_: E 2 w2 (21)
it is scarcely noticeable graphically. Also shown for compari- RZ 2&E0K
son (lower curve is the behavior when we forcey,= ami,
instead of obeying the electrostatic scaling law: in this CaS@rom the definitior(6) of \(6), the coefficients can be iden-
the fractal dimension does smoothly approach unity7as ified asw =[c/(c—k)](e N9 .

c . e . k ks gIVIng
— 75, but unfortunately having sacrificed the electrostatic
scaling law we cannot see anything relating to the screening

which can be expressed in terms of the coefficientsas

2 2
transition. The predicted screening transitiomgt= 3 seems g_zl ¢ jzwﬂ eikejzwdie—ik¢
to mark a break in the match to the simulation data of Hast- RZ 250 (c—k)2Jo 27 0o 2w
ings [36]: below this conforming to the electrostatic scaling _ o
x(e—E Ape PO xpe""ﬁ) (22)
2 p p )
1.8¢ This expression remains to be averaged over the distribution

of cluster geometries. Appendix D details the averaging of

1-6¢ this under the Gaussian closure approximation, leading to the
1.4} results shown in Fig. 8.
For radial DLA the theory predict& = (¢/R), m s=0.20
1.2} * o in rather modest agreement with 0.13 extrapolated from
o simulationg 12], and the prediction over a range of the DBM

parameter is shown in Fig. 8. The predicted variatiorEof
for DLA grown in a wedge is also shown, and in the limit of
3 4 5 6 zero wedge angle the value for the penetration depth relative
Mo to the width of the channel is theoretically 0.13 compared

FIG. 7. The fractal dimension for the=0 dielectric break- With 0.14 measurefB2]. What is perhaps more interesting is
down model as a function ofy,, using the Gaussian closure ap- the prediction of resonant features which arise whethe
proximation (curves compared with published simulation data Wedge angle relative to 2, is an integer multiple of
(points [36]. The upper curve useay, set by the electrostatic 71/(1+ 7,), corresponding to integee*, because thélea
scaling law, which givesr,> i, Which is whyd; does not ap-  Of resonant angles in DLA has been much discussed
proach unity at the end poinjg. The lower curve shows how [37,16,17: this is a direct and explicit prediction, which we
does smoothly approach unity when we forgg= amin - look forward to seeing tested by simulations.
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0.5 =0.56, which is substantially higher than the simulation
value. It is clear physically that the penetration depth comes
0.4 predominantly from the lowest index modesxafand this is
apparent from our expressions above if we linearize(Eg).
0.3} Keeping only\ ; for the channel would then mal#R be the
(] magnitude of a single Gaussian distributed complex scalar,
0.2} leading to very similar6E/E. Thus it seems to be quite
° fundamentally the Gaussian form of our closure approxima-
0.1} tion which leads to an overstatement of the penetration depth
fluctuations.

N1 XI. RELATION TO CONE ANGLE THEORY

The angular resonances predicted in the penetration depth
turn out to be in interesting correspondence with part of the
earlier cone angle theolCAT) of DLA [17]. In that theory
a growing cluster was viewed as having an identifiable num-
ber of major arms, and it was then further supposed that the
growth should be marginally stable with respect to the loss of
major arms through competition for growth. The strongest
mode of such competition is where alternate fingers gain and
lose, and the condition for this mode to be marginally stable
is in the present notation

n/c
(7—1) noa=1, (23

(1

l_:IG. 8. Upp_er panel shows the penetrat_ion depth relative to the\s calculated in Ref17] for the case=1 andz,=1. In the
radius, for radial DBM growth as a function of,=a7o. The  CAT fractionaln was presumed an acceptable approximation
lower panel shows the prediction for the DLA case, when growinggn condition(23) was combined with geometrical approxi-

in a wedge of angle 2c, plotted against. The lower curve used mations to predicte, but here let us focus on the valuesrof
7,=2/3 and the upper curve used=0.71. The solid point corre- imolied. Usin _ this gives
sponds to measurement for radial DLA, and the dashed line shows P ' 9m=amno 9

the limiting slope implied by measurements on DLA in a channel. n 1+,
Note the cusps predicted whetds an integer multiple ofp, /(1 > =c . (24
+ 7). n
X. GROWTH FLUCTUATIONS S0 our resonance condition corresponds directly to the case

_ _ _ _ _ where the number of marginally stable major arms is an even
Numerical confidence in the scaling properties of DLA humber—which is of course required for the alternating
was greatly bolstered by the idea of an intrinsic but low levelmode stability calculation to be strictly applicable.
of self-organized nois¢13], so it is natural to ask if the The CAT was closed in Ref17] by approximating the
present theory can address this. The simulation studies @fiuster as a solid polygon ofi sides, for whicha=1/1

noise have rested on tracking the extremal radius, which is. 2,/n, leading to aca=(—1+ 7o+ 1+ 670+ 72)/470
hard to extract from our analytic formulation, so we have hadynich is clearly quite different in principle from the Gauss-

to compromise on something more accessible theoreticallyg, ¢josure prediction of constant,. However, it is not

The rglati_ve penetration depth has fluctuations which reflecéasy to distinguish between them on the basis of previously
the differing geometry of the growth, and for the case Ofpublished DBM data, as shown in Fig. 9, and unlike GCA
growth in channel we have measured these fluctuations to e CAT does not predict any other exponents.

(6E/E) simulatior—= 0-18.

The corresponding theoretical calculation is a fairly
straightforward generalization of the penetration depth calcu-
lation itself: we simply calculate the average square of the For DLA and its associated dielectric breakdown models
expression in Eq(22), minus the square of E§D1) to ob-  we have shown a theoretical framework which is complete in
tain the variance o£2. The evaluation of this under the the sense that essentially all measurable quantities can be
Gaussian closure approximation is detailed in Appendix D. calculated. This extends to amplitude factors such as the rela-

The most useful comparison is for the chanmek 0, for  tive penetration depth for which there is no theoretical pre-
which the penetration depth itself happened to be givertedent. For the full spectrum of exponents the practical ad-
rather accurately by the theory. In this case we obtain th@ance over the screened growth model is the elimination of
relative variance of the square of the penetration depth afitting parameters, and it remains an open challenge to ex-
((EIR)MI((é/R)?)?—~1=1.26, leading to §=/E)meory tend our theory to give quantitatively credible predictions for

XIl. DISCUSSION
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1 of (,m) models has been to facilitate calculation, through
mapping ontan=1, the particular associated claim that sur-
0.9} face tension control is included through=1 may prove
controversial. This would imply that the scaling properties of
0,0-8} the chaotic viscous fingering regime can be predicted from
i L4 suitable DBM simulations. The DBM simulations required
S 0.7} are relatively accessible and the greater difficulty in pursuing
this agenda lies in obtaining suitably calibrated experimental
0.6} \'\ data or accurate direct simulations of fingering out to high
degrees of ramification.
There are possibilities for wider application of ideas in

,730 this paper, where we have formulated DLA and DBM as a
turbulent dynamics governed by a complex scalar field in
FIG. 9. The tip singularity exponent;, as a function ofp, for 1+1 dimensions. Decomposing this field multiplicatively
the dielectric breakdown model. Rising curve: Gaussian closure agthrough Fourier representation of its logarithwas the cru-
proximation; falling curve: cone angle theory; points: simulation cial step to obtain renormalizable equations and theoretical
data for e, from Ref.[33]. access to the multifractal behavior, even though other repre-
sentations offered equations of motidr8) with weaker non-
the largea part of the spectrum. For the exponenf, we linearity. It is natural to speculate whether the same strategy
have in the Gaussian approximation a striking new result thamight apply to turbulent problems more widely, where the
this is predicted constant over a wide rangeypfvhich begs ~ key issue appears to be identifying suitable fields to decom-
direct confirmation by(expensive particle-based simula- pose multiplicatively which are of local physical signifi-
tions. We look forward to addressing this in a following pa- cance, and subject to closed equations of motion.
per.
~For the DBM at hig_hn we find structure more _rich than ACKNOWLEDGMENT
discussed hitherto, with a screening transition intervening
before the upper critical valuey is reached. Beyond the  This research has been supported by the EC under Con-
screening transition the scenario whexg,= ay, looks pro-  tract No. HPMF-CT-2000-00800.
spectively solvabléat least in terms of exponentgiven the

degenerate form of the electrostatic scaling law which ap- APPENDIX A: LOGARITHMIC VARIABLES
plies. The Gaussian closure approximation leads to the richer
but quite possibly misleading scenatig,i,< aj,, SO sorting In this appendix we present some details about the loga-

out the truth of this inequality would be very interesting.  rithmic variables in Eq(6) and their equations of motio()
We have shown that the GCA naturally exhibits angularand (8). We begin by explaining the choice of the analytic
resonances which are in interesting correspondence with tHerm in Eqg. (6). In terms ofw=¢+i6, in which complex
ideas of the earlier cone angle theory. Notably these resglane the region exterior to the growth is mapped tbalf)
nances now have clear predicted consequences such as stgp, Eq.(6) analytically continues to
demonstrated for the relative penetration depth, and they can
be explored either by growing in a wedge of variable angle
or by varyingz—so once again behavior vsis a key probe E —cR&ve™ E A ke (A1)
of our understanding of the problem. For DLA in particular do k>0k%c '
the best theoretical value af;, remains 1/2~0.71 from
the CAT [17], but the greater test now lies in thedepen-  Expanding the second exponential factor above to all orders
dence on which CAT and GCA differ qualitatively. gives
Within DLA and DBM we look forward to calculating
more properties such as the response to anisotropy, which is g
fairly readily incorporated into our equations of motion. The z_ Or1_y amo_ (y 2/ a2
hard part is that in breaking angular symmetry we can no %_CRé [1=Nse (\2—Nif2)e
longer exclude nonzero first cumularts,), and a full ma- 3w
trix of second cumulants, but the calculation is in principle ~(Ag=--r)e 0] (A2)
straightforward. A conceptually more challenging avenue is
to improve on the Gaussian approximation itself which weand integrating with respect t@ gives a conformal map
have used to obtain explicit theoretical results. Truncating afrom the right-hand part of the strip to the exterior region of
a cumulant of higher order than the second is hard, and morié@e wedge as required. Wheris a positive integer, periodic
seriously it does not correspond to a positigemiddefinite ~ boundary conditions put a restriction on thig: A ;=0 when
probability distribution. An alternative route of improvement c=1, and for the less interesting cases?2,3, .. ., thepref-
which we are exploring is closure at the level of the full actor in front ofe” °“ has to vanish. The Gaussian closure
multifractal spectrum. solutions(15) automatically satisfy this constraint, because
Whilst our main use of the equivalences within the classhey havex =0 for k<c.
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In the region far from the growth the leading term domi- —q=—f(a)/«, so the two Legendre transforms are very
nates, givingz(w)=R € which shows the significance of simply related.
R: it is the apparent radius of the growtborresponding to The example needed from EL6) has the formq(r)
¢=0) as seen from far away. =1+7+b7?, leading tox=1+2br and hencey(x)=—1

To obtain the transformed equation of moti¢r), first  +b[(x—1)/2b]2. Then we have ()= — ag(1/a), leading
take the logarithm of Eq.(6), giving —\A(6)+InR  directly to Eq.(17).
=In(dz/96)+In(—ilce °%. Then differentiating both sides

with respect to timéat constant) gives APPENDIX D: CALCULATION OF THE PENETRATION
DEPTH
ax R [odz\ Yo oz We start from the expression given in E@?2) for the
Rﬁt 90! 900t square of the relative penetration depth without any averag-

ing over clusters. As the expression is simple exponential in
the \ it is straightforward to average over a Gaussian dis-
tribution leading to

2N
c+|—)77[(cR) 2Yg¥(M )]

—|—7>[(CR) 20N (A3) :2_<52>_1 c? vadcr
—_— —E -

where we have usdd 6/ 9z| = (cR) !eR®* and subsequently o
the powers oRR can be taken outS|dP It is then trivial to xe (
take Fourier components of both sides to obtain Egsand

(8), the latter coming from the zeroth component which weNote that the term-1 in the integrand makes no difference
chose to be absent froim for k#0, but we can includé&=0 in the outer summation.
This enables us to rearrange the combination of summation
over k and integration, giving

Ep S(p)e” ipo 1) (Dl)

APPENDIX B: CUMULANT EXPANSION

The Kubo cumulants for independent variablés are — c2 (= N E ox
given in terms of their moments by (griA%)=(eA%—1), = :7fo dxxé (e 2, SPe —1), (D2
where B; are arbitrary(scalal parameter$28]. From this it
is well known that by dlffervt\a/nt|at|onWW|tr\1N respect as s readily verified upon expanding the exponential
to parameters one —obtaingX,e”)=(X1e")c(e") and s spie P a1 orders. The summation in this exponential

W\ _ W W W W
<XiX2e >_(<X1X2.e Jot(X.e >°<X2¢ Jo)(e"),  where can be evaluated in closed form using the variances from Eq.
W=Z,;B;X;, and similar results for higher moments such as(ls) and the standard forms u+u3/3+ uS/5 - - -

W
(X1XoXqe"). =iny@A+w/(1-u)  and  ul2+udA+usles .-

To obtain the renormalized equation of moti@8) from =~ ‘r——< . .
the unrenormalized equatidi?) we need first to apply the =In ) H(1—-u?). This Iea\_/es one humerical quadrature to
N obtain the results shown in Fig. 8.

above to (\ef™™M). Wiiting this as [(dé/2m) To compute the fluctuations in relative penetration depth
X ek /MO TM)Y allows us to apply the cumulant iden- we again start from Eq22) and now average its square to
tities directly, giving [(d@/2m)ek(\, YOO - give

X (/MO and hences j(h el ™M) (/). In the

translationally invariant case conS|dered here only the 1 27d6 do
j=0 term survives in_the latter summation, leading (( f/R)4>_Z k)zf f Py

0 (@™ V)= (nel® M) (¥ Ny as required. The
calculation  of (MA@ PNy = (e hiel V) ff%da’ do’
k >0 (c—K )?

_ N (R )
+{\g _Jey(““‘)}c()\ke{(“”))c)(e%(““‘)} proceeds along 27 27
precisely analogous lines.

elk(0—¢)

X < exp( =2 N PO N eP?
APPENDIX C: LEGENDRE TRANSFORM P P
OF AN INVERSE FUNCTION

In Eqg. (16) we are confronted with a slightly unusual
situation: we wish to find the Legendre transfof(a) of the )
function 7(q), that is f(a)=qa—(q) where a=dr/dg,  Where averaging the last factor gives exgf{(p)e"* *
given a simple form for the inverse functig{r). Letg(x)  +P@—6+6-0) 1 dp(¢'=0"+6'=6) | dp(¢'=0)])  One integration
be the Legendre transform qgf 7), that isg(x)=x7—q(7) with respect to an absolute angle is now redundant, and the
wherex=dg/dr. Thusx=1/a and we havegy(l/a)= 7/« integrations with respect té— 6 and ¢’ — 6’ can be rear-

IRWEESS rpeip¢')>, ©3)
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ranged using the same trick as in calculatifg/R)?) pre-
viously, leading after some cancellations to

wer-{ 44

C4 o0 ES , dew
:—j dxxecxf dx’x’ e f —
4 )o 0

027T

x (e ,S(p)[e” P*+e Pl 1Y) 4 g Pl +i0)
+e ] —es S(p)[e e P]). (D4

Above we used the simplificatiofig”dy/2mepS(Ple P

PHYSICAL REVIEW BE7, 021401 (2003

only the leading term survives. This can be further applied
leading to the more compact form

2m 02 * —px
5(52)2=f dyl2m —f dxxee Se P
0 2 Jo P

) 2
I

Particularly in order to address the limit of channel growth,
c—0, it is convenient to bypass normalization conventions
by looking at the relative fluctuations &2, which are now

=1, which follows upon expanding the exponential wheregiven by

027T

2 3 ) 2
8 oo <
0

(D3

8(E2)\?
=2 |

[z

From this we obtained the result cited in Sec. IX by numerical quadrature.
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