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We present a new theoretical framework for diffusion limited aggregation and associated dielectric
breakdown models in two dimensions. Key steps are understanding how these models interrelate when
the ultraviolet cutoff strategy is changed, the analogy with turbulence and the use of logarithmic field
variables. Within the simplest, Gaussian, truncation of mode-mode coupling, all properties can be
calculated. The agreement with prior knowledge from simulations is encouraging, and a new super-
universality of the tip scaling exponent is both predicted and confirmed.
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Diffusion limited aggregation (DLA) has accumulated
an enormous literature since Witten and Sander first in-
troduced their simulation model of a rigid cluster growing
by the accretion of dilute diffusing particles [1]. The
importance of the model is that it encompasses a range
of problems where growth or interfacial advance is gov-
erned by a conserved gradient flux, that is the local
interfacial velocity is given by

vn / j@n�j�; r2� � 0; �interface � 0; (1)

where for DLA � � 1 [2]. The generalization to a range
of positive � was introduced by Niemeyer, Pietronero,
and Wiesmann [3] to model dielectric breakdown pat-
terns, but in this Letter we exploit it to support proposed
equivalences between models with significantly different
ultraviolet cutoff mechanism. Theoretical interest has
been fueled by the fractal and multifractal [4,5] scaling
properties of the clusters produced, with controversial
claims [6–8] (and counterclaims [9–11]) of anomalous
scaling, and by the long-standing absence here resolved
of an overall theortical framework to understand the
problem.

The presence of a cutoff length scale a below which the
physics dictates smooth growth is a crucial ingredient of
DLA; it is known that otherwise infinitely sharp cusps
develop in the interface within finite time [12]. In DLA
this cutoff is fixed and set by the size of accreting par-
ticles, but there are other problems where it is set in a
more subtle dynamical way by the surface boundary
conditions on the diffusion field. In dendritic soldification
this comes about through competition between surface
energy and diffusion kinetics (with � � 1), leading to

a / j@n�j�m; (2)

with m � 1=2 at least for those tips not in retreat [13]. In
terms ofm, simple DLA corresponds tom � 0, and in the
theory below in two dimensions we will map onto the
case where a is such that each growing tip has fixed
integrated flux, corresponding to m � 1.

It is central to fractal (and multifractal) behavior in
DLA that the measure given by the diffusion flux [den-
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that the integrated flux onto the growth within distance r
of a singular point is given by

��r� 	 r�: (3)

Applying this phenomenology to the scaling around
growing tips, we can establish an equivalence between
models at different � and m by requiring that the relative
advance rates of different growing tips are matched.
Consider two competing tips labeled 1; 2, for two growths
with the same overall geometry but growing governed by
parameters ��;m� and ��0; m0�, respectively. For tip 1 we
will have tip radius a1 and flux density j1 which are
matched between the two different models by
j01a

0d�1
1 =a0�1 � j1a

d�1
1 =a�1 and similarly for tip 2, while

the two tips are interrelated by a01j
0m0

1 � a02j
0m0

2 and simi-
larly for the unprimed quantities. If we insist that their
advance velocities are in the same ratio in both models
this requires �j1=j2�� � �j01=j

0
2�
�0

, which forces the pa-
rameter relation

1�m�1� �� d�
�

�
1�m0�1� �� d�

�0
: (4)

For the two models to be equivalent in the relative veloc-
ities of all tips requires their parameters be related as
above, where � is the singularity exponent associated
with growing tips which we take to be the same as we
are matching the geometry at scales above the cutoffs.

Although we have not strictly proved the equivalence
of the models related above, we have shown that any such
relationship must follow Eq. (4) and we will assume in the
rest of this Letter that this equivalence holds. All such
models are then classifiable in terms of a convenient
reference such as �0, the equivalent � when m � 0,
corresponding to the original dielectric breakdown
model (DBM). For example, dendritic solidification
with � � 1 and m � 1=2 corresponds to �0 �

2
3���d : it

is thus not equivalent to DLA, but to another member of
the DBM class. Another puzzle resolved by our classifi-
cation is a recent study showing conflicting scaling be-
tween DLA and different limits of a ‘‘Laplacian growth’’
model [14]. In the present terminology the latter model
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high coverage of the growing surface per growth step
have � � 3 and � � 1, respectively. Using � � 0:7 (see
below) these map through Eq. (4) into �0 � 2:31 and
�0 � 0:77, respectively, so the way their scaling brackets
that of DLA is quite expected.

DLA and DBM have been widely regarded as statisti-
cal models with the local advance rate in Eq. (1) imple-
mented as the probabilty per unit time for some unit of
advance, entailing an inherent shot noise. Here we argue
that (as suggested for Saffman-Taylor fingering [15])
diffusion controlled growth is a problem of turbulence
type, with noise self-organising from minimal input. The
data in Fig. 1 show how the relative fluctuations can
approach their limiting value from below as well as
from above.

The new ideas above, that we can balance changing the
cutoff exponent m by adjustment of �, and that noise can
be left to self-organize, are the key to a new theoretical
formulation of the problem, at least in two dimensions of
space to which we now specialize. In two dimensions the
Laplace equation in (1) can be solved in terms of a
conformal transformation between the physical plane of
z � x� iy and the plane of complex potential ! � ��
i� in which we take the growing interface to be mapped
into the periodic interval � � �0; 2��, � � 0 and the
region outside of the growth mapped onto � > 0. Then
adapting Ref. [12], we have for the dynamics of the
interface following Eq. (1),

@z���
@t

� �i
@z
@�

P

��������
@�
@z

�������
1��

�
: (5)

The linear operator P is most simply described in
terms of Fourier transforms: P �

P
k e

�ik�fk �P
k P�ke

�ik�fk � f0 � 2
P
K
k�1 e

�ik�fk, where we have
introduced here an upper cutoff wave vectorK. It is easily
FIG. 1. The size fluctuations (‘‘output noise’’) Aout �
�!N=N�2, measured at fixed radius R for DLA clusters grown
with off-lattice noise reduction [11] at various (‘‘input’’) noise
levels Ain. For low Ain, Aout self-organizes from below in the
manner of a turbulent system.
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shown that on scales of � greater than K�1 a smooth
interface is linearly unstable with respect to corrugation
for � > 0 (the Mullins-Sekerka instability [16]), whereas
for scales of � less than K�1 the equation drives smooth
behavior (corresponding locally to the case � � �1).
This cutoff on a scale of �, the cumulative integral of
flux, corresponds in terms of tip radii and flux densities to
aj � K�1, that is an m � 1 cutoff law. Thus the parame-
ter � in Eq. (5) is more specifically �1 � ��0, using
Eq. (4) with d � 2.

We have made a numerical test of Eq. (5) and the
equivalence (4), with disorder supplied only through the
initial condition, by applying them to the case of growth
along a channel with periodic boundary conditions (cyl-
inder). For this case analyticity of the conformal map
requires that z��� � i��

P
k�0 zke

�ik� and the overall
advance rate of the growth reduces to @z0

@t � �j @�@z j
1��1�0,

which we can compare to the expected scaling of tip
velocity with the cutoff, v	 K�1����1=�. It is convenient
to change variables to  � �@z=@����1��1�=2, in terms of
which we obtain

@ 
@t

� �i
@ 
@�

P �   � iy 
@
@�

P �  ; (6)

where y � �1� �1�=2 and the trilinear form of the right-
hand side (rhs) enables us to compute numerically the
motion within a purely Fourier representation. Figure 2
shows the measured variation of

P
j<k j jj

2 vs k�1 : this is
expected to exhibit a power law with exponent �1=�� 1�
and the observed slope plotted in this way is surprisingly
independent of �1.

The most important result of our numerical study of
Eq. (6) is that this clearly does self-organize into statis-
tical scaling behavior, given disorder from only the initial
conditions. However, the numerical results are also re-
markable, as we obtain � � 0:74� 0:02 with no signifi-
cant dependence on �1 in the range studied. This not only
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FIG. 2. Cumulative contribution to the mean growth velocity
plotted against wave vector as k�1 with logarithmic scales. The
data are (bottom to top) for �1 � 0:5; 0:6; 0:7; 0:8; 0:9; 1:0 and
all exhibit a common power law slope 1=�� 1 � 0:35� 0:04
per the guidelines shown.
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FIG. 3. Multifractal spectra from the Gaussian theory (� �
2=3), compared to measured values for DLA [20]. Agreement is
excellent for the active region + � 0, � � 1, and there are no
adjustable parameters.
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agrees reasonably with the value � � D� 1 � 0:71
known from large direct simulations of DLA [17,18],
but also appears to imply a deeper unversality which we
will see is replicated in our analytic theory below.

We now turn to a theoretical analysis of Eq. (5), for
which a primary requirement is that we must obtain
results explicitly independent of the cutoff as K ! 1.
This is hard because we have already seen that the mean
advance rate of the interface diverges as a power ofK, and
on fractal scaling grounds one would expect the same
divergent factor to appear in the rate of change of simple
variables such as zk or  k. One can of course take ratios of
rates of change and look to order terms such that diver-
gences cancel, but to make this work we have been forced
to introduce yet another change of variables,

� i
@z
@�

� exp��%��� � exp��
X
k>0

%ke
�ik��; (7)

which corresponds to Fourier decomposing the logarithm
of the flux density. The key to the success of these vari-
ables is that they decompose the flux density itself multi-
plicatively and, as we shall see, quite naturally capture its
multifractal behavior. In terms of these ‘‘logarithmic
variables’’ the equation of motion becomes

@%k
@t

� �
X
j�k

�k� j�%k�jP�j��ey�%�%�j � 2k�ey�%�%�k;

(8)

where subscripts on bracketed expressions imply the tak-
ing of a Fourier component, by analogy with %k. The
advance rate of the mean interface is given in these
variables by @z0

@t � �ey�%�%�0.
Now let us suppose some ignorance of the initial con-

ditions and describe the system in terms of a joint proba-
bility distribution over the %k, and let us denote averages
over this [unknown] distribution by h. . .i. We can
in principle determine the distribution through its
moments, whose evolution we now compute. For simplic-
ity we assume translational invariance with respect to �,
so that only moments of zero total wave vector need
be considered, of which the lowest gives @

@t h%k%ki �

��
P
j�k�k � j�P�j�h%k�j%ke

y�%�%�
j i � 2kh%ke

y�%�%�
k i �

�c:c:�. All of the higher moments lead to the same form of
averages on the rhs hmultinomial�%; %�ey�%�%�i, and all of
these terms are conveniently expressed in terms of cumu-
lants [19], using the identities hXeWi=heWi � hXeWic,
hXYeWi=heWi � hXYeWic � hXeWichYeWic, etc. The
key helpful feature is that the expressions we require all
naturally divide by one factor of hey�%�%�i � @

@t hz0i,
which is what we sought in order to remove divergences.

To obtain tractable results we need to introduce some
closure approximation(s) and we present here the sim-
plest, neglecting all cumulants higher than the second,
equivalent to assuming a joint Gaussian distribution (of
zero mean) for %. This is entirely characterized by its
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second moments S�k� � h%k%ki which by Eq. (8) we find
evolve according to @S�k�=@hz0i � �kS�k� � y2kS�k�2 �
2y2

P
j<k jS�j�S�k� � 2ykS�k�. This in turn approaches a

stable steady state solution where

S�k� �
2y� 1

y2
k�1; k odd; S�k� � 0; k even:

(9)

The absence of even k is readily interpreted in terms of
the dominance of one major finger and one major fjord.

Within the Gaussian approximation and its predicted
variances (9) we can now compute all (static) properties
of diffusion controlled growth, in a channel and (see later
discussion) also in radial geometry. The multifractal
spectrum of the harmonic measure follows from comput-
ing the general moment [5] hj @�@z j

+i � he�%� �%%�+=2i �
exp�+2=4

P
K
k S�k� ’ K

q�+��1�+, leading to

q�+� � 1� +� +2
�1

2�1� �1�
2 ; (10)

and it is easy to see that any closure scheme based on
keeping cumulants of % up to some finite order leads to a
polynomial truncation of q�+�. From the Legendre trans-
form of the inverse function +�q� we obtain the corre-
sponding spectrum of singularities,

f��� � 2�
1

�
�

1

2

�
�1 �

1

�1

��
2� ��

1

�

�
; (11)

which in Fig. 3 is compared to measured data for DLA
[20], which later measurements [21] reinforce. For the
region of active growth � � 1 (q � 0) the theory is
quantitatively accurate. At � � 1 it conforms to
Makarov’s theorem [22], and in contrast to the screened
growth model [23] it does this without adjustment. For
� > 1 the spectrum is only qualitatively the right shape,
135503-3
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and for such screened regions our equations based on tip
scaling may not hold.

Although the multifractal moments depend signifi-
cantly on the input parameter �1, the tip scaling exponent
� turns out to be independent of this and in close agree-
ment with our numerical results. Matching the expected
scaling of the mean velocity (as used to measure � above)
to that of the multifractal moment with + � ��1� �1�
leads direcly to � � 2=3 independent of �1. This is a
remarkable success for the Gaussian theory to predict this
hitherto unexpected result so closely.

The multifractal spectrum suggests that the Gaussian
approximation is good in the growth zone, so we have
computed the penetration depth as a further test. For
growth in the channel we define relative penetration depth
� as the standard deviation of depth <�z� along the
channel, computed over the harmonic measure, divided
by the width of the channel. This leads to �2���2 � h�z�
i���z � i��i=2 �

P
k>0 k

�2hje%k j
2i=2, where the required

averages can all be computed in the approximation of
Gaussian distributed %. Using �1 � 2=3 corresponding to
DLA this leads to �theory � 0:12, compared to �DLA �
0:14 from direct simulations of DLA growth in a periodic
channel [18].

All of the new theory is readily extended to growth
from a point seed in radial geometry. The multifractal
spectrum turns out to be unchanged, in accordance with
expectations from universality. The penetration depth
relative to radius gives �theory � 0:20 for radial DLA,
compared to our recently published extropolation from
simulations, �DLA � 0:13 [10].

For DLA and its associated DBMs we have shown a
theoretical framework which is complete in the sense that
essentially all measurable quantities can be calculated.
For amplitude factors such as the relative penetration
depth there is no theoretical precedent. For the full spec-
trum of exponents the advance over the screened growth
model is the elimination of fitting parameters. For the
exponent �tip we have in the Gaussian approximation a
striking new result that this is independent of �, which
begs direct confirmation by (expensive) particle-based
simulations. However, for DLA, in particular, we have
not yet improved on the best theoretical value of �tip,
which remains 1=

���
2

p
� 0:71 from the cone angle approxi-

mation [24].
Within DLA and DBM we look forward to calculating

more properties such as the response to anisotropy, which
is fairly readily incorporated into our equations of mo-
tion. A more challenging avenue is to improve on the
Gaussian approximation which we have used to obtain
explicit theoretical results. Truncating at a cumulant of
higher order than the second is hard, and more seriously it
does not correspond to a positive (semi-)definite proba-
bility distribution. An alternative route of improvement
which we are exploring is closure at the level of the full
multifractal spectrum.
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There are possibilities for wider application of ideas in
this Letter, where we have formulated DLA and DBM as a
turbulent dynamics governed by a complex scalar field in
1� 1 dimensions. Decomposing this field multiplica-
tively (through Fourier representation of its logarithm)
was the crucial step to obtain renormalizable equations
and theoretical access to the multifractal behavior, even
though other representations offered equations of motion
(6) with weaker nonlinearity. It is natural to speculate
whether the same strategy might apply to turbulent prob-
lems more widely, where the key issue appears to be
identifying suitable fields to decompose multiplicatively
which are of local physical significance, and subject to
closed equations of motion.
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